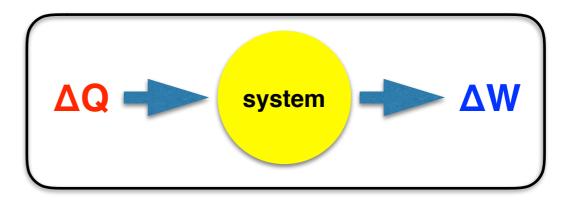
Thermodynamics

First law:

 $\Delta E = \Delta Q - \Delta W$ Second law: $\Delta S \ge \Delta Q/T$ $\Delta S = \Delta Q/T$ Differential forms: $dE = \oint Q - \oint W$



E, Internal Energy
△Q, heat transfer to the system
△W, work done by the system
T, absolute temperature
P, pressure

<u>A</u>, chemical affinity

V, volume

S, entropy

 ξ , reaction progress

de Donder

 $dS = \langle Q_{rev} / T \rangle$

 $\mathbf{\mathbf{Q}} = \mathbf{\mathbf{Q}}_{\text{rev}} + \mathbf{\mathbf{Q}}_{\text{irrev}}$

 $\Delta \mathbf{Q} = \Delta \mathbf{Q}_{rev} + \Delta \mathbf{Q}_{irrev}$

 $\mathbf{q}\mathbf{Q} = \mathbf{q}\mathbf{Q}_{rev} - \mathbf{A}\mathbf{d}\boldsymbol{\xi}$

<mark>¢Q</mark> = TdS - <u>A</u>dξ

dW = PdV + other work terms

Combined first and second laws:

 $dE = TdS - PdV - \underline{A}d\xi$

Legendre transforms:

Suppose z = f(x, y), then

$$dz = \left(\frac{\partial f}{\partial x}\right)_{y} dx + \left(\frac{\partial f}{\partial y}\right)_{x} dy$$

For convenience, we define two additional functions

$$M(x,y) = \left(\frac{\partial f}{\partial x}\right)_y$$
 and $N(x,y) = \left(\frac{\partial f}{\partial y}\right)_x$,

so that dz may be written

$$dz = Mdx + Ndy.$$
(1)

Notice that the total derivative of the product, Mx, is given by the chain rule:

$$d(Mx) = Mdx + xdM.$$
⁽²⁾

If we subtract equation (2) from equation (1), we obtain:

$$dz - d(Mx) = Ndy - xdM \tag{3}$$

Since the operation of taking a derivative is distributive, equation (3) becomes:

$$d(z - Mx) = Ndy - xdM \tag{4}$$

This equation shows that z-Mx is a function of the two variables, y and M. Adopting the definition

$$w = z - Mx = z - \left(\frac{\partial f}{\partial x}\right)_y x,$$

we say that w is a Legendre transform of z.

Legendre transform example:

As an example, take the expression for the internal energy resulting from the combined first and second laws of thermodynamics:

which shows that
$$E = f(S, V, \xi)$$
 $dE = TdS - PdV - Ad\xi$, (5)

If we wish to construct a new state function with independent variables T, V and ξ , then we subtract

$$d(TS) = TdS + SdT$$

from equation (5) to obtain

$$d(E-TS) = -SdT - PdV - Ad\xi,$$

which provides the definition of a new thermodynamic potential called the Helmholtz free energy, $A = E - TS = f(T, V, \xi)$.

Thermodynamic potentials from Legendre transforms:

Closed system:

Gibbs free energy, G

```
minimization of G(T, P, n_1 \dots n_c) yields V, S, H, A, E etc.
```

Enthalpy, H = G + TS

```
minimization of H(S, P, n<sub>1</sub> ... n<sub>c</sub>) yields V, T, G, A, E etc.
```

Helmholtz free energy, *A* = *G* - *PV*

minimization of $A(T, V, n_1 \dots n_c)$ yields P, S, H, G, E etc.

Internal energy, E = G - PV + TS

minimization of E(S, V, n₁ ... n_c) yields P, T, H, A, G etc.

Open system:

Korzhinskii potential, $L = G - n_{O_2} \mu_{O_2}$

minimization of L(T, P, μ_{O_2} , n_1 ... n_{c-1}) yields V, S, H, A, E, G, etc.

How do we do this minimization?

Where is the information about phases?

Answer:

The minimization is done in the "integral" formulation while the phase partitioning is derived from the "differential" formulation

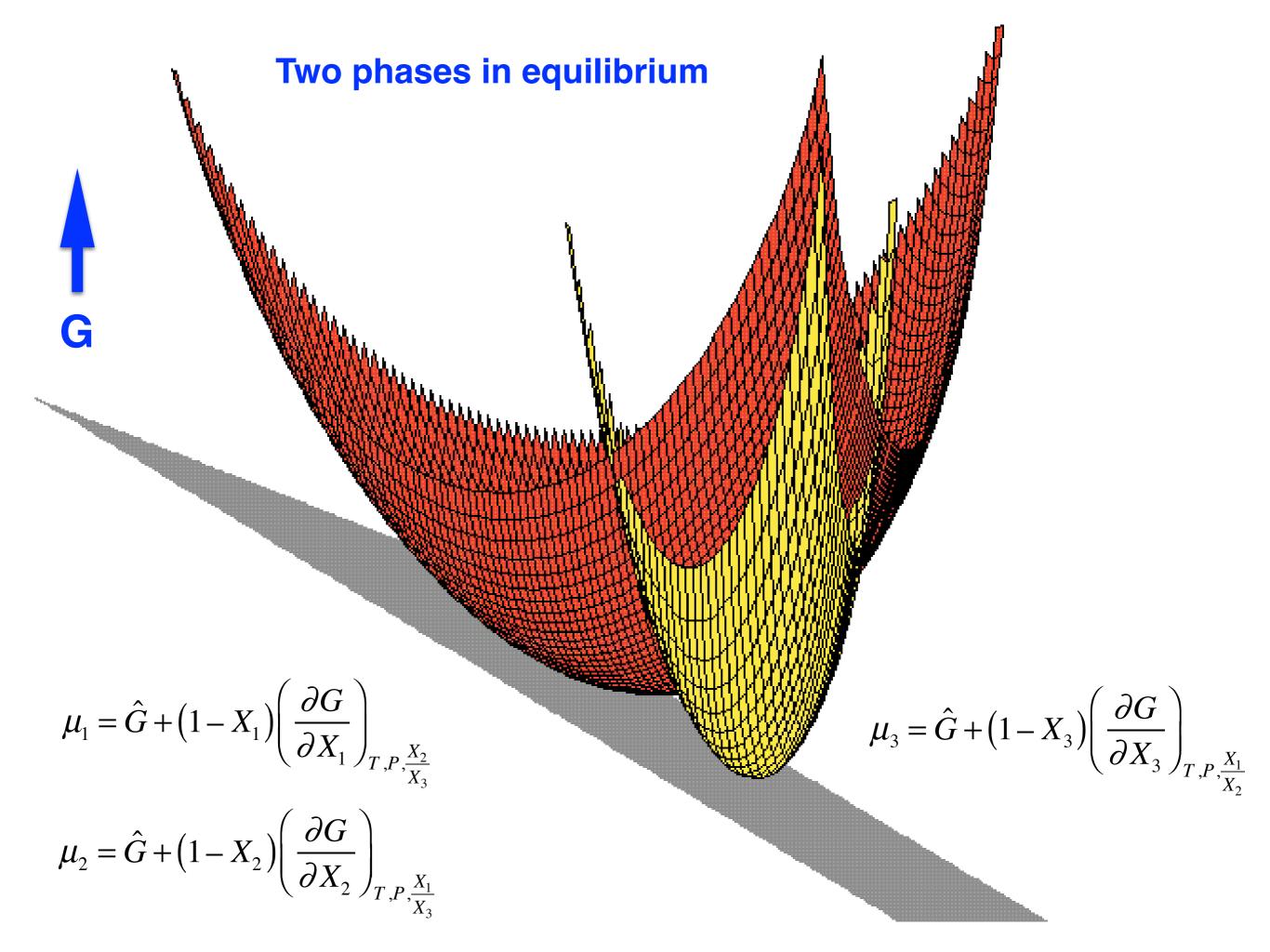
The two formulations are equivalent!

Differential form:

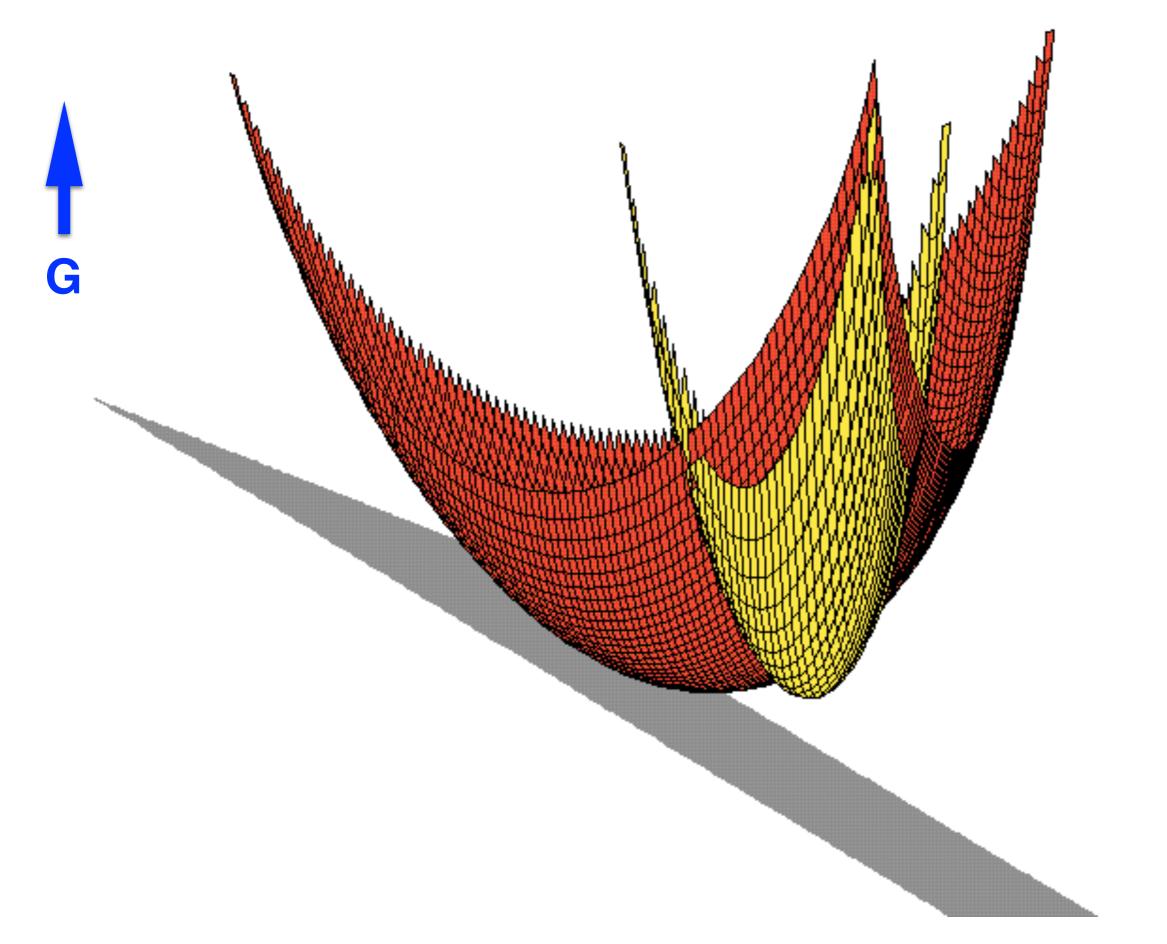
$$dE = TdS - PdV - \underline{A}d\xi = \frac{\partial E}{\partial S}dS + \frac{\partial E}{\partial V}dV + \sum_{i}^{c}\frac{\partial E}{\partial n_{i}}dn_{i}$$
$$-\underline{A}d\xi = \sum_{i}^{c}\mu_{i}dn_{i}$$
$$dE = TdS - PdV + \sum_{i}^{c}\mu_{i}dn_{i}$$
$$dH = TdS + VdP + \sum_{i}^{c}\mu_{i}dn_{i} = \frac{\partial H}{\partial S}dS + \frac{\partial H}{\partial P}dP + \sum_{i}^{c}\frac{\partial H}{\partial n_{i}}dn_{i}$$
$$dA = -SdT - PdV + \sum_{i}^{c}\mu_{i}dn_{i} = \frac{\partial A}{\partial T}dT + \frac{\partial A}{\partial V}dV + \sum_{i}^{c}\frac{\partial A}{\partial n_{i}}dn_{i}$$
$$dG = -SdT + VdP + \sum_{i}^{c}\mu_{i}dn_{i} = \frac{\partial G}{\partial T}dT + \frac{\partial G}{\partial P}dP + \sum_{i}^{c}\frac{\partial G}{\partial n_{i}}dn_{i}$$

From the Gibbs free energy, by repeated Legendre transform, we obtain the Gibbs-Duhem equation:

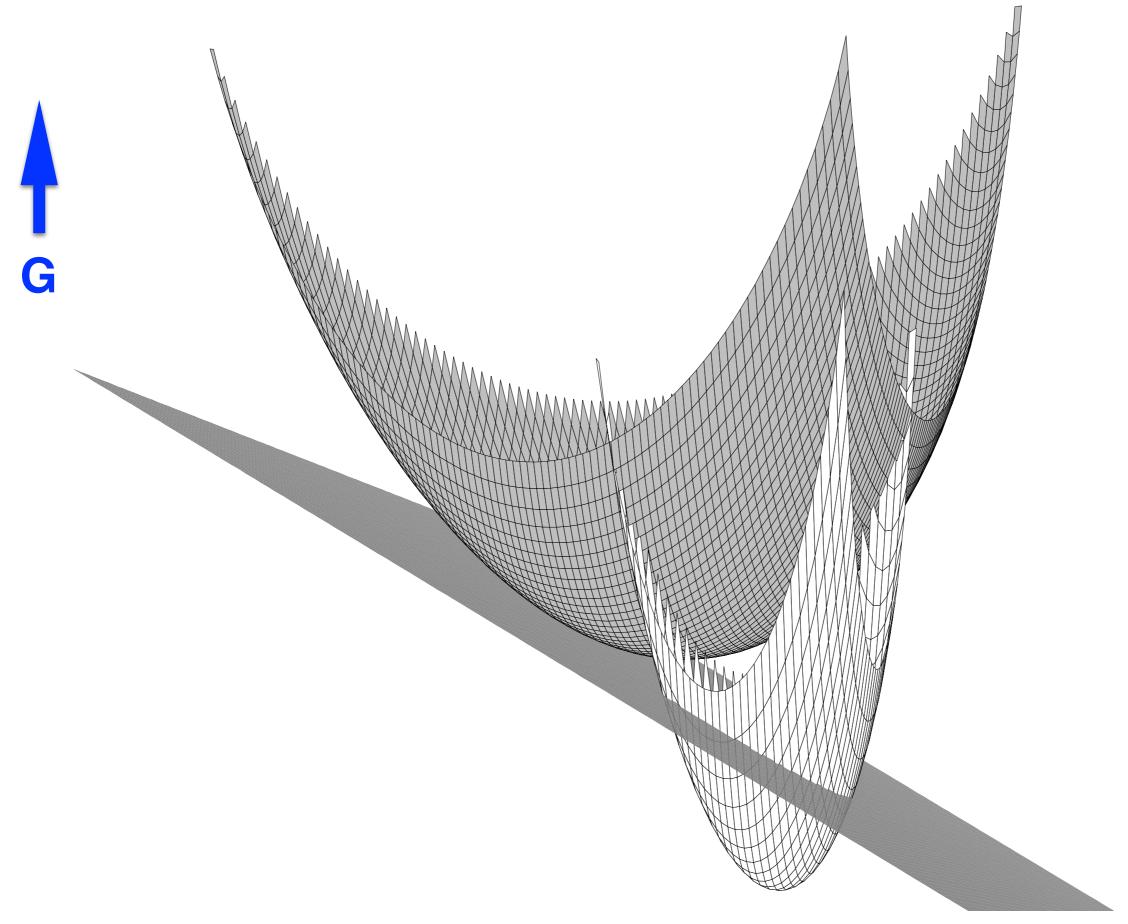
$$0 = -SdT + VdP + \sum_{i}^{c} n_{i}d\mu_{i}$$



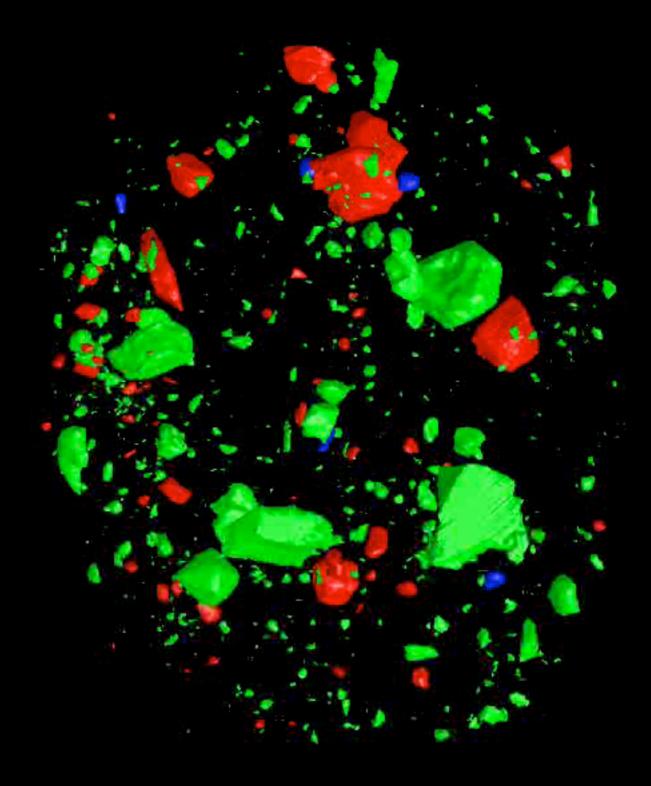
Two phases; one phase stable:



Two phases; disequilibrium:

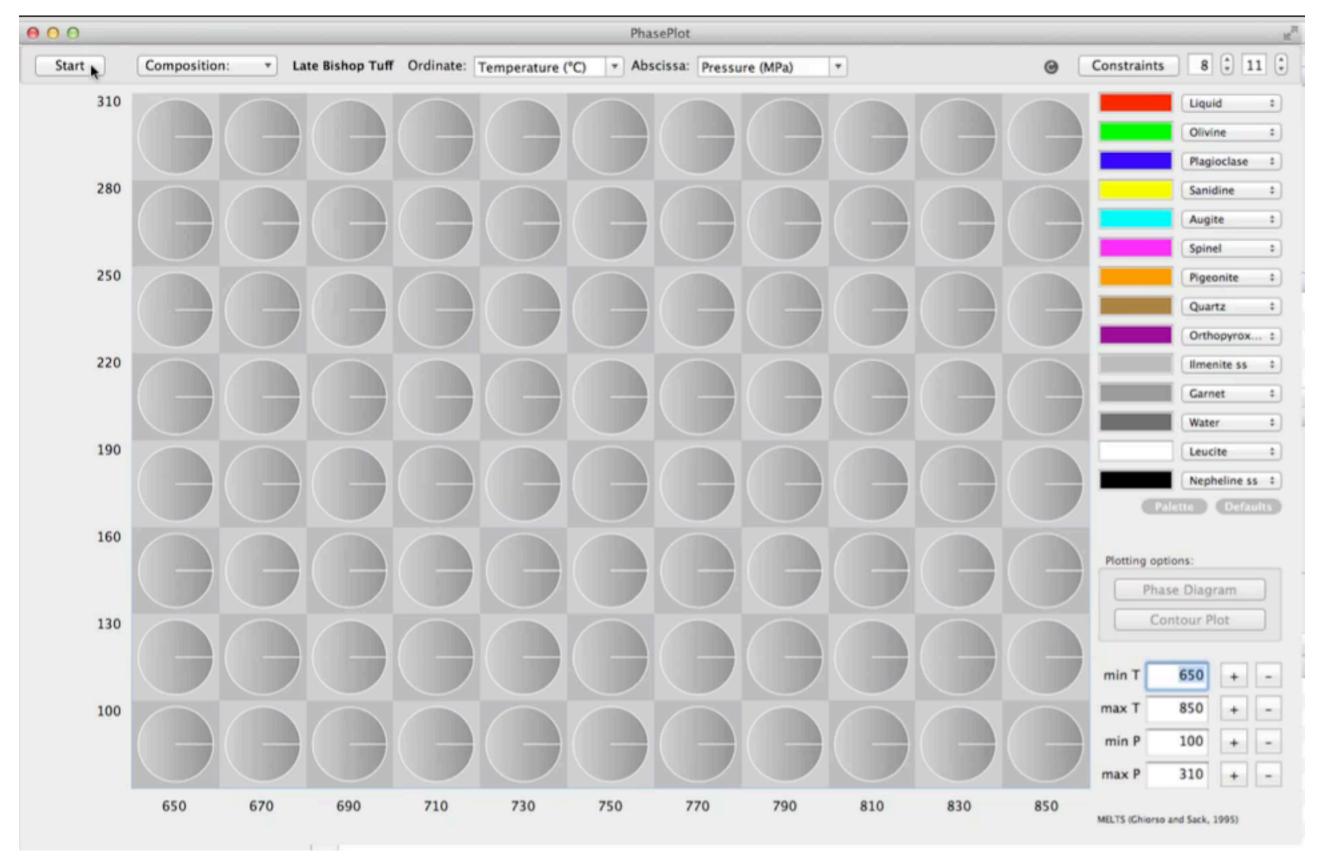


Examples: Results from the various thermodynamic potentials



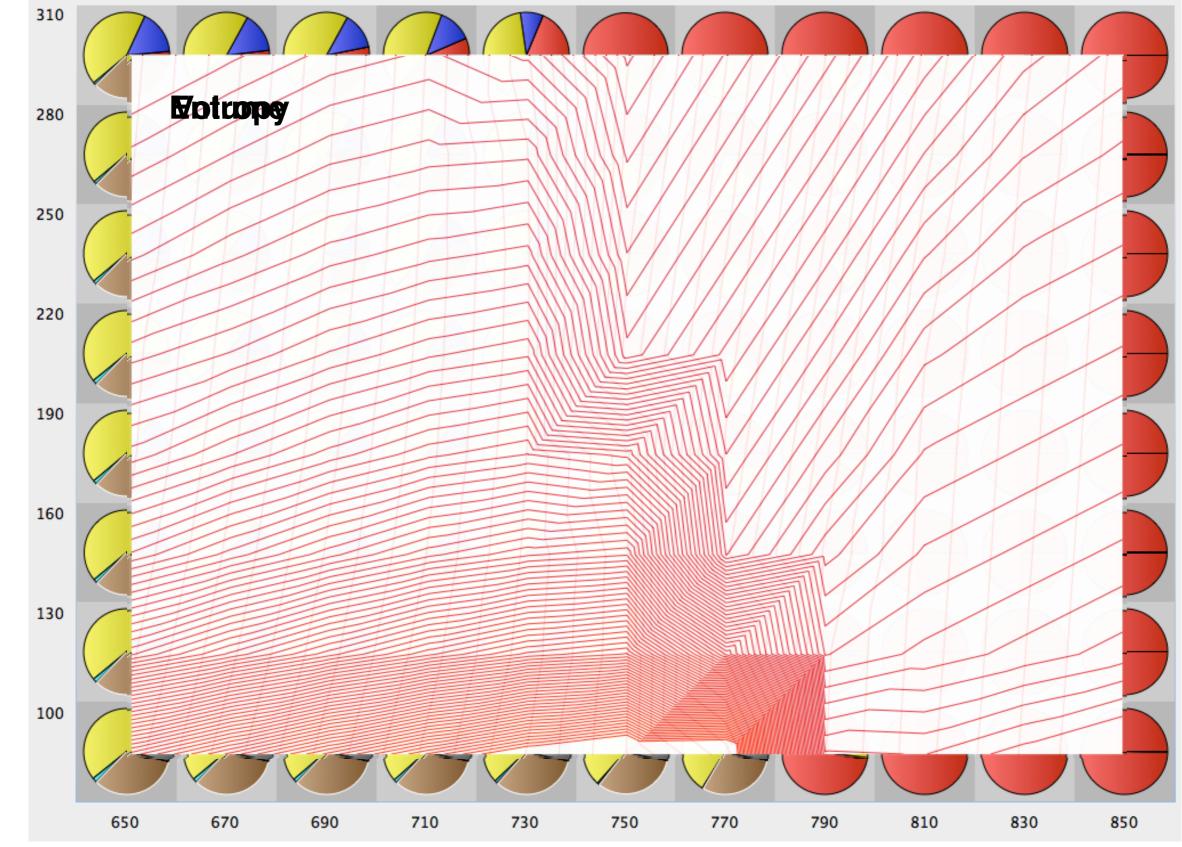
Gualda & Rivers (2006)

High-silica rhyolite: Gibbs free energy



PhasePlot (phaseplot.org)

High-silica rhyolite: Gibbs free energy

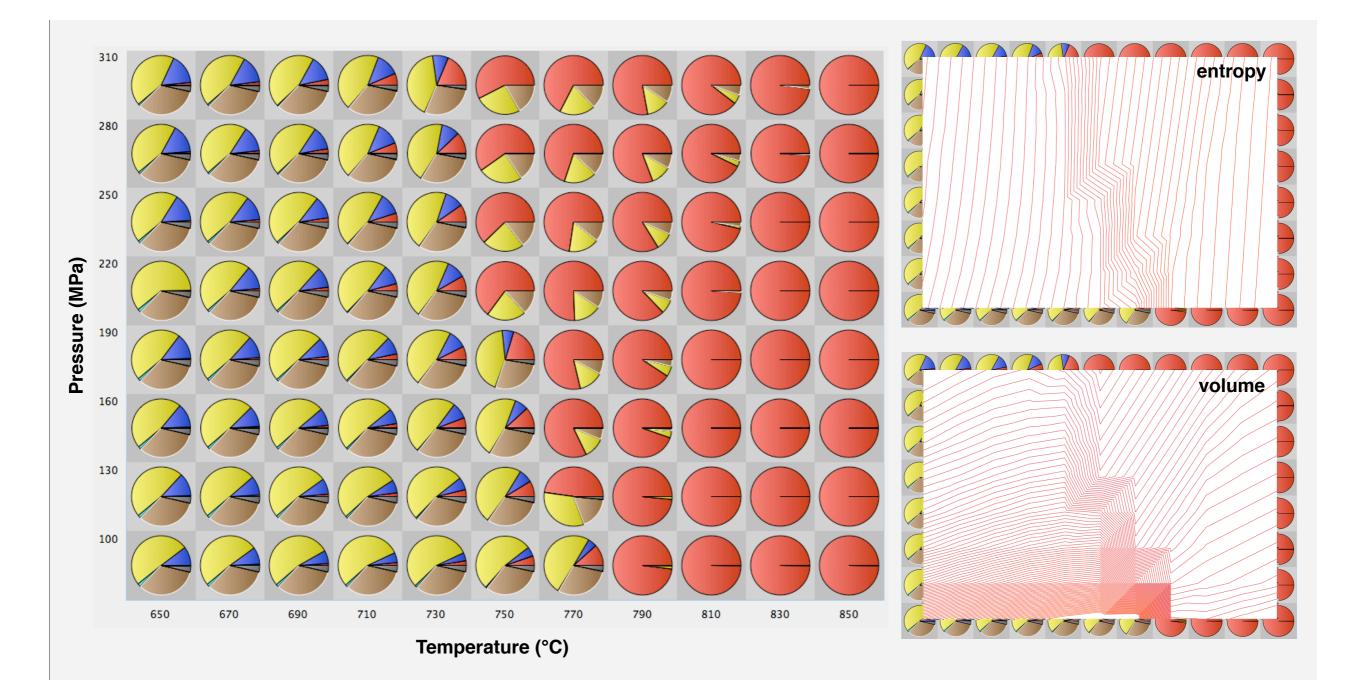


Temperature (°C)

Pressure (MPa)

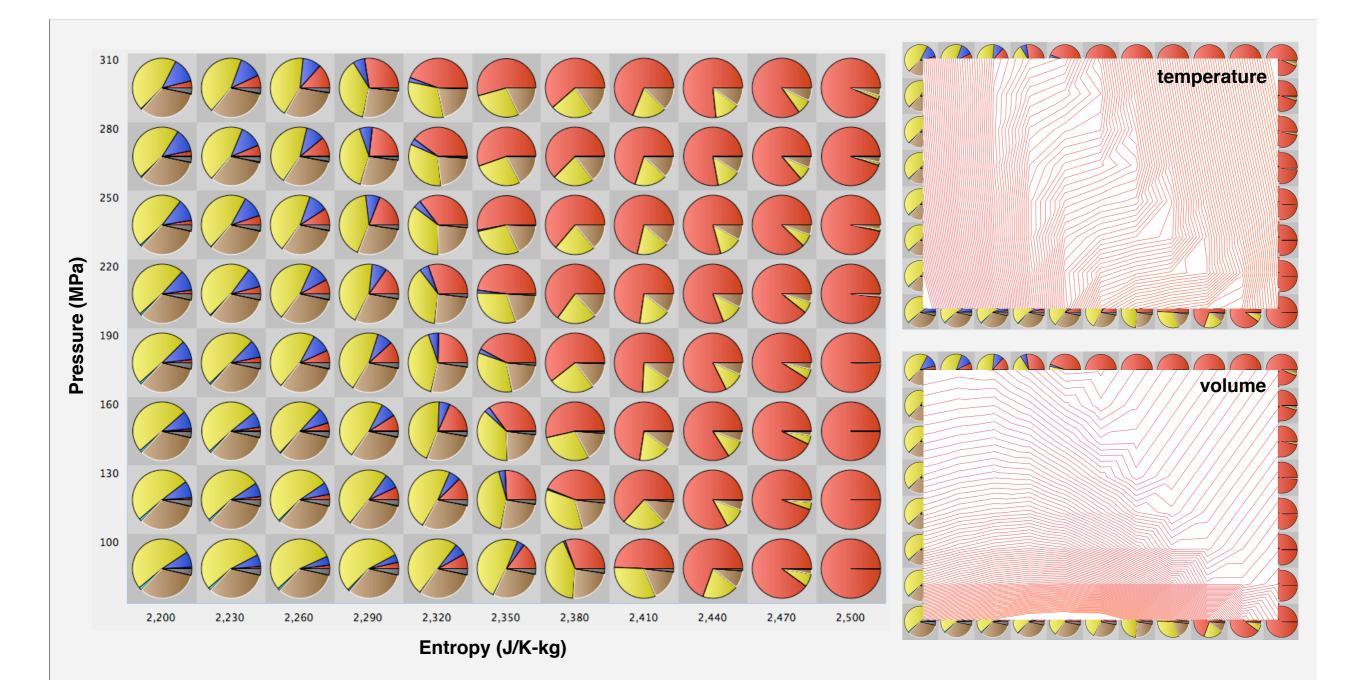
Gibbs free energy

minimization of G(T, P) yields m, X, V, etc.



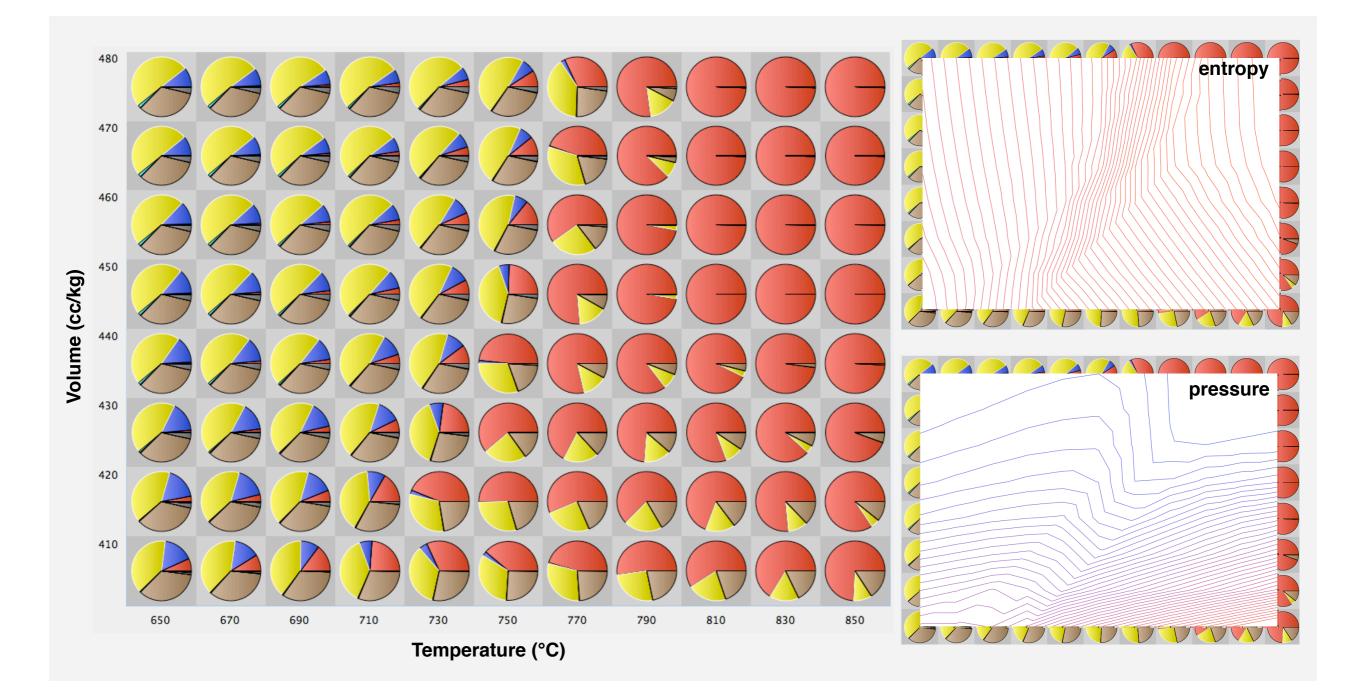
Enthalpy (H = G - TS)

minimization of H(S, P) yields m, X, T, etc.



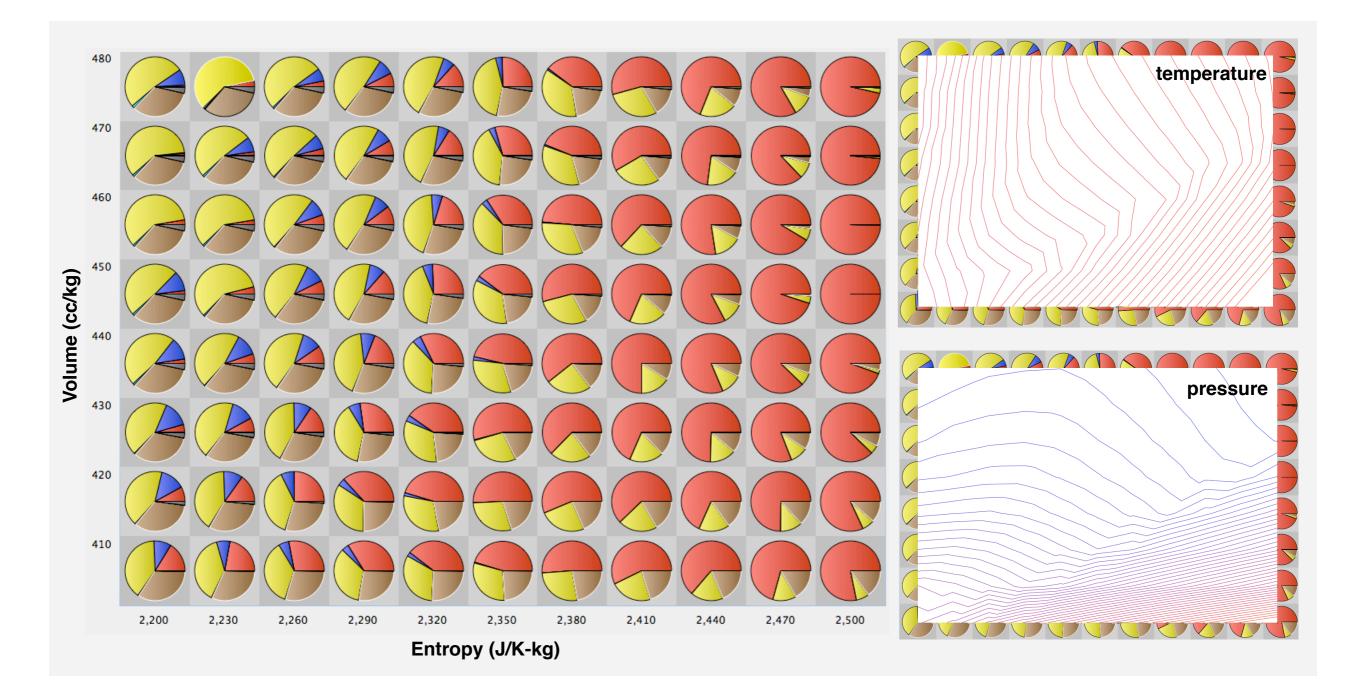
Helmholtz free energy (A = G - PV)

minimization of A(T, V) yields m, X, P, etc.

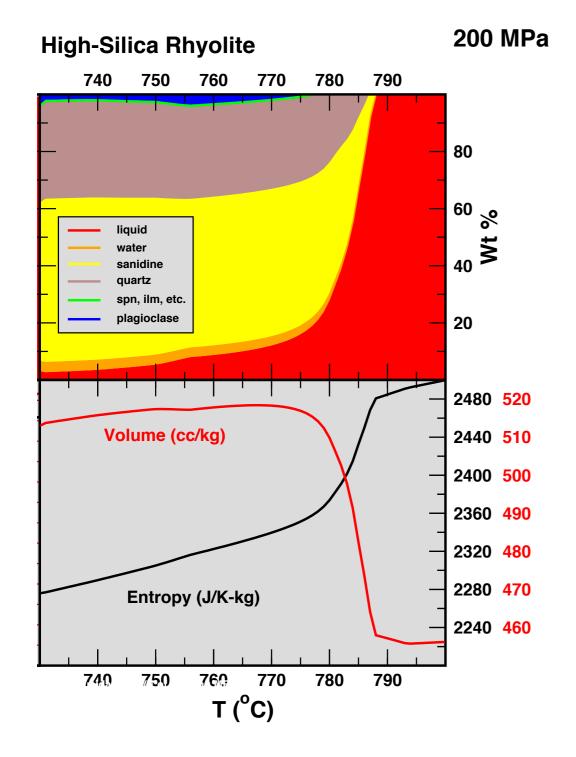


Internal energy (E = G - PV+TS)

minimization of E(S, V) yields m, X, T, P, etc.

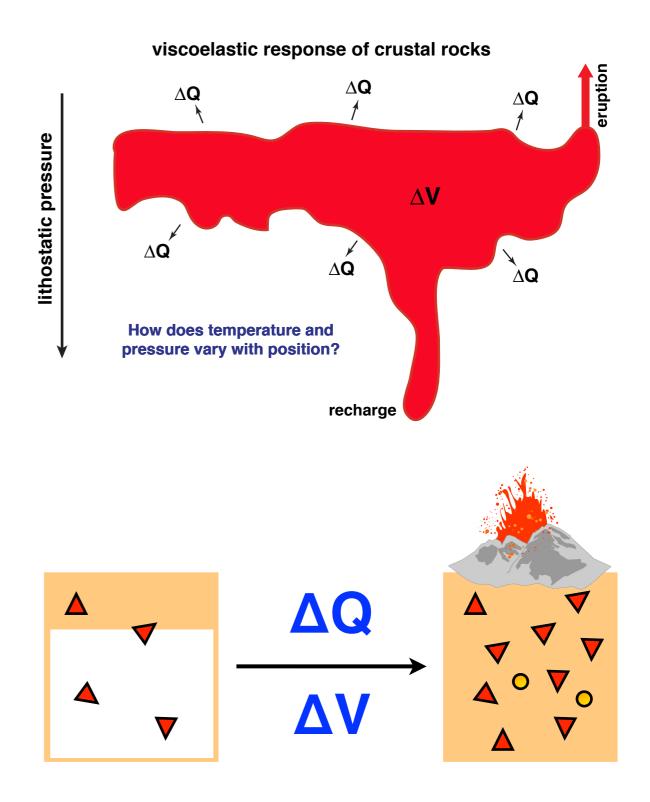


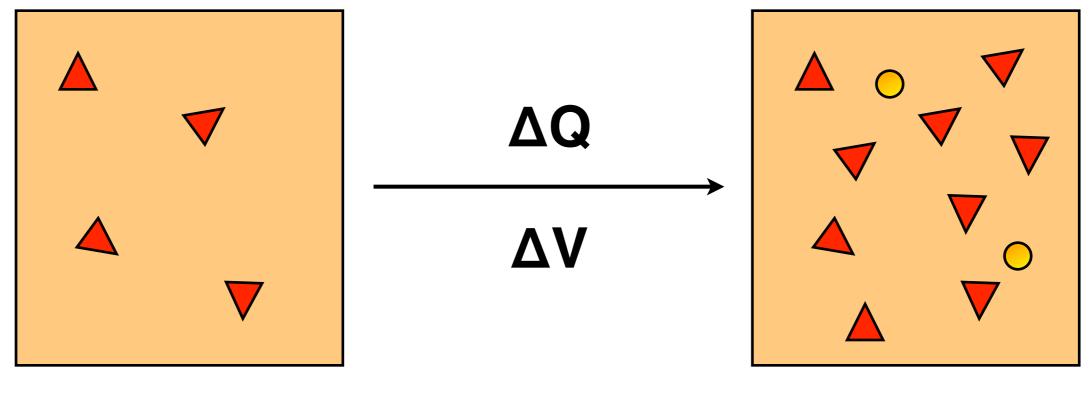
Helmholtz free energy minimization: modeling an eruption trigger



Because they are the natural variables for understanding the thermal and mechanical evolution of a magma body

Why are entropy and volume important?



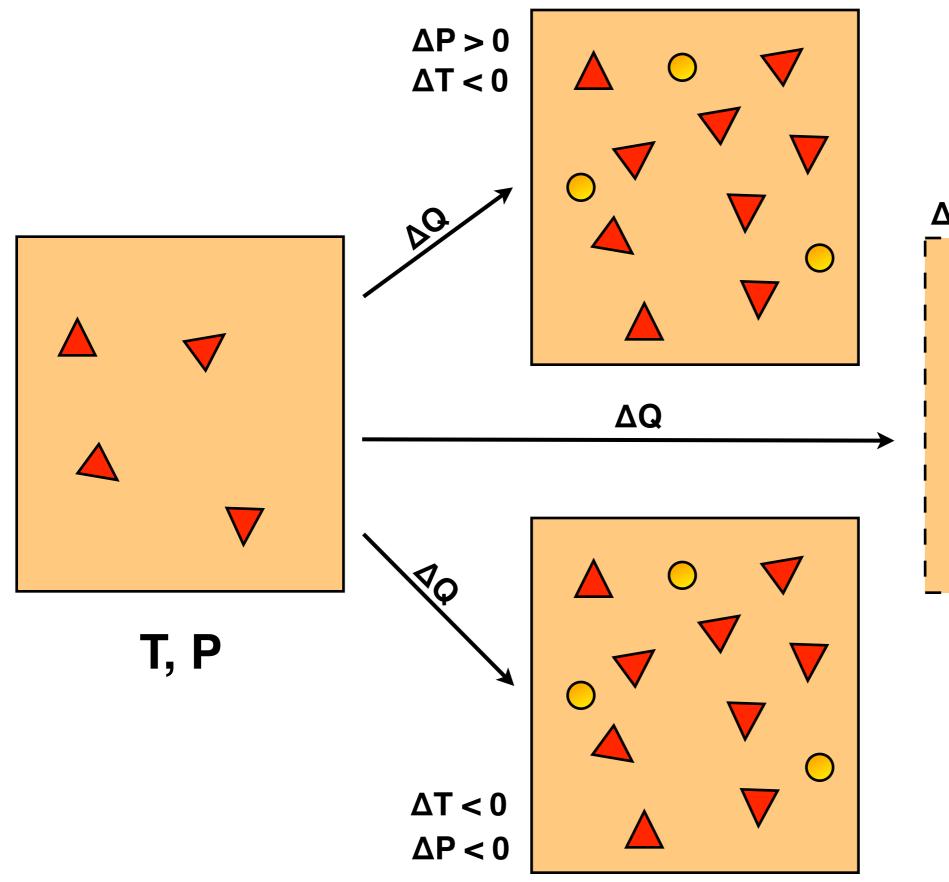


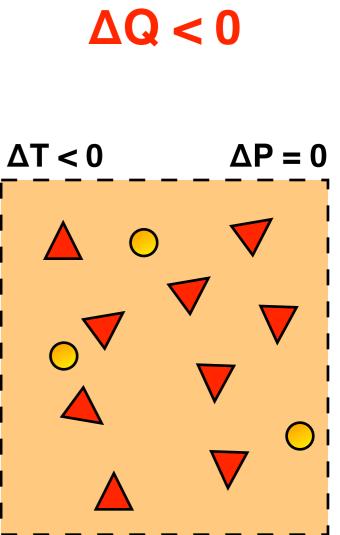
T, **P**

T+ Δ T, P+ Δ P

An eruption trigger must generate a large pressure differential between magma and country rock, so for evolving magmatic systems

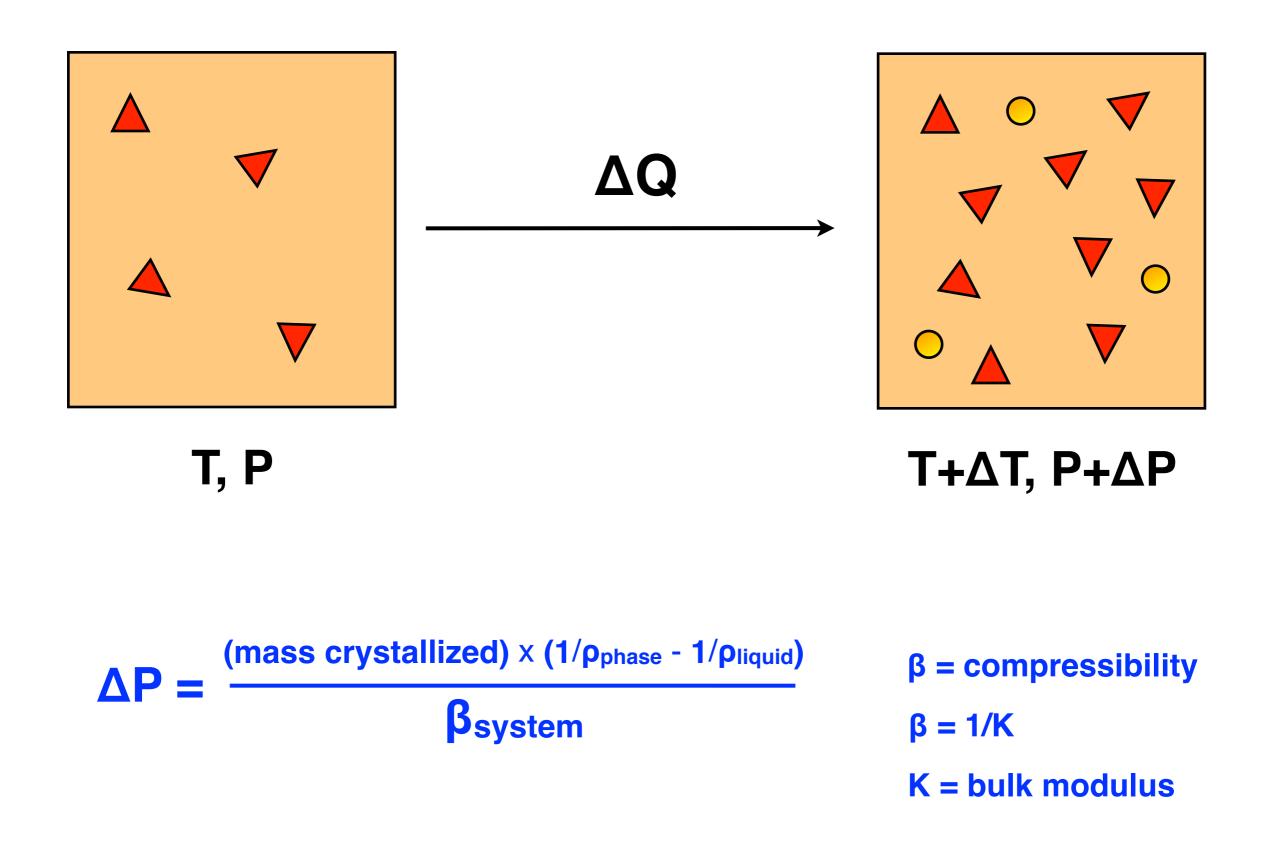
What is ΔT , ΔP ?





 ΔV + or - $\Delta \rho$ - or +

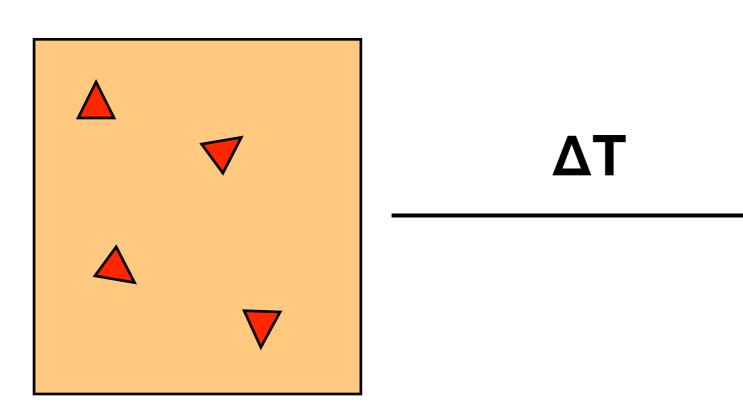
Example: Assume that ΔV **is zero:**

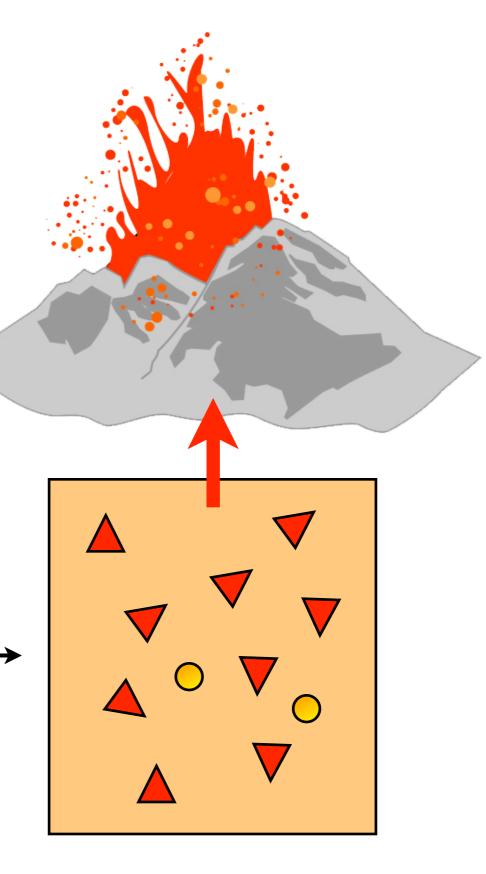


Is it possible to get ΔP large enough to over pressure the system, induce fracturing and thereby trigger an eruption?

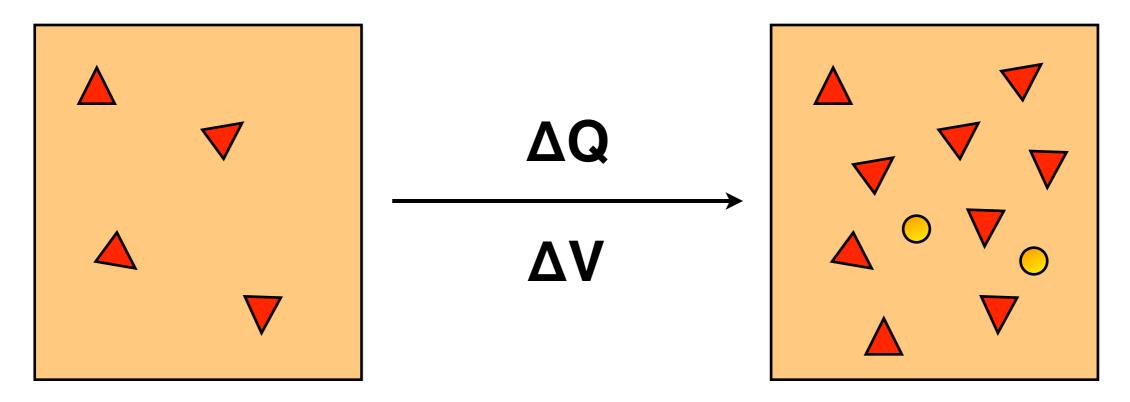
Yes, if ...

- mass crystallized is large
- $1/\rho_{phase}$ $1/\rho_{liquid}$ is both large and positive, ~ 3%
- β_{system} is very small, 10⁻⁴ bar⁻¹ to 10⁻⁶ bar⁻¹
- ΔP ~ (grams crystallized) × (0.01) / 10⁻⁶
- ~ (grams crystallized) × 10000 bars





How do we obtain mass crystallized?

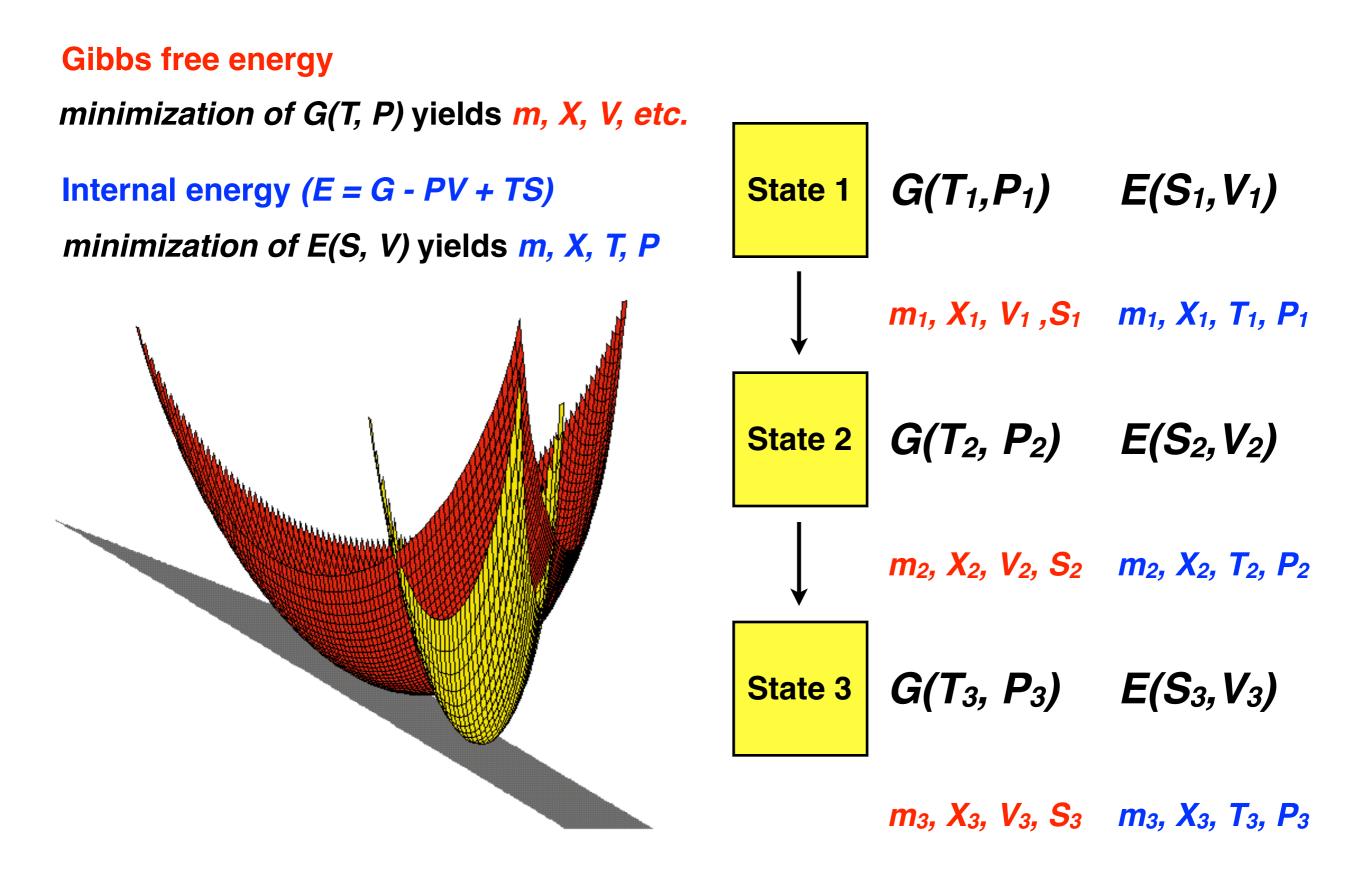


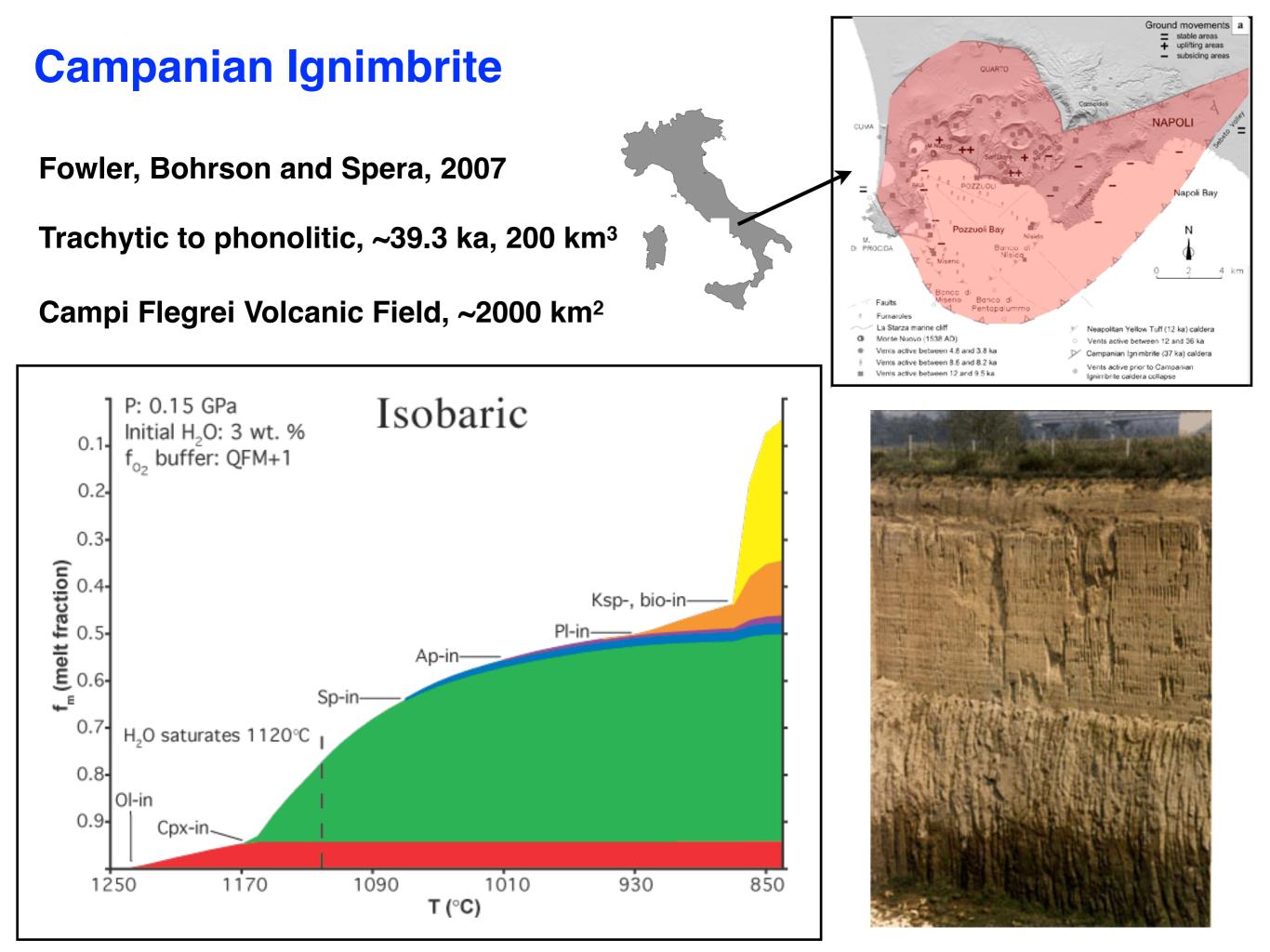
- What is the mass crystallized for a change in ΔQ and ΔV ?
- What are the compositions of those phases (i.e., phase density)?
- If the process is brought to chemical equilibrium, then what is the final temperature and pressure of the assemblage?

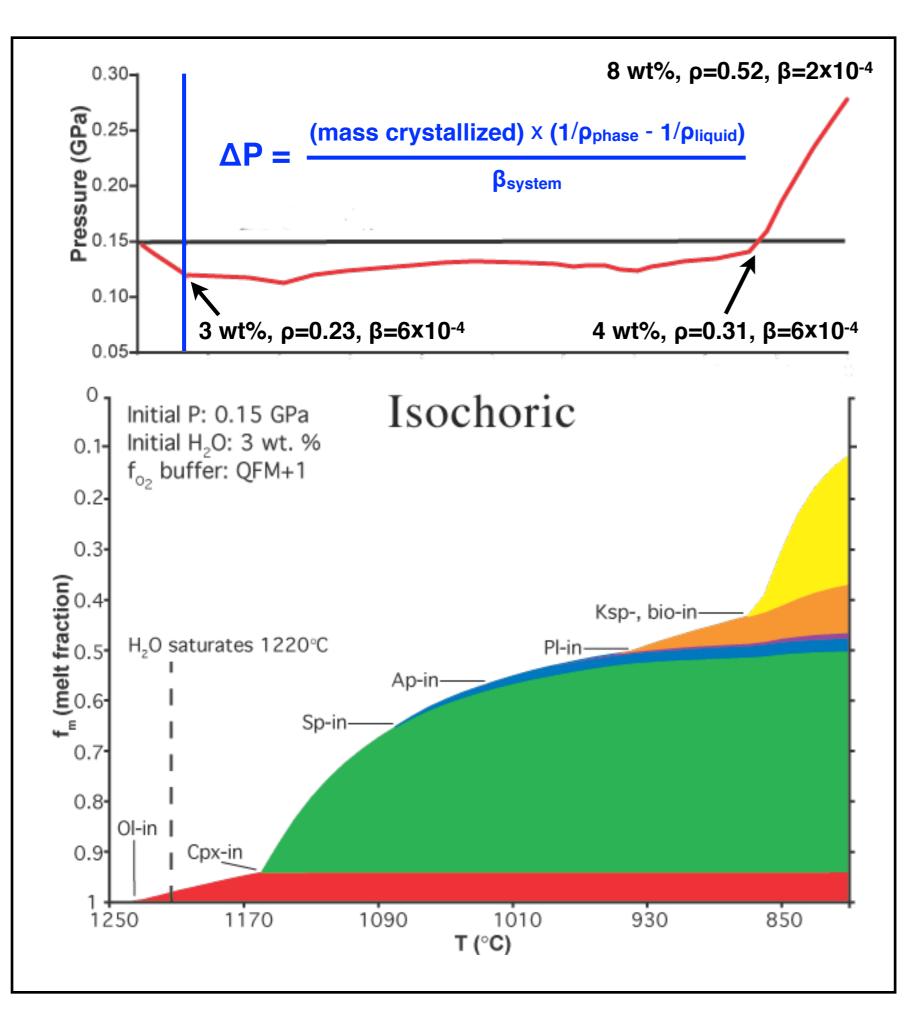
This process cannot be simulated experimentally

Experiments are conducted at fixed T and P

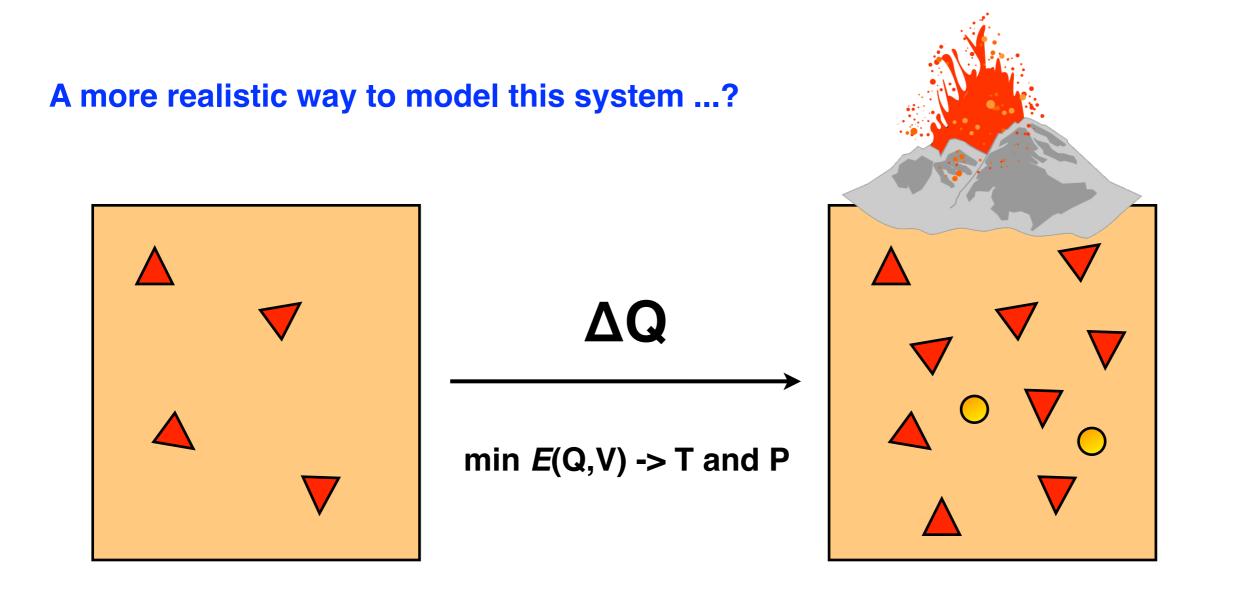
Thermodynamic calculations







- Appearance of a vapor phase mitigates trend of decreasing P
- Why does pressure not increase rapidly when vapor is initially generated? (there are two reasons!)
- The trigger for the pressure increase is reaching the pseudo-invariant in the crystallization of the magma body.
- Increasing P increases the water content of magma and makes the vapor more dense.



- Yes, but it requires a fully coupled thermodynamic and dynamical model with no approximations regarding compressibility and uniformity of heat transfer
- Overpressure in the magma body now depends on the relative rates of crustal deformation and latent heat production

