# Random Forests for Regression and Classification 



Adele Cutler<br>Utah State University

## Leo Breiman, 1928-2005



1954: PhD Berkeley (mathematics)
1960-1967: UCLA (mathematics)
1969-1982: Consultant
1982-1993 Berkeley (statistics)
1984 "Classification \& Regression Trees" (with Friedman, Olshen, Stone)

1996 "Bagging"
2001 "Random Forests"

## Impact

CART (1984)
27,926 citations
Bagging (1996) 13,090
Random Forests (2001) 17,492 citations

Total 72,796

# Random Forests for Regression and Classification 



## Outline

- Background.
- Trees.
- Bagging.
- Random Forests.
- Variable importance.
- Partial dependence plots and interpretation of effects.
- Proximity.
- Visualization.
- New developments.


## What is Regression?

Given data on predictor variables (inputs, X ) and a continuous response variable (output, Y ) build a model for:

- Predicting the value of the response from the predictors.
- Understanding the relationship between the predictors and the response.
e.g. predict a person's systolic blood pressure based on their age, height, weight, etc.


## Regression Examples

- $Y$ : income

X: age, education, sex, occupation, ...

- $Y$ : crop yield

X: rainfall, temperature, humidity, ...

- $Y$ : test scores

X: teaching method, age, sex, ability, ...

- Y: selling price of homes

X: size, age, location, quality, ...

## Regression Background

- Linear regression $Y=\beta_{0}+\beta_{1} X+\varepsilon$
- Multiple linear regression e.g.

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon
$$

- Nonlinear regression (parametric) e.g.

$$
Y=\beta_{0}+\beta_{1} X+\beta_{1} X^{2}+\varepsilon
$$

- Nonparametric regression (smoothing)
- Kernel smoothing
- B-splines
- Smoothing splines
- Wavelets



## Data-driven

Prostate Cancer Example: data


Prostate Cancer Example: linear model


Prostate Cancer Example: nonlinear model


Prostate Cancer Example: compare models


## Ozone Data



## Ozone Data: linear model



## Ozone Data: nonlinear model



Ozone Data: compare models


## What is Classification?

Given data on predictor variables (inputs, X ) and a categorical response variable (output, Y ) build a model for:

- Predicting the value of the response from the predictors.
- Understanding the relationship between the predictors and the response.
e.g. predict a person's 5-year-survival (yes/no) based on their age, height, weight, etc.


## Classification Examples

- Y: presence/absence of disease
$X$ : diagnostic measurements
- $Y$ : land cover (grass, trees, water, roads...)
$X$ : satellite image data (frequency bands)
- $Y$ : loan defaults (yes/no)

X: credit score, own or rent, age, marital status, ...

- $Y$ : dementia status

X: scores on a battery of psychological tests

## Classification Background

- Linear discriminant analysis (1930's)
- Logistic regression (1944)
- Nearest neighbors classifiers (1951)


## Classification Picture

$$
\text { Red } \text { Wine }=0 \text {, White } \text { Wine }=1
$$



## Classification Picture

Linear model


## Classification Picture

Linear Regression


## Classification Picture

Logistic Regression


## Classification Picture

Logistic Regression


## Classification Picture

Bivariate Predictors


## Classification Picture

Linear discriminant analysis (LDA) separator


## Classification Picture

Logistic regression separator


## Classification Picture

LDA (solid) and logistic (dashed)


## Regression and Classification

Given data $\mathscr{D}=\left\{\left(\mathbf{x}_{i}, y_{i}\right), i=1, \ldots, n\right\}$ where $\mathbf{x}_{\mathrm{i}}=\left(\mathrm{x}_{\mathrm{i} 1}, \ldots, \mathrm{x}_{\mathrm{ip}}\right)$, build a model $\hat{f}$ so that

$$
\hat{Y}=\hat{f}(\mathbf{X})
$$

for random variables $\mathbf{X}=\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{p}}\right)$ and $Y$.
Then $\hat{f}$ will be used for:

- Predicting the value of the response from the predictors: $\widehat{y_{0}}=\hat{f}\left(\mathbf{x}_{0}\right)$ where $\mathbf{x}_{0}=\left(\mathrm{x}_{01}, \ldots, \mathrm{x}_{0 \mathrm{p}}\right)$.
- Understanding the relationship between the predictors and the response.


## Assumptions

- Independent observations
- Not autocorrelated over time or space
- Not usually from a designed experiment
- Not matched case-control
- Goal is prediction and (sometimes) understanding
- Which predictors are useful? How? Where?
- Is there any "interesting" structure?


## Predictive Accuracy

- Regression
- Expected mean squared error
- Classification
- Expected (classwise) error rate


## Estimates of Predictive Accuracy

- Resubstitution
- Use the accuracy on the training set as an estimate of generalization error.
- AIC etc
- Use assumptions about model.
- Crossvalidation
- Randomly select a training set, use the rest as the test set.
- 10-fold crossvalidation.


## 10-Fold Crossvalidation

Divide the data at random into 10 pieces, $D_{1}, \ldots, D_{10}$.

- Fit the predictor to $\mathrm{D}_{2}, \ldots, \mathrm{D}_{10} ;$ predict $\mathrm{D}_{1}$.
- Fit the predictor to $\mathrm{D}_{1}, \mathrm{D}_{3}, \ldots, \mathrm{D}_{10} ;$ predict $\mathrm{D}_{2}$.
- Fit the predictor to $\mathrm{D}_{1}, \mathrm{D}_{2}, \mathrm{D}_{4}, \ldots, \mathrm{D}_{10} ;$ predict $\mathrm{D}_{3}$.
- Fit the predictor to $\mathrm{D}_{1}, \mathrm{D}_{2}, \ldots, \mathrm{D}_{9}$; predict $\mathrm{D}_{10}$.

Compute the estimate of predictive accuracy using the assembled predictions and their observed values.

## Estimates of Predictive Accuracy

Typically, resubstitution estimates are optimistic compared to crossvalidation estimates.

Crossvalidation estimates tend to be pessimistic because they are based on smaller samples.

Random Forests has its own way of estimating predictive accuracy ("out-of-bag" estimates).

## Case Study: Cavity Nesting birds in the Uintah Mountains, Utah

- Red-naped sapsucker (Sphyrapicus nuchalis) ( $n=42$ nest sites)
- Mountain chickadee
- (Parus gambeli) ( $n=42$ nest sites)

- Northern flicker (Colaptes auratus) ( $n=23$ nest sites)
- $n=106$ non-nest sites



## Case Study: Cavity Nesting birds in the Uintah Mountains, Utah

- Response variable is the presence (coded 1) or absence (coded 0) of a nest.
- Predictor variables (measured on 0.04 ha plots around the sites) are:
- Numbers of trees in various size classes from less than 1 inch in diameter at breast height to greater than 15 inches in diameter.
- Number of snags and number of downed snags.
- Percent shrub cover.
- Number of conifers.
- Stand Type, coded as 0 for pure aspen and 1 for mixed aspen and conifer.


## Assessing Accuracy in Classification

| Actual <br> Class | Predicted Class |  |  |
| :---: | :---: | :---: | :---: |
|  | Absence | Presence |  |
|  | 0 | 1 | $\mathrm{a}+\mathrm{b}$ |
| Absence, 0 | a | b | $\mathrm{c}+\mathrm{d}$ |
| Presence, 1 | c | d | n |
| Total | $\mathrm{a}+\mathrm{c}$ | $\mathrm{b}+\mathrm{d}$ |  |

Specificity $=100 \% \times \frac{a}{a+b} \quad$ Sensitivity $=100 \% \times \frac{d}{c+d} \quad$ PCC $=100 \% \times \frac{a+d}{n}$

$$
\kappa=\frac{(\text { Observed agreement })-(\text { Chance agreement })}{1-(\text { Chance agreement })}
$$

Chance agreement $=\frac{a+b}{n} \times \frac{a+c}{n}+\frac{c+d}{n} \times \frac{b+d}{n}$ Observed agreement $=\frac{a+d}{\frac{n}{37}}$

## Assessing Accuracy in Classification

| Actual <br> Class | Predicted Class |  |  |
| :---: | :---: | :---: | :---: |
|  | Absence | Presence |  |
|  | 0 | 1 | $\mathrm{a}+\mathrm{b}$ |
| Absence, 0 | a | b | $\mathrm{c}+\mathrm{d}$ |
| Presence, 1 | c | d | n |
| Total | $\mathrm{a}+\mathrm{c}$ | $\mathrm{b}+\mathrm{d}$ |  |

Error rate $=(c+b) / n$
For class 1: $b /(a+b)$
For class 2: $c /(c+d)$

## Resubstitution Accuracy (fully grown tree)

| Actual <br> Class | Predicted Class |  |  |
| :---: | :---: | :---: | :---: |
|  | Absence | Presence |  |
|  | 0 | 1 | 106 |
| Absence, 0 | 105 | 1 | 107 |
| Presence, 1 | 0 | 107 | 213 |
| Total | 105 | 108 |  |

Error rate $=(0+1) / 213=$ (approx) 0.005 or $0.5 \%$

## Crossvalidation Accuracy (fully grown tree)

| Actual <br> Class | Predicted Class |  |  |
| :---: | :---: | :---: | :---: |
|  | Absence | Presence |  |
|  | 0 | 1 | 106 |
| Absence, 0 | 83 | 23 | 107 |
| Presence, 1 | 22 | 85 | 213 |
| Total | 105 | 108 |  |

Error rate $=(22+23) / 213=($ approx $) .21$ or $21 \%$

## Outline

- Background.
- Trees.
- Bagging predictors.
- Random Forests algorithm.
- Variable importance.
- Proximity measures.
- Visualization.
- Partial plots and interpretation of effects.


## Classification and Regression Trees

Pioneers:

- Morgan and Sonquist (1963).
- Breiman, Friedman, Olshen, Stone (1984). CART
- Quinlan (1993). C4.5



## Classification and Regression Trees

- Grow a binary tree.
- At each node, "split" the data into two "daughter" nodes.
- Splits are chosen using a splitting criterion.
- Bottom nodes are "terminal" nodes.


## Classification and Regression Trees

- For regression the predicted value at a node is the average response variable for all observations in the node.
- For classification the predicted class is the most common class in the node (majority vote).
- For classification trees, can also get estimated probability of membership in each of the classes


## A Classification Tree

Predict hepatitis ( $0=a b s e n t, 1=$ present $)$ using protein and alkaline phosphate.
"Yes" goes left.


## Splits are chosen to minimize a splitting criterion:

- Regression: residual sum of squares

$$
\text { RSS }=\sum_{\text {left }}\left(y_{i}-y_{L}{ }^{*}\right)^{2}+\sum_{\text {right }}\left(y_{i}-y_{R}{ }^{*}\right)^{2}
$$

where $\quad y_{L}{ }^{*}=$ mean $y$-value for left node $y_{R}{ }^{*}=$ mean $y$-value for right node

- Classification: Gini criterion

$$
\text { Gini }=N_{\mathrm{L}} \sum_{\mathrm{k}=1, \ldots, \mathrm{k}} \mathrm{p}_{\mathrm{kL}}\left(1-\mathrm{p}_{\mathrm{kL}}\right)+\mathrm{N}_{\mathrm{R}} \sum_{\mathrm{k}=1, \ldots, \mathrm{k}} \mathrm{p}_{\mathrm{kR}}\left(1-\mathrm{p}_{\mathrm{kR}}\right)
$$

where $\quad p_{k L}=$ proportion of class $k$ in left node
$\mathrm{p}_{\mathrm{kR}}=$ proportion of class k in right node

## Choosing the best horizontal split




Best horizontal split is at 3.67 with $\mathrm{RSS}=68.09$.

## Choosing the best vertical split




Best vertical split is at 1.05 with $\mathrm{RSS}=61.76$.

## Regression tree (prostate cancer)



log of cancer volume

## Choosing the best split in the left node





Best horizontal split is at 3.66 with $\mathrm{RSS}=16.11$.

## Choosing the best split in the left node



Best vertical split is at -.48 with $\mathrm{RSS}=13.61$.

## Regression tree (prostate cancer)



## Choosing the best split in the right node



Best horizontal split is at 3.07 with $\mathrm{RSS}=27.15$.

## Choosing the best split in the right node



Best vertical split is at 2.79 with RSS $=25.11$.

## Regression tree (prostate cancer)



log of cancer volume

## Choosing the best split in the third node




RSS

Best horizontal split is at 3.07 with RSS $=14.42$, but this is too close to the edge. Use 3.46 with RSS $=16.14$.

## Choosing the best split in the third node




Best vertical split is at 2.46 with $\mathrm{RSS}=18.97$.

## Regression tree (prostate cancer)



log of cancer volume

## Regression tree (prostate cancer)




## Regression tree (prostate cancer)




## Classification tree (hepatitis)



## Classification tree (hepatitis)



## Classification tree (hepatitis)



## Classification tree (hepatitis)



## Classification tree (hepatitis)


protein< 45.43

7/11

## Pruning

- If the tree is too big, the lower "branches" are modeling noise in the data ("overfitting").
- The usual paradigm is to grow the trees large and "prune" back unnecessary splits.
- Methods for pruning trees have been developed. Most use some form of crossvalidation. Tuning may be necessary.


## Case Study: Cavity Nesting birds in the Uintah Mountains, Utah

size of tree


Choose cp $=.035$

## Crossvalidation Accuracy (cp = .035)

| Actual <br> Class | Predicted Class |  |  |
| :---: | :---: | :---: | :---: |
|  | Absence | Presence |  |
|  |  |  |  |
| Absence, 0 | 0 | 1 | 106 |
| Presence, 1 | 19 | 21 | 88 |
| Total | 104 | 109 | 213 |

Error rate $=(19+21) / 213=($ approx $) .19$ or $19 \%$

## Classification and Regression Trees

## Advantages

- Applicable to both regression and classification problems.
- Handle categorical predictors naturally.
- Computationally simple and quick to fit, even for large problems.
- No formal distributional assumptions (non-parametric).
- Can handle highly non-linear interactions and classification boundaries.
- Automatic variable selection.
- Handle missing values through surrogate variables.
- Very easy to interpret if the tree is small.


## Classification and Regression Trees

## Advantages (ctnd)

- The picture of the tree can give valuable insights into which variables are important and where.
- The terminal nodes suggest a natural clustering of data into homogeneous groups.



## Classification and Regression Trees

## Disadvantages

- Inaccuracy - current methods, such as support vector machines and ensemble classifiers often have 30\% lower error rates than CART.
- Instability - if we change the data a little, the tree picture can change a lot. So the interpretation is not as straightforward as it appears.

Today, we can do better!<br>Random Forests

## Outline

- Background.
- Trees.
- Bagging predictors.
- Random Forests algorithm.
- Variable importance.
- Proximity measures.
- Visualization.
- Partial plots and interpretation of effects.


## Data and Underlying Function



Single Regression Tree


## 10 Regression Trees



## Average of 100 Regression Trees



## Hard problem for a single tree:

## Single tree:



25 Averaged Trees:


## 25 Voted Trees:



## Bagging (Bootstrap Aggregating)

Breiman, "Bagging Predictors", Machine Learning, 1996.
Fit classification or regression models to bootstrap samples from the data and combine by voting (classification) or averaging (regression).

Bootstrap sample $\Rightarrow f_{1}(x)$ MODEL AVERAGING
Bootstrap sample $\Rightarrow f_{2}(x)$
Bootstrap sample $\Rightarrow f_{3}(x)$ Combine $f_{1}(x), \ldots, f_{M}(x) \Rightarrow f(x)$

Bootstrap sample $\left.\Rightarrow f_{M}(x)\right] \quad f_{i}(x)$ 's are "base learners"

## Bagging (Bootstrap Aggregating)

- A bootstrap sample is chosen at random with replacement from the data. Some observations end up in the bootstrap sample more than once, while others are not included ("out of bag").
- Bagging reduces the variance of the base learner but has limited effect on the bias.
- It's most effective if we use strong base learners that have very little bias but high variance (unstable). E.g. trees.
- Both bagging and boosting are examples of "ensemble learners" that were popular in machine learning in the ' 90 s.


## Bagging CART

| \# cases | \# vars | \# classes | CART | Bagged <br> CART | Decrease <br> $\%$ |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Waveform | 300 | 21 | 3 | 29.1 | 19.3 | 34 |
| Heart | 1395 | 16 | 2 | 4.9 | 2.8 | 43 |
| Breast Cancer | 699 | 9 | 2 | 5.9 | 3.7 | 37 |
| lonosphere | 351 | 34 | 2 | 11.2 | 7.9 | 29 |
| Diabetes | 768 | 8 | 2 | 25.3 | 23.9 | 6 |
| Glass | 214 | 9 | 6 | 30.4 | 23.6 | 22 |
| Soybean | 683 | 35 | 19 | 8.6 | 6.8 | 21 |

Leo Breiman (1996) "Bagging Predictors", Machine Learning, 24, 123-140.

## Outline

- Background.
- Trees.
- Bagging predictors.
- Random Forests algorithm.
- Variable importance.
- Proximity measures.
- Visualization.
- Partial plots and interpretation of effects.


## Random Forests

| Dataset | \# cases | \# vars | \# classes | CART | Bagged <br> CART | Random <br> Forests |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Waveform | 300 | 21 | 3 | 29.1 | 19.3 | 17.2 |
| Breast Cancer | 699 | 9 | 2 | 5.9 | 3.7 | 2.9 |
| lonosphere | 351 | 34 | 2 | 11.2 | 7.9 | 7.1 |
| Diabetes | 768 | 8 | 2 | 25.3 | 23.9 | 24.2 |
| Glass | 214 | 9 | 6 | 30.4 | 23.6 | 20.6 |

Leo Breiman (2001) "Random Forests", Machine Learning, 45, 5-32.

## Random Forests

Grow a forest of many trees. ( R default is 500)
Grow each tree on an independent bootstrap sample* from the training data.

At each node:

1. Select $\boldsymbol{m}$ variables at random out of all $\boldsymbol{M}$ possible variables (independently for each node).
2. Find the best split on the selected $\boldsymbol{m}$ variables.

Grow the trees to maximum depth (classification).
Vote/average the trees to get predictions for new data.
*Sample N cases at random with replacement.

## Random Forests

## Inherit many of the advantages of CART:

- Applicable to both regression and classification problems. Yes.
- Handle categorical predictors naturally. Yes.
- Computationally simple and quick to fit, even for large problems. Yes.
- No formal distributional assumptions (non-parametric). Yes.
- Can handle highly non-linear interactions and classification boundaries. Yes.
- Automatic variable selection. Yes. But need variable importance too.
- Handles missing values through surrogate variables. Using proximities.
- Very easy to interpret if the tree is small. NO!


## Random Forests

## But do not inherit:

- The picture of the tree can give valuable insights info which variables are important and where.
- Tre terminal nodes suggest a natural clustering of data into homogeneous groups.



## Random Forests

## Improve on CART with respect to:

- Accuracy - Random Forests is competitive with the best known machine learning methods (but note the "no free lunch" theorem).
- Stability - if we change the data a little, the individual trees may change but the forest is relatively stable because it is a combination of many trees.


## References

- Leo Breiman, Jerome Friedman, Richard Olshen, Charles Stone (1984) "Classification and Regression Trees" (Wadsworth).
- Leo Breiman (1996) "Bagging Predictors" Machine Learning, 24, 123-140.
- Leo Breiman (2001) "Random Forests" Machine Learning, 45, 5-32.
- Trevor Hastie, Rob Tibshirani, Jerome Friedman (2009) "Statistical Learning" (Springer).

