

Mineral volumetric properties, structural properties, phase equilibria

MELTS, pMELTS, rhyolite-MELTS, alphaMELTS, MELTS for Excel, etc.

Phases and components included:

Solid solutions

- olivine Mg-Fe²⁺-Co-Ni-Ca-Mn
- garnet Mg-Fe²⁺-Ca
- melilite Mg-Al-Fe²⁺-Na
- opx Ca-Mg-Fe²⁺-Al-Fe³⁺-Na
- cpx (pig) Ca-Mg-Fe²⁺-Al-Fe³⁺-Na
- cummingtonite Mg-Fe²⁺
- amphibole Ca-Mg-Fe2+
- hornblende (pargasite-hastingsite)
- biotite Mg-Fe²⁺
- feldspar Na-Ca-K
- nepheline Na-Ca-K-[]
- kalsilite Na-Ca-K-[]
- leucite Na-K-H₂O
- spinel Mg-Fe²⁺-Cr³⁺-Al-Fe³⁺-Ti
- rhm oxide Mg-Fe²⁺-Cr³⁺-Al-Fe³⁺-Ti
- ortho oxide Mg-Fe²⁺-Fe³⁺
- Fe-Ni alloy (solid and liquid)

Stoichiometric phases

- titanite
- aegirine
- aenigmatite
- muscovite
- quartz
- tridymite
- cristobalite
- corundum
- sillimanite
- rutile
- perovskite
- whitlockite
- apatite
- water
- periclase

LIQUIC: SiO₂-TiO₂-Al₂O₃-Fe₂O₃-FeO-MnO-MgO-NiO-CoO-CaO-Na₂O-K₂O-P₂O₅-H₂O-(CO₂)

Mass transfer calculations

Gibbs free energy minimization of G(T, P) yields m, X, V, etc.		polythermal isobaric	polytherma isochoric
Helmholtz free energy $(A = G - PV)$	State 1	G(T ₁ ,P)	A(T ₁ ,V)
<i>minimization of A(T, V)</i> yields <i>m, X, P, etc.</i>			
Enthalpy (H = G - TS)		m ₁ , X ₁ , V ₁	<i>m</i> ₁ , <i>X</i> ₁ , <i>P</i> ₁
<i>minimization of H(S, P)</i> yields <i>m, X, T, etc.</i>			
Internal energy (E = G - PV+TS)	State 2	G(T ₂ ,P)	A(T ₂ ,V)
minimization of E(S, V) yields m, X, T, P, etc			
Entropy (<i>S</i> = <i>G</i> / <i>T</i> - <i>H</i> / <i>T</i>)	\downarrow	<i>m</i> ₂ , <i>X</i> ₂ , <i>V</i> ₂	<i>m</i> ₂ , <i>X</i> ₂ , <i>P</i> ₂
<i>maximizing of S(H, P)</i> yields <i>m, X, T, etc.</i>			
All of the above as open systems	State 3	G(T ₃ ,P)	A(T ₃ ,V)
Korzhinskii potential (L = G - n ₀₂ µ ₀₂)			
		ma Va Va	m. V. D.

 m_3, X_3, V_3 m_3, X_3, P_3

Computational method for solving for the abundances and compositions

Gibbs free energy minimization for T, P grids using a fully second order Newton method Helmholtz free energy for T, V grids; Enthalpy for S, P grids; Internal Energy for S, V grids

> Quadratic approximation to the Gibbs free energy

> > Minimum

Quadratic search direction in the null space of bulk composition constraints

Actual Gibbs free energy

Linear step along quadratic search direction

Composition ———

Most time consuming calculation: phase saturation algorithm

MELTS Failures and solutions

Calc-alkaline magmas

- Inability to accurately model hornblende-liquid and biotite-liquid phase equilibria. Due to a dearth of applicable experimental data. Not necessarily a problem with formulation of liquid solution theory.
- Phase equilibria above ~ 4 GPa and < 30 GPa
 - A decade ago, the problem was a dearth of experimental data. That is no longer the case. Now the difficulties are an EOS for the liquid state (solved), a more sophisticated solution model for the liquid (solved) and solution theory for high-pressure phases.
- Phase equilibria at pressures > ~ 30 GPa
 - Here the problem is lack of experimental data and insufficient understanding of structural transformations that accompany compression of the liquid. But, there is hope!
- Sulfur-bearing mixed fluid systems
 - Mixed H₂O-CO₂-sulfur bearing systems are the goal. The ability to model redox equilibria involving iron and sulfur is an attainable objective.
- Automating calibration and maintenance of models