Why do we make thermodynamic models of magmatic phase relations?

Experiments are not always enough!

Reproduce or interpolate experiments

 In this context, models can be useful, but are often disappointing. The more multivariate a problem is, the more useful interpolation becomes. Models can be very useful in synthesizing multiple experimental sources.

To extrapolate experimental data

 The framework of thermodynamics is most useful in this case. Arbitrary functional forms with little theoretical basis may not extrapolate well in T, P and composition. Thermodynamical-based models of phase equilibria are always better extrapolators of experimental data.

Example: melting of peridotite at shallow mantle pressures:

Phase equilibria from 0-3 GPa

	MM3
SiO ₂	45.47
TiO ₂	0.11
Al ₂ O ₃	4.00
Cr ₂ O ₃	0.68
FeOT	7.22
MgO	38.53
CaO	3.59
Na ₂ O	0.31

Phase equilibria from 0-3 GPa (con't)

- Experimentally determined liquid compositions are indicated by symbols.
- Smooth curves are calculated using the pMELTS software package.

Another example: crystallization of MORB composition liquid:

wt%	MORB
SiO ₂	48.68
TiO ₂	1.01
Al ₂ O ₃	17.64
Fe ₂ O ₃	0.89
Cr ₂ O ₃	0.0425
FeO	7.59
MnO	
MgO	9.1
CaO	12.45
Na ₂ O	2.65
K ₂ O	0.03
P_2O_5	0.08
H ₂ O	0.2
CO ₂	

Another example: rhyolite:

Example: Daly hypothesis - Generation of tephrites and phonolites by assimilation of limestones into alkali basalts

after, lacono-Marziano et al. (2008)

- (red curve) is PST-9 + 1 wt% H2O crystallization simulated using MELTS
- addition of 20 wt% CaCO3 to PST-9 + 1 • wt% H2O generates the composition plotted as the green circle (compare to experiments)
- equilibrium crystallization of that • carbonated composition generates the blue curve

But, what is the real advantage of thermodynamic models?

- To investigate phenomena that are difficult or impossible to examine experimentally
 - This is the key reason to develop a thermodynamic model. Examples:
 - We wish to model melting associated with adiabatic decompression, yet we cannot perform a sequence of melting experiments at fixed entropy content.
 - Experiments are done at fixed oxygen fugacity, but we are interested in evolution of the system at fixed oxygen content?
 - We wish to explore the consequences of crystallization under isochoric conditions, and it may not be possible to impose experimental constraints that mimic this condition.

Example: Adiabatic melting (\Delta Q = 0):

... Adiabatic melting

... Adiabatic melting

... Adiabatic melting

Clapyron equation $\frac{dT}{dP} = \frac{\Delta V}{\Delta S}$

Adiabatic melting ...

Adiabatic melting ...

MM3 (pMELTS adiabat)

Example: Oxygen buffer: closed versus open system:

Example: MORB crystallization: heat output:

Example: High-silica rhyolite crystallization: heat output:

from: Daniele Bianchino, http://vulcanoalbano.altervista.org

Colli Albani, Roman province

Geologic, petrographic and geochemical data with mass balance calculations, supported by experimental data for Colli Albani magma compositions, provide evidence for significant ingestion of carbonate wall rocks by the Pozzolane Rosse K-foiditic magma.

Example: Colli Albani, calcite assimilation, 100 g initial magma, 1200 °C

Differential pressure (MPa)

Merapi, Indonesia

- Parental magma: crystal-rich basaltic andesite, compared to the potassic-foidite from Alban Hills.
- Like Colli Albani, the explosivity of the eruptions of Merapi are fueled by assimilation of crustal carbonates

Composition for modeling is taken from Deegan et al. (2010, JP, 51:1027-1051)

Example: Merapi, Indonesia, calcite assimilation, 100 g initial magma, 1100 °C

