What are the critical aspects of calibration?

First and most important - Solid solution theory

• Why? Because there is more compositional variation in the solid solutions than in the magmas from which they form.

Second - Constraints on endmember properties

• Why? Because the "excess" solution properties and the "standard state" endmember properties are highly correlated, mostly due to common compositional restrictions on calibration data.

• Third - Theory for the liquid state

• Why? Exact theory is not important because compositional spectrum of magmas being modeled is very limited. Exception: the effect of pressure.

Solid solution models

What are the critical aspects of calibration?

First and most important - Solid solution theory

• Why? Because there is more compositional variation in the solid solutions than in the magmas from which they form.

Second - Constraints on endmember properties

• Why? Because the "excess" solution properties and the "standard state" endmember properties are highly correlated, mostly due to common compositional restrictions on calibration data.

• Third - Theory for the liquid state

• Why? Exact theory is not important because compositional spectrum of magmas being modeled is very limited. Exception: the effect of pressure.

What are the critical aspects of calibration?

First and most important - Solid solution theory

• Why? Because there is more compositional variation in the solid solutions than in the magmas from which they form.

Second - Constraints on endmember properties

 Why? Because the "excess" solution properties and the "standard state" endmember properties are highly correlated, mostly due to common compositional restrictions on calibration data.

Third - Theory for the liquid state

• Why? Exact theory is not important because compositional spectrum of magmas being modeled is very limited. Exception: the effect of pressure.

How do we calibrate thermodynamic properties of silicate liquids?

Liquids

LEPR: Experimental database of solidliquid phase equilibrium studies

Over 8,800 experiments that span the compositional spectrum of natural silicate liquids

Available at http://lepr.ofm-research.org

How important is having knowledge about the phase that is not present?

How do we obtain robust calibrations?

 H_2O

Model construction: Data

- Solubility of H₂O in silicate melts (on assumption of pure water fluid)
- Solubility of CO₂ in silicate melts
- Saturation conditions for mixed H₂O-CO₂ fluids

Thermodynamic model: melt phase

(regular associated solution, after MELTS)

Molar Gibbs free energy:

$$\overline{G} = \sum_{i=0}^{16} X_i \mu_i^o + RT \sum_{i=0}^{16} X_i \ln X_i + RT \left[X_{\rm H_2O} \ln X_{\rm H_2O} + \left(1 - X_{\rm H_2O}\right) \ln \left(1 - X_{\rm H_2O}\right) \right] + \frac{1}{2} \sum_{i=0}^{16} \sum_{j=0}^{16} W_{ij} X_i X_j$$

Condition of internal or homogeneous equilibrium:

$$0 = \mu_{\text{SiO}_2}^o - \mu_{\text{CaSiO}_3}^o - \mu_{\text{CO}_2}^o + \mu_{\text{CaCO}_3}^o + RT \ln \frac{X_{\text{SiO}_2} X_{\text{CaCO}_3}}{X_{\text{CaSiO}_3} X_{\text{CO}_2}} + \sum_{i=0}^{16} \left(W_{\text{SiO}_2, j} - W_{\text{CaSiO}_3, j} - W_{\text{CO}_2, j} + W_{\text{CaCO}_3, j} \right) X_i$$

Chemical potential of nonvolatile melt components and of CO₂:

$$\mu_{\text{SiO}_2} = \mu_0 = \mu_{\text{SiO}_2}^o + RT \ln X_{\text{SiO}_2} + RT \ln \left(1 - X_{\text{H}_2\text{O}}\right) + \sum_{i=0}^{16} W_{\text{SiO}_2,i} X_i - \frac{1}{2} \sum_{i=0}^{16} \sum_{j=0}^{16} W_{ij} X_i X_j$$

Chemical potential of H₂O:

$$\mu_{\rm H_{2O}} = \mu_{\rm 14} = \mu_{\rm H_{2O}}^o + RT \ln X_{\rm H_{2O}}^2 + \sum_{j=0}^{16} W_{\rm H_{2O},j} X_j - \frac{1}{2} \sum_{i=0}^{16} \sum_{j=0}^{16} W_{ij} X_i X_j$$

Thermodynamic model: H₂O-CO₂ mixed fluid phase (virial EOS of Duan and Zhang, 2006)

Independent Component or Basis Species

0	SiO ₂
1	TiO ₂
2	AI_2O_3
3	Fe ₂ O ₃
4	Cr_2O_3
5	Fe ₂ SiO ₄
6	$MnSi_{1/2}O_2$
7	Mg_2SiO_4
8	$NiSi_{1/2}O_2$
9	$CoSi_{1/2}O_2$
10	CaSiO₃
11	Na_2SiO_3
12	KAISiO ₄
13	Ca ₃ (PO ₄) ₂
14	H_2O
15	CO ₂

#

Dependent Species

16 CaCO₃

Chemical potential of CO₂:

$$\mu_{\text{SiO}_2} = \mu_0 = \mu_{\text{CO}_2}^o + RT \ln X_{\text{CO}_2} + RT \ln \left(1 - X_{\text{H}_2\text{O}}\right) + \sum_{i=0}^{16} W_{\text{CO}_2,i} X_i - \frac{1}{2} \sum_{i=0}^{16} \sum_{j=0}^{16} W_{ij} X_i X_j$$

Chemical potential of H₂O:

$$\mu_{\rm H_2O} = \mu_{\rm H_4} = \mu_{\rm H_2O}^o + RT \ln X_{\rm H_2O}^2 + \sum_{j=0}^{16} W_{\rm H_2O,j} X_j - \frac{1}{2} \sum_{i=0}^{16} \sum_{j=0}^{16} W_{ij} X_i X_j$$

Condition of internal or homogeneous

$$0 = \mu_{\text{SiO}_2}^o - \mu_{\text{CaSiO}_3}^o - \mu_{\text{CO}_2}^o + \mu_{\text{CaCO}_3}^o + RT \ln \frac{X_{\text{SiO}_2} X_{\text{CaCO}_3}}{X_{\text{CaSiO}_3} X_{\text{CO}_2}} + \sum_{i=0}^{16} \left(W_{\text{SiO}_2, j} - W_{\text{CaSiO}_3, j} - W_{\text{CO}_2, j} + W_{\text{CaCO}_3, j} \right) X_i$$

Fitting the model:

- Equate chemical potentials of the H₂O component in melt and fluid
- Optimize both standard state properties and interaction parameters for H₂O in the melt
- Equate chemical potentials of the CO₂ component in melt and fluid
- Optimize both standard state properties and interaction parameters for CO₂ in the melt. Because of the speciation, the optimization is non-linear.
- Singular Value analysis is used at each non-linear step to the residual minimum

lacovino, K., Moore, G., Roggensack, K., Oppenheimer, C., Kyle, P. (2013)

Shishkina, T.A., Botcharnikova, R.E., Holtz, F., Almeeva, R.R., Portnyagin, M.V. (2010)

H₂O wt% (measured) HO wt% (measured) 15 18 18 3 12 3 12 15 9 9 6 6 OH only H_2O and OH18 18 15 0 mt% (model) H₂O wt% (model) 15 12 9 6 3 3 1.8 1.8 1.5 1.5 1.2 1.2 HO/0[™]H H₂0/0H \diamond 0.9 0.6 0.6

200

400

P MPa

1200

0.3

600

900

т °С

0.3

800

600

Model-Data recovery: the issue of speciation, case study NaAlSi₃O₈ (albite) liquid

Application: melt inclusions in quartz phenocrysts in rhyolite magma

Assimilation of calcite into rhyolite magma

- Addition of calcite (CaCO3) initially induces crystallization, then remelting
- Plagioclase is stabilized at the expense of sanidine
- Addition lifts the system off of the quartz saturation surface, eventually stabilizing grossular garnet, ultimately saturating the magma with carbonate, while loosing plagioclase
- melt initially increases in SiO₂ concentration due to partitioning of H₂O to the fluid phase
- concentration of CaO in the melt rises, and SiO₂ diminishes, but not monotonically
- melt composition is ultimately "buffered" by the assemblage: fluid, sanidine, grossular, calcite, clinopyroxene

Assimilation of calcite into rhyolite magma, with

isenthalpic (adiabatic) energy constraints; temperature is a dependent variable

- temperature initially rises, then falls ~4°C/g of assimilant until calcite reaches saturation
- ~ 20% less liquid at calcite saturation than in the isothermal case
- calcite saturates at lower extents of assimilation
- quartz is never lost from the assemblage
- plagioclase is never lost from the assemblage
- the SiO₂ content of the melt does not fall, as in the isothermal case
- as in the isothermal case, melt composition seizes to evolve once calcite appears as a product phase
- despite the lower temperatures, the abundance of dissolved volatile components in the melt is higher in the isenthalpic case because the coexisting fluid composition is not as CO₂-rich

Assimilation of calcite into rhyolite magma, with isochoric constraints; pressure is a

dependent variable