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Part 1: Preliminaries

2 / 199



“If a statistical analysis is clearly shown to be effective at
answering the questions of interest, it gains nothing from
being described as principled.”

Terry Speed, IMS Bulletin, 2016
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Purpose of tutorial: to refute this assertion!

Principled approach to statistical inference, especially in data
science context, is essential, to avoid erroneous conclusions, in
particular invalid statements about significance.

4 / 199



“The statistician cannot excuse himself from the duty of
getting his head clear on the principles of scientific
inference, but equally no other thinking man can avoid a
like obligation.”

R.A. Fisher, The Design of Experiments, 1935.
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R.A. Fisher, 1953
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Statistical Inference: p−values and CIs

Inference versus prediction?

Reasons for focus on inference:

I Interested in identifying significant ‘features’;

I Reproducibility crisis in science demands attention to
properties of inferential methods.
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Statistical inference

Have data y , assumed to be observed value of random variable Y .

An assumed (family of) models specifies the density of Y to be

fY (y ; θ),

where θ ∈ Ωθ is the unknown parameter, about which we wish to
draw inductive conclusions.

Two broad approaches: frequentist and Bayesian.
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Frequentist

No further probabilistic assumptions: parameter value θ which
gave rise to y treated as unknown constant.

Arguments involve probability only via long-run frequency
interpretation: repeated sampling principle. Inference from y
founded on analysis of variations in data samples seen under
repeated (hypothetical) repetitions of experiment giving rise to y
(‘data sets we might have seen instead of y ’).

Neyman-Pearson versus Fisher.
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Fisherian

Emphasis on statistical inference as a summary of data.

In order to be as relevant as possible to actual data y , must
condition on everything that is known and uninformative about θ.

Formalize later as key directing principle of statistics for
contemporary applications.
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Neyman-Pearson

Emphasis on inferential procedures as decision problems.

Clarity of mathematical formulation, optimum inference procedures
should be identified before y is available, optimality defined
explicitly in terms of repeated sampling principle (e.g. maximise
‘power’, probability under repeated sampling that we correctly
reject an incorrect hypothesis about θ).
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Bayesian

We treat θ as having a probability distribution, both with and
without the data y . Consider θ as the realised but unobserved
value of a random variable Θ.

The prior distribution, expressed as density π(θ), summarizes
information about Θ not arising from y .

Inference is drawn from posterior distribution of Θ, given y . By
Bayes’ Theorem, the posterior density π(θ|y) ∝ π(θ)f (y |θ), where
f (y |θ) ≡ fY (y ; θ) is ‘likelihood function’.
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A simple (artificial) example

Two observations Y1 and Y2 are taken, with

Yi =

{
θ + 1, with probability 1/2,
θ − 1, with probability 1/2.

Suppose we are given the following proposal, as a confidence set
for the unknown θ:

C (Y1,Y2) =

{
the point {(Y1 + Y2)/2}, if Y1 6= Y2,
the point {Y1 − 1}, if Y1 = Y2.

How do the Frequentist, Fisherian and Bayesian proceed?
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Frequentist

The frequentist calculates that this is a 75% confidence set of
smallest size for θ:

Pθ(C (Y1,Y2) contains θ) = 0.75.

End of story.
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Fisherian

This is not sensible to report, once the data is at hand.

If y1 6= y2 we know for certain that their average is equal to θ, so
the confidence set is actually 100% accurate.

If y1 = y2, we do not know if θ is the (common value +1), or the
(common value −1): both are equally likely.
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So...

To obtain sensible frequentist answers, define the conditioning
statistic S = |Y1 − Y2|.

This is a measure of the strength of evidence in the data: S = 2
for data with maximal evidential content, S = 0 for data of
minimal evidential content.

We define frequentist coverage conditional on the strength of
evidence S :

Pθ(C (Y1,Y2) contains θ|S = 2) = 1,

Pθ(C (Y1,Y2) contains θ|S = 0) =
1

2
.
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Same unconditional, repeated sampling, property as frequentist’s
analysis.

Report 100% confidence half the time and 50% confidence half the
time, averaging 75% overall.
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Bayesian

‘Objective’ Bayesian approach assigns θ an (uninformative)
uniform prior, then calculates the posterior probability of C (Y1,Y2)
as 1 if y1 6= y2, and 0.5 if y1 = y2.

End of story.
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Key desiderata of statistical methods

I Validity: whether a claimed criterion or assumption is
satisfied, regardless of the true unknown state of nature.

I Relevance: whether the analysis performed is relevant to the
question of interest for the particular case at hand, the actual
observed data.
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Validity

Most appropriate to consider in the context of procedures
motivated by the principle of error control.

A valid statistical procedure is one for which there is negligible
probability that the procedure has a higher error rate than stated.

For example, the set C1−α is a (approximately) valid (1− α)
confidence set for parameter θ if P(θ /∈ C1−α) = α + ε for some
very small (negligible) ε, whatever the true value of θ.

This inferential correctness to be achieved by having accurate
estimates of sampling distributions used in construction of
p−values and CIs.
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Relevance: Fisherian proposition

Appropriate conditioning of the hypothetical data samples that are
the basis of non-Bayesian statistics.

The Conditionality Principle would advocate that the hypothetical
repetitions should be conditioned on certain features of the
available data sample, to ensure relevance to that actual data
sample.
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Framing: Cox & Mayo, 2010

Suppose for testing a null hypothesis H0 : ψ = ψ0 on an interest
parameter ψ we calculate the observed value tobs of a test statistic
T and the associated p−value p = P(T ≥ tobs ;ψ = ψ0).

If p is very low, e.g. 0.005, tobs is grounds to reject H0 or infer
discordance with H0 in direction of specified alternative, at level
0.005.
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Rationale

I (1) To do so is to follow decision process with low Type 1
error rate, in the long run: if we treat the data as just decisive
evidence against H0, then in hypothetical repetitions, H0

would be rejected in a proportion p of the cases when it is
actually true.

I (2) [What we actually want]. To do so is to follow a rule
where the low value of p corresponds to the actual data
sample suggesting inconsistency with H0.

Evidential construal in (2) only accomplished to extent it can be
assured that small observed p−value is due to actual
data-generating process being discrepant from that described by
H0. Once requirements of (2) satisfied, low error-rate rationale (1)
follows.
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Key

Ensure relevancy of sampling distribution on which p−values are
based.
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A (contrived) example

Suppose Y is distributed as N(θ, 1), and we have null hypothesis
H0 : θ = −3, to be tested against alternative H1 : θ = 3.

Since P(N(−3, 1) ≥ 0) = 0.00135, a rule which says ‘Reject H0 if
Y ≥ 0’ has Type 1 (and, indeed, Type 2) error rate, under
repeated sampling, = 0.00135.

Given actual data value y = 0, am I happy to assert that that
value is strongly indicative of H0 being false?

The p−value is 0.00135, but this value y = 0 is equally plausible
under H0 and H1.
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Sufficiency Principle

If S ≡ S(Y ) is a statistic such that the conditional distribution of
Y given S = s does not depend on θ for all s, θ, then S is
sufficient for θ. S is minimal sufficient if it is a function of every
other sufficient statistic.

(Uncontroversial) Sufficiency Principle says that if two data
samples y and y ′ have S(y) = S(y ′) then identical inferences
about θ should be drawn from y and y ′.
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(Strong) Likelihood Principle

Two different random systems, the first giving observations y
corresponding to a random variable Y and the second giving
observations z on a random variable Z , the corresponding densities
being fY (y ; θ) and fZ (z ; θ), with the same parameter θ and the
same parameter space Ωθ.

The (strong) likelihood principle is that if y and z give proportional
likelihood functions, the conclusions drawn from y and z should be
identical, assuming adequacy of both models.
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If, for all θ ∈ Ωθ,

fY (y ; θ) = h(y , z)fZ (z ; θ),

identical conclusions about θ should be drawn from y and z .
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Formal statement of CP

Suppose we may partition the minimal sufficient statistic for a
model parameter θ of interest as S = (T ,A), where T is of the
same dimension as θ and the random variable A is distribution
constant: the statistic A is said to be ancillary.

Then, the Conditionality Principle says that inference should be
based on the conditional distribution of T given A = a, the
observed value in the actual data sample.
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An example

Suppose Y1,Y2 are independent Poisson variables with means
(1− ψ)λ, ψλ, where λ is a known constant.

There is no reduction by sufficiency, but the random variable
A = Y1 + Y2 has a known distribution, Poisson of mean λ, not
depending on ψ. Inference would, say, be based on the conditional
distribution of Y2, given A = a, which is binomial with index a and
parameter ψ.
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Relaxation

The requirement that A be distribution constant is often relaxed.

Well-established in statistical theory that to condition on the
observed data value of a random variable whose distribution does
depend on θ might, under some circumstances, be convenient and
meaningful, though this would in some sense sacrifice information
on θ.
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Nuisance parameter context

Extended notion of conditioning is most explicit in problems
involving nuisance parameters, where the model parameter θ is
partitioned as θ = (ψ, λ), with ψ of interest and λ a nuisance
parameter.
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Extended CP

Suppose that the minimal sufficient statistic can again be
partitioned as S = (T ,A), where the distribution of T given A = a
depends only on ψ.

Extend the Conditionality Principle to advocate that inference on
ψ should be based on this latter conditional distribution, under
appropriate conditions on the distribution of A.

The case where the distribution of A depends on λ but not on ψ is
just one rather special instance.
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Applications

Justifications for many standard procedures of applied statistics,
such as analysis of 2× 2 contingency tables, derive from the
Conditionality Principle, even when A has a distribution that
depends on both ψ and λ, but when observation of A alone would
make inference on ψ imprecise.
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Contingency Table

Inference on the log-odds ratio when comparing two binomial
variables.

Have Y1,Y2 independent binomial random variables corresponding
to the number of successes in (m1,m2) independent trials, with
success probabilities (θ1, θ2). The interest parameter is
ψ = log{θ2/(1− θ2)} − log{θ1/(1− θ1)}. Inference on ψ would,
following the Conditionality Principle, be based on the conditional
distribution of Y2 given A = a, where A = Y1 + Y2 has a marginal
distribution depending in a complicated way on both ψ and
whatever nuisance parameter λ is defined to complete the
parametric specification.
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Remarks

I Conditioning an inference on the observed data value of a
statistic which is, to some degree, informative about the
parameter of interest is an established part of statistical
theory.

I Supported as a means of controlling (Type 1) error rate, while
ensuring relevance to the data sample under test.

I Generally, conditioning will run counter to the objective of
maximising power (minimising Type 2 error rate), which is a
fundamental principle of much of frequentist statistical theory.

I Loss of power due to adoption of a conditional approach to
inference may be very slight.
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An example of inconsequential power loss

Y is normally distributed as N(θ, 1) or N(θ, 4), depending on
whether the outcome δ of tossing a fair coin is heads (δ = 1) or
tails (δ = 2).

To test the null hypothesis H0 : θ = −1 against the alternative
H1 : θ = 1, controlling the Type 1 error rate at level α = 0.05.
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The most powerful unconditional test has rejection region given by
Y ≥ 0.598 if δ = 1 and Y ≥ 2.392 if δ = 2.

CP advocates that we should condition on the outcome of the coin
toss, δ. Then, given δ = 1, the most powerful test of the required
Type 1 error rate rejects H0 if Y ≥ 0.645, while, given δ = 2 the
rejection region is Y ≥ 2.290.

The power of the unconditional test is 0.4497, while the power of
the more natural conditional test is 0.4488, only marginally less.
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A problem?

Birnbaum: Sufficiency Principle together with some form of
Conditionality Principle implies the Strong Likelihood Principle,
essentially incompatible with non-Bayesian statistics.

Much debated, of little consequence for statistical practice.
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Neyman-Pearson Theory

Further support for conditioning (to eliminate nuisance
parameters) provided by ‘Neyman-Pearson theory’ of optimal
frequentist inference.
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Key context

Parameter of interest is a component of the canonical parameter in
a multiparameter exponential family model. Suppose Y has a
density of the form

f (y ; θ) ∝ h(y) exp{ψT1(y) + λT2(y)}.

Then (T1,T2) is minimal sufficient and the conditional distribution
of T1(Y ), given T2(Y ) = t2, say, depends only on ψ. The
distribution of T2(Y ) may, in special cases, depend only on λ, but
will, in general, depend in a complicated way on both ψ and λ.
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The extended form of the CP argues that inference should be
based on the distribution of T1(Y ), given T2(Y ) = t2.

But, in Neyman-Pearson theory this same conditioning is justified
by a requirement of full elimination of dependence on the nuisance
parameter λ, achieved in the light of completeness of the minimal
sufficient statistic only by this conditioning.

The resulting conditional inference is actually optimal, in terms of
furnishing a uniformly most powerful unbiased test on the interest
parameter ψ.
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Central thesis

Same Fisherian principles of conditioning are necessary to steer
appropriate statistics in a Data Science era, when models and the
associated inferential questions are typically arrived at after
examination of data.

“Data science does not exist until there is a dataset”.

Designed experiments typically not relevant. Notion of
hypothetical data-generating process, statistical analysis to provide
summary of data OK, but shouldn’t emphazise repeated sampling
properties of inference as in Neyman-Pearson theory.
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Conditioning is needed to ensure validity of the methods used.
Importantly, the justifications used for conditioning are not new,
but mirror the arguments used in established statistical theory.
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Classical or selective inference?

Key issue: what is appropriate framework for statistical analysis?
Classical or selective?
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Classical (frequentist) statistical inference

The analyst specifies the model, as well as the hypothesis to be
tested, in advance of examination of the data. A classical α−level
test for the specified hypothesis H0 under the specified model M
must control the Type 1 error rate

PH0(reject H0) ≤ α,

when model M holds.
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Paradigm for (frequentist) statistics in Data Science:
‘Post-selection Inference’

Lee et al., 2016; Fithian, Sun & Taylor, 2014.

Inference after having arrived at a statistical model adaptively,
through examination of observed data.

Having selected a model M̂ based on our observed data y , we wish
to test a hypothesis Ĥ0. The notation here stresses that Ĥ0 will be
random, a function of the selected model and hence of the data y :
M̂ ≡ M̂(y), Ĥ0 ≡ Ĥ0(y). The key principle is expressed in terms of
selective Type 1 error:

PĤ0
(reject Ĥ0|(M̂, Ĥ0)) ≤ α.
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Discussion

We want to control the Type 1 error rate of the test given it was
actually performed.

The thinking leading to this principle is really just a 21st century
re-expression of Fisherian thought.
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Example: File Drawer Effect

Suppose data consists of a set of n independent observations Yi

distributed as N(µi , 1). We choose, however, to focus attention
only on the apparently large effects, selecting for formal inference
only those indices i for which |Yi | > 1, Î = {i : |Yi | > 1}.

We wish, for each i ∈ Î , to test H0,i : µi = 0, each individual test
to be performed at significance level α = 0.05.
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A test which rejects H0,i when |Yi | > 1.96 is invalidated by the
selection of the tests to be performed.

Though the probability of falsely rejecting a given H0,i is certainly
α, since most of the time that hypothesis is not actually tested,
the error rate among the hypotheses that are actually selected for
testing is much higher than α.

Letting n0 be the number of true null effects and suppose that
n0 →∞ as n→∞, in the long run, the fraction of errors among
the true nulls we test, the ratio of the number of false rejections to
the number of true nulls selected for testing, tends to
PH0,i

(reject H0,i |i ∈ Î ) ≈ 0.16.
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Appropriate error control

The probability of a false rejection conditional on selection is the
natural and controllable error criterion to consider. We see that

PH0,i
(|Yi | > 2.41||Yi | > 1) = 0.05,

so that the appropriate test of H0,i , given that it is selected for
testing, is to reject if |Yi | > 2.41.
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Take Bayesian approach?

Conventional wisdom: Bayesian inference should not be altered by
selection. Inference is provided conditionally on observed data, any
further conditioning on the selection is redundant.
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Or is it?

George & Yekutieli (2012), Yekutieli (2012): standpoint that
inference doesn’t need to be adjusted by selection only justified if
selection takes place on parameter space as well as sample space.

If not (‘fixed parameter’), Bayesian inference must appropriately
account for selection.
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The framework

Bayesian model with sampling distribution f (y |θ) and prior π(θ),
with θ ∈ Ωθ ⊆ Rp.

Let E = {E1,E2, . . . ,Em} be a partition of sample space.

For each realisation of y we are interested in a parameter
hi (θ) ∈ {h1(θ), h2(θ), . . . , hm(θ)} only if y ∈ Ei .

Selective inference: provide valid inference for hi (θ), taking into
account we are only interested in it because event Ei was observed.
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Formalities

Inference about hi (θ) should be based on the conditional density

f (y |θ,Ei ) =
f (y |θ)

P(Ei |θ)
I(y ∈ Ei ).

Suppose prior π(θ) represents a hypothetical sampling distribution
from which values of parameter are generated.
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Two cases

I If successive samples of y are generated from f (y |θ) for a
common value of θ, sampled from π(θ), selection adjusted
posterior is

πEi (θ|y) ∝ π(θ)f (y |θ,Ei ).

‘Fixed parameter’.

I If each sample y is generated from f (y |θ) for a different value
of θ, sampled from prior, then values of parameter considered
in last step are sampled conditionally on Ei , and selection
adjusted posterior is

πEi (θ|y) ∝ π(θ|Ei )f (y |θ,Ei ) ∝ π(θ)P(Ei |θ)f (y |θ,Ei )

∝ π(θ)f (y |θ) ∝ π(θ|y),

posterior which ignores selection. ‘Random parameter’.
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An example

Suppose θ = (θ1, θ2) are independent N(0, 1/2), and, conditional
on θ, Y = (Y1,Y2), with Y1,Y2 independent, Yi distributed as
N(θi , 1/n).

In non-selective framework, Bayes estimator of θ2 is posterior mean
of θ2,

n

n + 2
Y2,

with associated Bayes risk [average squared error over joint
distribution of (θ,Y )] equal to posterior variance, 1/(2 + n).

Suppose selection is applied: inference is only provided for θ2 if
Y2 ≥ Y1.
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Random parameter case

Generate, for range of n, 100,000 samples from joint distribution of
(θ,Y ), retain only those for which Y2 ≥ Y1. Calculate average
squared error of estimator nY2/(n + 2) over retained samples: in
each case proportion of retained samples very close to 0.5.

n MSE 1/(n + 2)

1 0.33346 0.33333
2 0.24970 0.25000
5 0.14251 0.14286

10 0.08300 0.08333
50 0.01918 0.01923

100 0.00978 0.00980

Selection has no effect on inference.
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Fixed parameter case

Now:

1 Generate θ from assumed prior;

2 Generate Y from conditional distribution of Y |θ, until
Y2 ≥ Y1.

Compare, over 100,000 replications, average squared errors of
following estimators of θ2:

NS Estimator nY2/(n + 2) which ignores selection;

S Posterior mean of θ2, calculated from selective posterior
[constructed using truncated likelihood, and estimated by
large MCMC for each replication].
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MSEs

n NS S

1 0.59114 0.48261
2 0.60349 0.44810
5 0.58507 0.37434

10 0.55719 0.31507
50 0.51474 0.23238

100 0.50252 0.21647

Selection cannot be ignored.
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Structure of remainder of course

I Likelihood-based methods of inference, as omnibus procedures
in classical setting;

I Higher-order accuracy/validity by analytic methods,
bootstrapping;

I Principles/illustrations of frequentist and Bayesian selective
statistics.
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Part 2: Higher-order Likelihood-based Inference
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The classical parametric inference problem

Let Y = {Y1, . . . ,Yn} be random sample from underlying
distribution F (y ; θ), indexed by d-dimensional parameter
θ = (θ1, . . . , θd) = (ψ, φ), ψ p-dimensional interest parameter, φ
q-dimensional nuisance parameter, p + q = d . May have φ
high-dimensional.

Wish to test H0 : ψ = ψ0, or (duality) construct confidence set for
ψ.

If p = 1, ψ = θ1, want one-sided inference e.g. test H0 against
(one-sided) alternative ψ > ψ0 or ψ < ψ0, or one-sided confidence
limit.
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“Break the research question of interest into simple components
corresponding to strongly focused and incisive research questions.”

(D.R. Cox, ‘Principles of Statistical Inference’, 2006)

Typically, p = 1.
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Inference

Let L(θ) ≡ L(θ; Y ) be log-likelihood, θ̂ = (ψ̂, φ̂) the overall MLE
of θ, φ̂ψ the constrained MLE of φ, for fixed value of ψ. Write

θ̃ ≡ θ̃(ψ) = (ψ, φ̂ψ).

Profile log-likelihood function for ψ is M(ψ) = L{θ̃(ψ)}.

Likelihood ratio statistic is W (ψ) = 2{M(ψ̂)−M(ψ)}.

In case of scalar ψ, use signed root likelihood ratio statistic:

R(ψ) = sgn(ψ̂ − ψ)W (ψ)1/2.
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Notation

Differentiation is indicated by subscripts, so Lr (θ) = ∂L(θ)/∂θr ,
Lrs(θ) = ∂2L(θ)/∂θr∂θs , etc. Then E{Lr (θ)} = 0; let
λrs = E{−Lrs(θ)}.

66 / 199



The constants λrs are assumed to be of order O(n). These
assumptions are usually satisfied in situations involving
independent observations, structured (e.g. time series) dependent
data problems.

Let (λrs) be the d × d matrix inverse of (λrs).
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A comment

Calculation of quantities required by methods to be described
requires (at most) evaluation of expectations of log-likelihood
derivatives.
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Other statistics

Consider, for simplicity, scalar case p = 1. Variants for p > 1 easily
defined.

As alternative ‘pivots’ to R(ψ), could use, for example:

Wald statistic,

TW (ψ) = (ψ̂ − ψ){λ11(θ̂)}−1/2.

Score statistic,

TS(ψ) = L1{θ̃(ψ)}{λ11(θ̂)}1/2.
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Constructed using expected (inverse) information matrix [λrs ],
evaluated at global MLE.

Alternatively: use observed (inverse) information matrix [−Lrs ];
evaluate at constrained MLE θ̃(ψ),.......



Running Example (RE): Inverse Gaussian distribution

Y1, . . . ,Yn IID inverse Gaussian, IG (µ, ψ), with density

f (y ;µ, ψ) =

(
ψ

2πy3

)1/2

exp

(
− ψ

2µ2y
(y − µ)2

)
, y > 0,

interest parameter is shape ψ > 0, mean µ > 0 as nuisance.

First passage time of Brownian motion, widely used to model
phenomena in biosciences/reliability/survival/....
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Density: ψ = 1, µ = 0.5
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Density: ψ = 2, µ = 0.75
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Density: ψ = 3, µ = 1.0
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Density: ψ = 4, µ = 1.25
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Density: ψ = 5, µ = 1.5
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Density: ψ = 6, µ = 1.75
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MLES are:

ψ̂ = n/V , µ̂ = µ̂ψ = Ȳ ,

V =
n∑

i=1

(Y−1i − Y
−1

), Ȳ = n−1
n∑

i=1

Yi .

Distribution of ψV is χ2
n−1, distribution of µ̂ is IG (µ, ψ).
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R(ψ) = sgn(ψ̂ − ψ){n(log ψ̂ − 1− logψ + ψ/ψ̂)}1/2,

TW (ψ) =

√
n

2

(
1− ψ

ψ̂

)
,

TS(ψ) =

√
n

2

( ψ̂
ψ
− 1
)



A data sample

Data sample size n = 10, generated with µ = 1, ψ = 2:

0.435, 0.466, 1.624, 0.304, 2.165

0.936, 0.620, 0.595, 0.351, 1.688

Have: ψ̂ = 1.745, µ̂ = 0.918.
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RE: True and estimated densities
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Comment

Concentrate here on inference based on R, W , for simplicity. Most
results true also for Wald and score statistics.
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Parameterization invariance

Principle of parameterization invariance (PPI) important basis for
choosing between different inferential procedures.

If θ and ζ are two alternative parameterizations and P(·) is an
inference procedure, with Cθ and Cζ the conclusions that P(·)
leads to, expressed in the two parameterizations, then the same
conclusion Cζ should be reached by both application of P(·) in the
ζ parameterization and translation into the ζ parameterization of
the conclusion Cθ.
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Nuisance parameter

With nuisance parameters, parameterization invariance is restricted
to mean invariance under interest respecting reparameterization.

Suppose θ = (ψ, φ), with ψ interest parameter and φ nuisance
parameter. An interest respecting reparameterization is of the form
υ = υ(θ) = υ(ψ, φ) with υ = (ϕ, χ), such that

ϕ = ϕ(ψ), χ = χ(ψ, φ).

Reparameterization invariance helpful in practical sense: work on
any numerically convenient scale and then transform back to the
original one.
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Implications of PPI

Inference based on W (ψ) (or R(ψ)) does respect PPI.

So does inference based on TS(ψ), at least if constructed using
expected information evaluated at constrained MLE θ̃(ψ).

Inference based on TW (ψ) does not.
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First-order theory

Have W (ψ) distributed as χ2
p, to error of order O(n−1).

Also, R(ψ) distributed as N(0, 1), to error of order O(n−1/2).

Latter true also for TW (ψ) and TS(ψ), and variants.
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Inference: illustration, p = 1

A confidence set of asymptotic coverage 1− α for ψ is

I(Y ) ≡ I1−α(Y ) = {ψ : u(Y , ψ) ≤ 1− α},

with u(Y , ψ) = Φ{R(ψ)}, in terms of the N(0, 1) distribution
function Φ(·). Call u(Y , ψ) the ‘significance function’.

Equivalently, the confidence set is

I(Y ) = {ψ : R(ψ) ≤ Φ−1(1− α)}.

The coverage error of the confidence set is O(n−1/2): first-order
accuracy.
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Have that u(Y , ψ) is monotonic in ψ, so confidence set is
semi-infinite interval of form (ψ̂l(Y ),∞). Lower confidence limit.

If two-sided inference is required, an equi-tailed two-sided
confidence interval J (Y ) of nominal coverage 1− α may be
obtained by taking the set difference of two one-sided sets:

J (Y ) ≡ J1−α(Y ) = I1−α/2(Y )\Iα/2(Y ).
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Similar statements about coverage error of confidence sets true for
other asymptotically N(0, 1) pivots.

In case p > 1, confidence set of coverage error O(n−1)
(second-order accuracy) from χ2

p approximation to sampling
distribution of W (ψ).
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RE, data sample: significance functions
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RE, data example: 95% confidence limits

I R(ψ): interval is (0.755,∞).

I TW (ψ): interval is (0.461,∞).

I TS(ψ): interval is (1.005,∞).
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Motivations for refinements

I To obtain higher-order repeated sampling accuracy.

I To accommodate appropriate conditioning: multi-parameter
exponential families (conditioning dictated by theory of
optimal tests etc.); ancillary statistic models (relevance, by
conditioning on component of minimal sufficient statistic that
is approximately distribution constant).
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Refinements: approaches

Two most established approaches:

I Analytic procedures, ‘small sample asymptotics’, saddlepoint,
related methods;

I Simulation (‘bootstrap’) methods.
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The third way: objective Bayes

Bayes with prior explicitly specified so (marginal) posterior for ψ
yields confidence limits with correct frequentist interpretation, to
high-order: ‘probability matching prior’.

I conceptually simple;

I typically awkward with high-dimensional nuisance parameter,
as need to find marginal posterior of ψ;

I route not always open, higher-order (conditional) accuracy not
necessarily obtainable.
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Detail

Require prior π(ψ, φ) so that

Prθ{ψ ≤ ψ(1−α)(π,Y )} = 1− α + O(n−r/2),

for r = 2 or 3, each 0 < α < 1.

Here:

I n is sample size;

I ψ(1−α)(π,Y ) is (1− α) quantile of marginal posterior, given
data Y , of ψ, under prior π(ψ, φ);

I Prθ denotes frequentist probability, under repeated sampling
of Y , when true (fixed) parameter value is θ = (ψ, φ).
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Probability matching priors

If condition holds with r = 2, speak of π(ψ, φ) as first-order
probability matching prior.

If condition holds with r = 3, speak of π(ψ, φ) as second-order
probability matching prior.

96 / 199



Conditional probability matching

Appropriate frequentist inference to match in full exponential
family or ancillary statistic context is the conditional one,
conditional on the observed value c of some statistic C (Y ).

The requirement should be ‘conditional probability matching’:

Prθ{ψ ≤ ψ(1−α)(π,Y ) | C (Y ) = c} = 1− α + O(n−r/2).

Want the posterior 1− α quantile to match the 1− α conditional
frequentist confidence limit for ψ.
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Analytic methods: the highlights

I Bartlett correction of likelihood ratio statistic W (ψ).

I Analytically modified forms of R(ψ), specifically designed to
offer conditional validity, to high (asymptotic) order, in both
contexts. ‘Barndorff-Nielsen’s R∗’.
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Bartlett correction

Have

Eθ{W (ψ)} = p

(
1 +

b(θ)

n
+ O(n−2)

)
,

so modify W (ψ) to

Wc(ψ) = W (ψ)/{1 + b(ψ, φ̂ψ)/n},

or
W̄c(ψ) = W (ψ)/E(ψ,φ̂ψ)

{W (ψ)}.

Then Wc(ψ) and W̄c(ψ) are distributed as χ2
p, to error of order

O(n−2). Confidence sets constructed by χ2
p approximation have

coverage error O(n−2).
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E(ψ,φ̂ψ)
{W (ψ)} constructed by (bootstrap) simulation. Estimation

of expectation requires smaller MC simulation that estimation of
whole sampling distribution.

Inference by χ2
p approximation to distribution of W̄c(ψ): ‘Empirical

Bartlett correction’.

Could replace χ2
p approximation to sampling distribution of W (ψ)

by bootstrap distribution: sampling distribution under sampling
with parameter fixed as θ = (ψ, φ̂ψ). Confidence set will also have
coverage error O(n−2).
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RE: n = 5, ψ = 2, µ = 1.0, χ2
1 QQ plot, W (ψ)
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RE: n = 5, ψ = 2, µ = 1.0

In inverse Gaussian example, Eθ{W (ψ)} does not depend on
nuisance parameter µ.

Big simulation shows, Eθ{W (ψ)} = 1.4632.
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RE: n = 5, ψ = 2, µ = 1.0, χ2
1 QQ plot, W̄c(ψ)
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Adjusted signed root statistic R∗

Defined by

R∗(ψ) = R(ψ) + log{v(ψ)/R(ψ)}/R(ψ)

Here, in formulation considered, adjustment v(ψ) necessitates:

I explicit specification of ancillary A in ancillary statistic (e.g.
transformation) context;

I potentially awkward analytic calculations, in both
ancillary/exponential family situations.
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Adjustment function

Adjustment v(ψ) is given by

v(ψ) =

∣∣∣∣∣ L;θ̂(θ̂)− L;θ̂(θ̃)

Lφ;θ̂(θ̃)

∣∣∣∣∣ /{|jφφ(θ̃)|1/2|j(θ̂)|1/2}.
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Here, the log-likelihood function has been written as L(θ; θ̂, a),
with (θ̂, a) minimal sufficient and a ancillary, and

L;θ̂(θ) ≡ L;θ̂(θ; θ̂, a) =
∂

∂θ̂
L(θ; θ̂, a),

Lφ;θ̂(θ) ≡ Lφ;θ̂(θ; θ̂, a) =
∂2

∂φ∂θ̂
L(θ; θ̂, a).

Also, j denotes the observed information matrix, j(θ) = (−Lrs(θ)),
with Lrs(θ) = ∂2L(θ)/∂θr∂θs , and jφφ denotes its (φ, φ)
component.
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Other formulations

Other formulations of v(ψ), due to Fraser and co-workers,
possible: use of ‘tangent exponential model’ avoids need to specify
transformation Y → (θ̂,A).

Still analytically fiddly.
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RE: adjustment function

In inverse Gaussian example,

v(ψ) =

√
nψ

2ψ̂

(
1− ψ

ψ̂

)
.
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Sampling distribution of R∗(ψ) is N(0, 1), to error of order
O(n−3/2), conditional on ancillary, hence unconditionally. Normal
approximation to distribution of R∗(ψ) yields third-order (relative)
conditional accuracy in ancillary statistic setting, and confidence
sets with third-order repeated sampling coverage accuracy.

Inference which respects that of exact conditional inference in
exponential family setting to same third-order.
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RE: n = 5, ψ = 2, µ = 1.0, QQ plot, R(ψ)
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RE: n = 5, ψ = 2, µ = 1.0, QQ plot, R∗(ψ)

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
3

Normal Q−Q Plot

Theoretical quantiles

S
am

pl
e 

qu
an

til
es

111 / 199



Some comments on analytic methods

I Often very awkward analytic calculations.

I Successfully packaged (Brazzale et al.) for certain classes of
model, e.g. nonlinear heteroscedastic regression models.

I Also, relatively unexplored is idea of using simulation to
replace analytic calculations, specifically to calculate Bartlett
correction.

I Versions of R∗ for vector interest parameters possible, seen as
less effective than in case p = 1, or than Bartlett correction.
But, ‘directional approach’ (Fraser et al.) which reduces to a
one-dimensional integration problem seems to be very
effective, even in high-dimensional settings.
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(Constrained) Bootstrap

Bootstrap Principle: estimate sampling distribution of interest by
that under a fitted model.

Key: appropriate handling of nuisance parameter. Repeated
sampling properties of bootstrap are [modulo Monte Carlo error
from using finite simulation] entirely determined by nuisance
parameter effects.
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The key recommendation

Use as basis of bootstrap calculation F (y ; (ψ, φ̂ψ)), fitted model
with nuisance parameter taken as constrained MLE, for given value
of interest parameter.
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Properties: repeated sampling perspective

I ‘Essentially exact’.

I Estimate true sampling distribution of W (ψ) to error of order
O(n−2). Confidence sets constructed from bootstrap
distribution of W (ψ) have coverage error of order O(n−2).

I Estimate true sampling distribution of R(ψ) to error of order
O(n−1).

I But, confidence sets constructed from bootstrap distribution
of R(ψ) have third-order coverage accuracy: coverage error of
order O(n−3/2).
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Detail

The confidence set is

{ψ : R(ψ) ≤ G̃−1(1− α)},

where G̃ denotes the sampling distribution of R(ψ) under F (y ; θ̃),
the distribution with parameter value fixed as θ̃ = (ψ, φ̂ψ).

Corresponds to a significance function u(Y , ψ) = G̃ (R(ψ)).

Note: a different bootstrap calculation required for each ψ. The
significance function may not be monotonic.
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Other schemes, e.g. substituting global MLE of nuisance
parameter, less effective, in general. If Ĝ denotes the distribution
of R(ψ) under sampling from F (y ; θ̂), the confidence set

{ψ : R(ψ) ≤ Ĝ−1(1− α)},

has coverage error of order O(n−1).
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PPI

Inference based on bootstrapping distribution of R(ψ) respects
PPI.

So does making normal approximation to sampling distribution of
R∗(ψ).
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RE, data sample: significance functions
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RE, data example: 95% confidence limits

I R∗(ψ): interval is (0.585,∞).

I Bootstrap R(ψ): interval is (0.570,∞).
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RE: n = 5, bootstrap p−values vs R∗ p−values
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A practical example: signal detection

LHC: detection of signal in presence of background noise.

Set confidence limits on underlying signal, based on data from
observation channel.

Observation is number of times a particular event is observed.
Supposed to have Poisson distribution with mean ψγ + β, where
interest parameter ψ represents signal, β and γ represent
respectively a background rate at which event occurs and efficiency
of the measurement device.
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Precise formulation

Available data is y1, y2, y3. Realizations of independent Poisson
random variables with means ψγ + β, βt and γu respectively,
where t and u are known and parameters ψ, β, γ are unknown.

In principle, ψ ≥ 0, and nuisance parameters β, γ are positive.

Consider y1 = 1, y2 = 8, y3 = 14, with t = 27, u = 80.
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Inference

Appropriate inference is test of hypothesis ψ = 0 against one-sided
alternative ψ > 0.

Significance probability is one minus significance function at ψ = 0.

R(ψ): p−value is 1− Φ{R(0)} = 0.163.

R∗(ψ): p−value is 1− Φ{R∗(0)} = 0.127.

Bootstrap R(ψ): p−value is 0.156 [10,000 bootstrap samples].

Weak evidence of positive signal.
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Significance functions
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Remarks

I Lower confidence limits are negative. If insist on confidence
limits, take lower limit as maximum, max{0, ψα}, of actual
limit ψα and lower physically admissible value of zero? All
lower confidence limits are zero (coherent with p−values for
testing for a positive signal). Calculation of p−value more
appropriate?

I Even though large simulation is carried out, bootstrap
significance function here is not smooth. Smoothing required?
Discreteness of bootstrap distribution inducing differences
with R∗(ψ)?

I Discrete distribution. Does not effect essential inferential
issues, but introduces (mainly computational) complications.
Not all theoretical results about rates of error etc. necessarily
apply to such cases. Good practical performance.
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Conditional properties of bootstrap, p = 1

Recall, bootstrap applied unconditionally.

I Multi-parameter exponential family context: inference
agreeing with exact conditional inference to relative error
third-order, O(n−3/2). Same conditional accuracy as R∗.
DiCiccio & Young (2008).

I Same context, automatically reproduces appropriate objective
(‘conditional second-order probability matching’) Bayesian
inference to order O(n−3/2), in many circumstances.
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I Ancillary statistic models: bootstrap inference using R(ψ)
agrees with conditional inference to second-order, O(n−1);

I Same for other asymptotically N(0, 1) pivots, provided these
are constructed using observed information. Pivot must be
‘stable’ to second-order, O(n−1): marginal and conditional
distributions must agree to that order. Not true, for example,
for TW (ψ) and TS(ψ).

I Compare with third-order conditional accuracy of R∗.

I Third-order conditional accuracy unwarranted? Ancillary
statistics typically not unique, different conditional inferences
will typically only agree to second-order.
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Vector interest parameter (p > 1)

Repeated sampling perspective: simulating the distribution of
W (ψ), at either global MLE or constrained MLE, produces
p−values uniformly distributed under H0, to error of order O(n−2).

Ancillary statistic models: bootstrapping W (ψ) approximates exact
conditional inference given A = a to third-order, O(n−3/2).
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Objective Bayes (p = 1)

I Exponential family context: conditional (and hence
unconditional, repeated sampling) frequentist inference
accurate to O(n−3/2) achievable by any prior in a general
class, provided a simple model condition holds. DiCiccio &
Young (2010).

I Ancillary statistics models: unconditional higher-order
probability matching priors give conditional frequentist
accuracy to O(n−3/2) under some further conditions
(DiCiccio, Kuffner & Young, 2012). But now, in key cases
exact conditional matching priors exist and are unique. In
these cases, objective Bayes might be preferred route to
conditional frequentist accuracy?
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Methodological Issues

I ‘Uniqueness of inference’.

I Computational considerations.

I Relationship between analytic and bootstrap approaches.
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When do inferences agree?

In general, p−values from different asymptotically N(0, 1) pivots
will agree only to first-order, O(n−1/2).

However, establish simple sufficient conditions, under which
p−values from two statistics will agree to second-order, O(n−1),
provided approximations to distributions accurate to O(n−1) are
employed. Such accurate approximation obtained quite generally
by bootstrap.
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Consequences

I TW (ψ) and TS(ψ) in general do not provide p−values that
agree with those from R(ψ) to order Op(n−1).

I But, versions of Wald and score statistics constructed using
observed information will yield p−values agreeing with those
from R(ψ) to Op(n−1).

I Etc., etc.
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Computational considerations

Use of W (ψ) and R(ψ) requires calculation of both global and
constrained MLEs. Potentially unattractive compared to Wald
statistic, TW (ψ) [or multivariate version]. Latter routinely
employed in statistical packages etc., but not stable or
parameterization invariant.

Bootstrap: must recalculate for a series of B bootstrap samples.
General guideline: B of order of few 1000’s to reduce Monte Carlo
variability to acceptable levels, to ‘capture’ good theoretical
properties. In small samples or with high-dimensional nuisance
parameter solution of likelihood equations can be a worry.

R∗(ψ): computationally simple, potentially awkward analytic
calculations/coding. (Highly) stable, parameterization invariant.
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Relationship between Bootstrap and R∗(ψ)

Conceptually related, not distinct methodologies.
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Details

Specifically:

I p−values calculated from N(0, 1) approximation to
distribution of R∗(ψ) will quite generally agree with those
from bootstrap to order Op(n−1).

I Multi-parameter exponential family models: (unconditional)
bootstrap p−values agree with those from R∗(ψ) to
Op(n−3/2).

I Ancillary statistic models: normal approximation to R∗(ψ) is
an O(n−3/2) (saddlepoint) approximation to conditional
bootstrap [which could use if we could simulate the
conditional distribution of R(ψ) given A = a].
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The bottom line

If likelihood equations can be reliably solved, analytic simplicity
indicates bootstrapping of R(ψ) or W (ψ) as a highly effective
methodology.
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I Competitive in terms of accuracy with analytic alternatives.

I Unlikely to be computationally prohibitive [moderate B
adequate to ensure MC variability does not impair good
theoretical properties].

I Stable (respects CP to high-order) and parameterization
invariant: ‘inferentially correctness is OK’.

I Vector ψ: use bootstrap calculation to estimate mean of
W (ψ), then base inference on χ2 approximation to empirically
Bartlett-corrected statistic W̄c(ψ), or use directional tests of
Fraser et al.
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Part 3: Statistics in Data Science
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Formal framework for inference in Data Science

We assume our data Y lies in some measurable space with
unknown sampling distribution Y ∼ F .

The task is to pose, on the basis of Y itself, a reasonable
probability model M̂, then carry out inference, using the same data
Y .
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Let S ≡ S(Y ) be the selection event. For instance, this might be
the event that model M̂ is chosen, or, in the context of the File
Drawer Effect example, Y distributed as N(µ, 1), the event
S = {|Y | > 1}.

Central proposal is that to be relevant to the observed data sample
and yield precisely interpretable validity, the inference we perform
should not be drawn from the original assumed distribution,
Y ∼ F , but by considering the conditional distribution of Y |S .
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Discussion

This is just the Fisherian proposition, that hypothetical samples
used as basis of inference should be conditioned in appropriate way,
here on selection event S(Y ).

Now the selection event S will typically be informative about the
quantity θ of interest, and conditioning discards information. But,
to ignore the selection event loses control over the (Type 1) error
rate, potentially badly.

Principled inference requires conditioning on the selection event,
and therefore drawing inferences from leftover information in Y ,
given S .
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Example: File Drawer Effect, ctd.

Suppose Y is distributed as N(µ, 1). Take selection event as
{Y > 1}.

Selective inference uses the distribution of Y conditional on
{Y > 1}: this has density

fS(y ;µ) =
φ((Y − µ))

Φ(µ− 1)
.

Let F (y ;µ) be corresponding distribution function. For given
observed yo we construct the selective CI of coverage 1− α as
{µ : α/2 ≤ F (yo ;µ) ≤ 1− α/2}.
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Compare ‘nominal’ confidence intervals [not accounting for
selection] and selective confidence intervals, of coverage 90%.

If Y is much larger than 1, there is hardly any selection bias, no
adjustment for selection is really required. When Y is close to 1,
need to properly account for selection is stark, and length of the
selective CI →∞.
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File Drawer Effect: CIs
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File Drawer Effect: length of selective CI
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File Drawer Effect: coverage of non-selective CI

Coverage of non-selective 90% CI
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Borrowing from classical theory

Conditioning the inference performed on the selection event is
especially convenient if Y is assumed to have an exponential family
distribution.

Then the distribution of Y conditional on a measurable selection
event S(Y ) is also an exponential family distribution, allowing
support for the techniques of selective inference to be drawn from
the established classical theory for inference in exponential families.
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Key example: variable selection, Normal linear regression

Suppose that Y ∼ Nn(µ, σ2In), with µ ≡ Xβ, β a vector of
unknown parameters, and X a matrix of p predictors with columns
X1, . . . ,Xp ∈ Rn.

Suppose, for simplicity, that σ2 is known.

Some variable selection procedure (Lasso, LAR, ...) is utilised to
select a model M ⊂ {1, . . . , p} consisting of a subset of the p
predictors. Under the selected model, µ = XMβ

M , where XM is
n × |M|, say, with columns (XM)1, . . . , (XM)|M|: we assume that

XM is of full rank, so that βM = (βM1 , . . . , β
M
|M|) is well-defined.
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‘Selected model’

Conventional principles of inference in exponential family
distributions, adapted to this selective inference context, indicate
that inference on βMj should be based on the conditional

distribution of (XM)Tj Y , given the observed values of (XM)Tk Y ,
k = 1, . . . , |M|, k 6= j , and the selection event that model M is
chosen.
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‘Saturated model’

If we do not take the model M seriously, there is still a well defined
linear predictor in the population for design matrix XM .

Now define target of inference as

βM ≡ arg min
bM

E‖Y − XMbM‖2 = X+
Mµ,

X+
M ≡ (XT

MXM)−1XT
M is the Moore-Penrose pseudo-inverse of XM .

This ‘saturated model’ perspective is convenient as it allows
meaningful inference even if, say, our variable selection procedure
does a poor job.
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Assertion

This point of view can be advocated (see, for example, Berk et al.,
2013) as a way of avoiding the need, in the adaptive model
determination context typical of Data Science, to consider multiple
candidate probabilistic models.
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Inference

Under the selected model, βMj can be expressed in the form

βMj = ηTµ, say, whereas under the saturated model there may not

exist any βM such that µ = XMβ
M .

Compared to the selected model, the saturated model has n − |M|
additional nuisance parameters, which may be completely
eliminated by the classical device of conditioning on the
appropriate sufficient statistics: these correspond to
P⊥MY ≡ (In − XM(XT

MXM)−1XT
M )Y .

Considering the saturated model as an exponential family, again
assuming σ2 is known, and writing the least-squares coefficient βMj
again in the form ηTµ, inference is based on the conditional
distribution of ηTY , conditional on the observed values of
P⊥η Y ≡ (In − ηT (ηTη)−1ηT )Y , as well as the selection event.
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Selected or saturated?

Do we treat P⊥Mµ as an unknown nuisance parameter, to be
eliminated by further conditioning, or assume P⊥Mµ = 0?

Denoting by XM\j the matrix obtained from XM by deleting (XM)j ,

and letting U = XT
M\jY and V = P⊥MY , the issue is whether to

condition on both U and V , or only on U.

In the classical, non-adaptive, setting this issue does not arise, as
ηTY ,U and V are mutually independent: they are generally not
independent conditional on the selection event.

If we condition on V when, in fact, P⊥Mµ = 0, we might expect to
lose power, while inferential procedures may badly lose their
control of (Type 1) error rate if this quantity is large, so that the
selected model is actually false.
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Our viewpoint

Contend that such conditioning (on V ) is necessary to ensure
validity of the conclusions drawn from the specific data set under
analysis.
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Example: bivariate regression

Suppose that Y is distributed as N2(µ, I2), so that σ2 = 1 and
that the design matrix is X = I2.

We choose a ‘one-sparse model’, that is XM is specified to have
just one column. The selection procedure chooses M = {1} if
|Y1| > |Y2| and M = {2} otherwise.

Suppose data outcome Y = {2.9, 2.5}, so the chosen model is
M = {1}.
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Inference, selected model

The selected model M has Y distributed as N2((µ1, 0), I2).
Inference on µ1 would base a test of H0 : µ1 = 0 against
H1 : µ1 > 0 on rejection for large values of Y1, Y1 > c , say.

In the test of nominal Type 1 error α based on the selected model,
c is fixed by requiring PH0(Y1 > c |M, |Y1| > |Y2|) = α, explicitly
assuming that µ2 = 0.
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Inference, saturated model

In the saturated model framework, we reject H0 if Y1 > c ′, where
c ′ satisfies

PH0(Y1 > c ′ |Y2 = 2.5, |Y1| > |Y2|) ≡ PH0(Y1 > c ′ | |Y1| > 2.5) = α.

Conditioning on the observed value Y2 = 2.5 as well as the
selection event eliminates completely dependence of the Type 1
error rate on the value of µ2. It is immediately established here
that c = 1.95, c ′ = 3.23, in tests of nominal Type 1 error rate 0.05.
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Power functions

Power, selected and saturated models
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Distribution of Y2 conditional on selection event

Conditional distribution function of  Y2  with µ2 = 0.0
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Distribution of Y1 conditional on selection event

Conditional distribution function of  Y1  with µ2 = 0.0
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What do we conclude?

Operational difference between the saturated and selected model
perspectives may be important in key practical contexts, such as
early steps of sequential model-selection procedures.

But, the case being made is that a principled approach to inference
is forced to give central consideration to the saturated model in
contexts such as those discussed here, where valid interpretation of
significance is key.
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Some other points, (A)

(i) Distribution theory necessary for inference in the saturated
model perspective, under the Gaussian assumption, is generally
easy.

In some generality, the selection event can be expressed as a
polyhedron S(Y ) = {AY ≤ b}, for A, b not depending on Y . This
is true for forward stepwise regression, the lasso with fixed penalty
parameter λ, LAR and other procedures.

If inference is required for ηTµ, then further conditioning on P⊥η Y
yields the conditional distribution required for the inference to be a
truncated Gaussian with explicitly available endpoints, allowing a
simple analytic solution.
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Conditioning on P⊥η Y promoted as a means of obtaining an
analytically simple distribution for the inference.

Conditioning is necessary to eliminate dependence on the nuisance
parameter and provide control over Type 1 error.

Marginally, ηTY is independent of P⊥η Y , so the conditioning is
justified by ancillarity, but this is not true conditional on the
selection event: justification stronger than analytic convenience is
provided by necessary elimination of the nuisance parameter.

164 / 199



Some other points, (B)

In the non-Gaussian setting and in general under the selective
model, Monte Carlo procedures, such as MCMC and
acceptance/rejection methods, will be necessary to determine the
necessary conditional distribution of Y , but this is unlikely to prove
an obstacle to principled inference.
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Another perspective on selective inference

Tibshirani et al., 2018, offer a different proposal, potentially
relevant to data science.

Consider the multivariate normal model.

Under alternative framework, we recognise that for every possible
selected model M, a quantity of interest, ηTMµ, say, is specified.

When model M̂(Y ) is selected inference is made on the interest
parameter ηT

M̂(Y )
µ.

The notion of validity now is that under repeated sampling of Y , a
specified proportion 1− α of the time the inference on the selected
target, which is not fixed, is correct.
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Comment

Implicitly what is sought in much of data science?

Abandons the requirement that we have argued is central to
principled inference, of ensuring validity and relevance to the actual
data sample.
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Concluding remarks, frequentist selective inference

I Principled approach to frequentist inference in data science
necessary to provide the rationale by which claimed
frequentist error-rate properties are justified.

I Appropriate conceptual framework for valid inference is that
discussed in statistical literature as ‘Post selection inference’,
based on ensuring relevance of sampling distributions to
particular data sample. Fisherian ideas: no new paradigm
involved.
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I Inference after adaptive model determination (’data
snooping’) requires conditioning on selection event, control of
error rate of inference given it was performed: ‘the answer
must be valid, given that the question was asked.’

I Care required, as selected model for inference may be wrong,
can lead to substantially distorted error rates. Primary cause
is assumption that nuisance parameters effects are known:
elimination by classical device of (further) conditioning
ensures precise control of error rates. ‘Saturated model’
framework is the appropriate basis for inference.

I Potential loss of accuracy (power) is undesirable, but may not
be practically consequential: possible overconditioning is
worthwhile price paid for validity.
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Bayesian selective inference

Inference for a model parameter θ provided only if we observe
event E : covers situation described before, but also situations in
which sampling model (and therefore parameter) is specified after
observing E .

Inference about fixed parameter θ is based on selection-adjusted
posterior, with density

πE (θ|y) ∝ π(θ)f (y |θ,E ).

The truncated likelihood is LE (θ; y) ∝ f (y |θ)P(E |θ)−1.
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An example: one dimensional Gaussian

Let Yn|µ ∼ N(µ, n−1), where µ ∈ R is parameter of interest.
Inference is only provided for µ if we observe E = {Yn > 0}.

Truncated likelihood is

LE (µ; Yn) ∝ φ(
√

n(Yn − µ))

P(N(µ, n−1) > 0)
=
φ(
√

n(Yn − µ))

Φ(
√

nµ)
.
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Some alerts

For this Gaussian model, well known that as Yn → 0, the
maximizer of the truncated likelihood LE (µ; Yn) tends to −∞.
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Finite sample behaviour

Repeated sampling behaviour of, say, mode of selective posterior,
as estimator of true mean µ0 can be awful.

Consider bias and MSE of selective/non-selective posterior modes,
under N(0, 1) prior for µ, when Yn|µ ∼ N(µ, n−1), true mean is
µ0 = −0.1, as before E = {Yn > 0}. Each figure based on
R = 10, 000 replications of Yn|E .
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Bias, MSE of selective (S) and non-selective (NS)
posterior modes

n Bias MSE
S NS S NS

5 -0.0457 0.3678 0.1961 0.1802
10 -0.0904 0.2975 0.1721 0.1136
50 -0.1305 0.1819 0.1178 0.0377

100 -0.1333 0.1520 0.0999 0.0251
500 -0.1369 0.1156 0.0827 0.0136

1000 -0.1370 0.1085 0.0765 0.0118
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Asymptotic considerations

Bayesian setting: asymptotic aspect of key concern is consistency.
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Sequence of posterior distributions is consistent if it correctly
identifies the true value of the parameter asymptotically.

Formalised by requiring that posterior probability of sets bounded
away from true (fixed) parameter value decreases exponentially
almost surely.

Bernstein-von Mises: for regular IID models, posterior distribution
of
√

n(θ − θ̂) converges to Np(0, i(θ0)−1), under basic conditions,
with θ̂ the MLE and i(θ0) the Fisher information at the true
parameter value θ0.
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Selective regime

Consistency and asymptotic normality need not hold.
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One dimensional Gaussian, ctd.

Suppose Yn ∼ N(µ0, n
−1) for all n, selection event E = (0,∞).

Asymptotic behaviour of truncated likelihood.

I If µ0 > 0, then
√

n(Yn − µ0)|E d→ N(µ0, 1).

I If µ0 = 0, then
√

nYn|E
d→ N(µ0, 1)|E .

I If µ0 < 0, then nYn|E
d→ Exp(−µ0).
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Posterior consequences

I If µ0 > 0, selection region contains true parameter value,
posterior inference is asymptotically same as that in IID
(non-selective) setting. Unsurprising.

I If µ0 lies on boundary of E , provided prior gives positive
probability to a neighbourhood of µ0, posterior distributions
are consistent (in probability).

I If µ0 < 0, outside the selection region, truncated likelihood
has a non-degenerate limit, given by µ exp{µZ}, µ < 0, where
Z is Exponential(−µ0).
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Interesting case, µ0 < 0.

For any fixed set B ⊆ R with B ∩ (−∞, 0) 6= ∅, then
P(µ ∈ B|Yn)|{Yn ∈ E} has a non-degenerate asymptotic
distribution, where probability is taken with respect to the selective
posterior distribution.
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Illustration

With uniform prior π(µ) ∝ 1, B = (−∞, a), a < 0, we have

P(µ ∈ B|Yn)|{Yn ∈ E} d→ (−aZ + 1) exp(aZ ).

181 / 199



Empirical comparisons, µ0 = −1.0

Consider case a = −1.5. Generate a series of R = 10, 000
replications of Yn|E , each calculate posterior probability
P(µ ∈ B|Yn). Histogram compared with asymptotic limiting
distribution.
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Distribution, posterior probability of
B = (−∞,−1.5), n = 10

n = 10,  a = −1.5

Posterior probability
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Distribution, posterior probability of
B = (−∞,−1.5), n = 100

n = 100,  a = −1.5
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Distribution, posterior probability of
B = (−∞,−1.5), n = 1000

n = 1000,  a = −1.5
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Multidimensional extension

Challenge: arbitrariness of selection region.

Asymptotic behaviour of truncated likelihood tractable when
sampling model is multivariate normal, fixed dimension and known
covariance matrix which decreases in norm, and selection region is
affine.

Covers, for example, variable selection with Lasso, LAR, marginal
screening.
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Formulation

Suppose Yn|µ ∼ Np(µ, n−1Σ), Σ known, selection region
E = {y : Ay ≤ b}, A symmetric, positive definite.
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Key results

Let ŷ = argmin{||Σ−1/2(y − µ0)||2 : y ∈ E}.

Under repeated sampling with true parameter µ0, there exists a
linear reparameterization of µ to (s, t), such that:

I dim(s) = ||Aŷ − b||0.

I πE is consistent and asymptotically normal for s as n→∞.

I πE (t|y) has a non-degenerate limit as n→∞.
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Discussion

Essentially, we conclude that non-smoothness of (polytopic)
selection regions can have a negative effect on asymptotic
consistency of Bayesian selective posterior.

If the closest point to the true parameter within selection region
lies in the intersection of m of the hyperplanes defining polytope,
posterior distributions are only consistent for a
(p −m)-dimensional transformation of parameter.

Randomization (Tian and Taylor, 2018), involving applying
selection procedure to noisy version of the data, avoiding
hard-threshold truncation on sample space, to alleviate problem?
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One dimensional Gaussian, ctd.

As before, Yn ∼ N(µ0, n
−1), let Zn ∼ N(0, n−1), independently.

Truncation applied to Yn + Zn: inference on µ only if
Yn + Zn ∈ E = (0,∞).
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Illustration

True µ0 = −1, uniform prior, generate a series of R = 10, 000
replications, compare average over replications of posterior
probability P(µ ∈ (µ0 − 0.1, µ0 + 0.1)|Yn):

I (a) (nonrandomised) conditional on selection {Yn ∈ E};
I (b) (randomised) conditional on selection {Yn + Zn ∈ E}.
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P(µ ∈ (µ0 − 0.1, µ0 + 0.1)|Yn)

n |{Yn ∈ E} |{Yn + Zn ∈ E}

10 0.026 0.132
20 0.027 0.183
50 0.029 0.280

100 0.029 0.383
200 0.029 0.519
500 0.030 0.735

1000 0.030 0.887

192 / 199



Concluding remarks, Bayesian selective inference

I Bayesian approach is not a panacea for the selective inference
problem: selection has to be taken into account;

I Computational challenges, selective posterior may even be
inconsistent, though applying selection on randomized version
of data appears to fix things;

I Asymptotic regime reasonable? In example, fixed µ0 = −1,
fixed E = (0,∞). Have P(E )→ 0 rapidly as n→∞. True
also with randomization, though

P(E with randomization)

P(E without randomization)
→∞,

as n→∞. Randomization makes rare event E more likely.

193 / 199



So, in summary...

I Statistics, even in data science era, should be directed by
well-established, classical principles of inference, especially
ideas of appropriate conditioning, at least when a parametric
model can reasonably be postulated;

I By this means achieve valid, relevant inference. High levels of
accuracy, by computationally intensive or analytic methods;

I Problems posed by selective inference can be satisfactorily
addressed by conditioning arguments, at least under
assumption that selection event is well-defined.
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Work to be done...

I Adapt principles to ad hoc or informal selection procedures;

I Universality perhaps guided [Berk et al.] by consideration of
procedures which search for the statistically most significant
effect.
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