
Thermodynamics

First law:

Second law:

ΔE = ΔQ - ΔW

ΔWΔQ system

ΔS ≧ ΔQ/T

ΔS = ΔQrev/T ΔQ = ΔQrev + ΔQirrev de Donder

dE = dQ - dW/ /

dQ = TdS - Adξ /
dW = PdV + other work terms/

dE = TdS - PdV - Adξ 

dQ = dQrev - Adξ/ / dS = dQrev/T/
dQ = dQrev + dQirrev/ //Differential forms:

Combined first and second laws:

E, Internal Energy
ΔQ, heat transfer to the system
ΔW, work done by the system
T, absolute temperature
P, pressure

V, volume
S, entropy
A, chemical affinity
ξ, reaction progress
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so that dz may be written 
 dz = Mdx + Ndy . (1) 
 
Notice that the total derivative of the product, Mx, is given by the chain rule: 
 
 d Mx( ) = Mdx + xdM . (2) 
 
If we subtract equation (2) from equation (1), we obtain: 
 
 dz – d Mx( ) = Ndy – xdM  (3) 
 
Since the operation of taking a derivative is distributive, equation (3) becomes: 
 
 d z – Mx( ) = Ndy – xdM  (4) 
 
This equation shows that z–Mx is a function of the two variables, y and M.  Adopting the 
definition 

 w = z – Mx = z – ∂f
∂x

⎛ 
⎝ 

⎞ 
⎠ y
x ,  

we say that w is a Legendre transform of z. 
 
As an example, take the expression for the internal energy resulting from the combined 
first and second laws of thermodynamics: 
 
 dE = TdS − PdV −Adξ , (5) 
which shows that E = f S,V,ξ( )  
If we wish to construct a new state function with independent variables T, V and ξ, then 
we subtract  
 d TS( ) = TdS + SdT  
from equation (5) to obtain 
 d E – TS( ) = –SdT − PdV −Adξ , 
which provides the definition of a new thermodynamic potential called the Helmholtz 
free energy, A = E –TS = f T ,V,ξ( ) . 

Legendre transforms:
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Legendre transform example:



minimization of G(T, P, n1 … nc) yields V, S, H, A, E etc.

Gibbs free energy, G

Enthalpy, H = G + TS

Helmholtz free energy, A = G - PV 

Internal energy, E = G - PV + TS

Korzhinskii potential, L = G - nO2 μO2

Closed system:

Open system:

minimization of H(S, P, n1 … nc) yields V, T, G, A, E etc.

minimization of A(T, V, n1 … nc) yields P, S, H, G, E etc.

minimization of E(S, V, n1 … nc) yields P, T, H, A, G etc.

minimization of L(T, P, μO2 , n1 … nc-1) yields V, S, H, A, E, G, etc.

Thermodynamic potentials from Legendre transforms:



How do we do this minimization?

Where is the information about phases?

Answer:
The minimization is done in the “integral” formulation 

while the phase partitioning is derived from the 
“differential” formulation

The two formulations are equivalent!
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From the Gibbs free energy, by repeated Legendre transform, we obtain the 
Gibbs-Duhem equation: 
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Differential form:
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Two phases in equilibrium

G



Two phases; one phase stable: 

G



G

Two phases; disequilibrium: 



Gualda & Rivers (2006)

Examples: Results from the various thermodynamic potentials



PhasePlot (phaseplot.org)

High-silica rhyolite: Gibbs free energy
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PhasePlot 2.0, Mac App Store,  http://phaseplot.org

High-silica rhyolite: Gibbs free energy

http://phaseplot.org
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Figure 4 (Ghiorso and Gualda, EV)

minimization of G(T, P) yields m, X, V, etc.

Gibbs free energy
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Figure 5 (Ghiorso and Gualda, EV)

minimization of H(S, P) yields m, X, T, etc.

Enthalpy (H = G - TS)
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Figure 6 (Ghiorso and Gualda, EV)

pressure

minimization of A(T, V) yields m, X, P, etc.

Helmholtz free energy (A = G - PV)
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Figure 7 (Ghiorso and Gualda, EV)
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minimization of E(S, V) yields m, X, T, P, etc.

Internal energy (E = G - PV+TS)
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Fig X (Ghiorso and Gualda, EV)
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100 MPa

Ghiorso and Gualda, 2015 (E of V, using MELTS)
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How does temperature and

pressure vary with position?

How does temperature and

pressure vary with position?

Figure 3 (Ghiorso and Gualda, EV) ΔQ

ΔV

Why are entropy and volume important?

Because they are the natural variables
for understanding the thermal and
mechanical evolution of a magma body 

Helmholtz free energy minimization: modeling an eruption trigger



ΔQ

T, P T+ΔT, P+ΔP

What is ΔT, ΔP? 

An eruption trigger must generate a large pressure differential between magma 
and country rock, so for evolving magmatic systems

ΔV



ΔV + or -
T, P

ΔP > 0

ΔP < 0

ΔP = 0

Δρ  - or +

ΔQ

ΔQ

ΔQ

ΔQ < 0ΔT < 0

ΔT < 0

ΔT < 0



Example: Assume that ΔV is zero: 

ΔP =  

ΔQ

T, P T+ΔT, P+ΔP

(mass crystallized) x (1/ρphase - 1/ρliquid)

βsystem

β = compressibility 

β = 1/K 

K = bulk modulus



Is it possible to get ΔP large enough to over pressure the system, 
induce fracturing and thereby trigger an eruption?

ΔT

Yes, if ...
•  mass crystallized is large
•  1/ρphase - 1/ρliquid is both large and positive, ~ 3%
•  βsystem is very small, 10-4 bar-1 to 10-6 bar-1

• ΔP ~ (grams crystallized) x (0.01) / 10-6 
• ~ (grams crystallized) x 10000 bars



How do we obtain mass crystallized?

• What is the mass crystallized for a change in ΔQ and ΔV?

• What are the compositions of those phases (i.e., phase density)?

• If the process is brought to chemical equilibrium, then what is the 
final temperature and pressure of the assemblage? 

ΔQ

ΔV

This process cannot be simulated experimentally
Experiments are conducted at fixed T and P



Thermodynamic calculations

State 1

State 2

State 3

G(T1,P1)

G(T2, P2)

G(T3, P3)

E(S1,V1)

minimization of G(T, P) yields m, X, V, etc.

minimization of E(S, V) yields m, X, T, P

E(S2,V2)

E(S3,V3)

m1, X1, V1 ,S1

m2, X2, V2, S2

m3, X3, V3, S3

m1, X1, T1, P1

m2, X2, T2, P2

m3, X3, T3, P3

Gibbs free energy

Internal energy (E = G - PV + TS)



Campanian Ignimbrite

Trachytic to phonolitic, ~39.3 ka, 200 km3

Fowler, Bohrson and Spera, 2007

Campi Flegrei Volcanic Field, ~2000 km2



• Appearance of a vapor 
phase mitigates trend 
of decreasing P

• Why does pressure not 
increase rapidly when 
vapor is initially 
generated? (there are 
two reasons!)

• The trigger for the 
pressure increase is 
reaching the pseudo-
invariant in the crys-
tallization of the magma 
body.

• Increasing P increases 
the water content of 
magma and makes the 
vapor more dense.

ΔP =  (mass crystallized) x (1/ρphase - 1/ρliquid)

βsystem

3 wt%, ρ=0.23, β=6x10-4 4 wt%, ρ=0.31, β=6x10-4

8 wt%, ρ=0.52, β=2x10-4



ΔQ

Viscoelastic shell
ΔV ≠ 0 

•Yes, but it requires a fully coupled 
thermodynamic and dynamical model 
with no approximations regarding 
compressibility and uniformity of heat 
transfer

•Overpressure in the magma body now 
depends on the relative rates of 
crustal deformation and latent heat 
production

A more realistic way to model this system ...?

ΔQ

min E(Q,V) -> T and P


