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What is spatial data?

• Any data with some geographical information

• Common sources of spatial data: climatology, forestry, ecology,
environmental health, disease epidemiology, real estate marketing etc

• have many important predictors and response variables
• are often presented as maps

• Other examples where spatial need not refer to space on earth:
• Neuroimaging (data for each voxel in the brain)
• Genetics (position along a chromosome)
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Point-referenced spatial data

• Each observation is associated with a location (point)
• Data represents a sample from a continuous spatial domain
• Also referred to as geocoded or geostatistical data
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Figure: Pollutant levels in Europe in March, 2009
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Point level modeling

• Point-level modeling refers to modeling of point-referenced data
collected at locations referenced by coordinates (e.g., lat-long,
Easting-Northing).

• Data from a spatial process {Y (s) : s ∈ D}, D is a subset in
Euclidean space.

• Example: Y (s) is a pollutant level at site s
• Conceptually: Pollutant level exists at all possible sites
• Practically: Data will be a partial realization of a spatial process –

observed at {s1, . . . , sn}
• Statistical objectives: Inference about the process Y (s); predict at

new locations.
• Remarkable: Can learn about entire Y (s) surface. The key:

Structured dependence
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Exploratory data analysis (EDA): Plotting the data

• A typical setup: Data observed at n locations {s1, . . . , sn}
• At each si we observe the response y(si ) and a p × 1 vector of

covariates x(si )>

• Surface plots of the data often helps to understand spatial patterns

y(s) x(s)

Figure: Response and covariate surface plots for Dataset 1
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What’s so special about spatial?

• Linear regression model: y(si ) = x(si )>β + ε(si )
• ε(si ) are iid N(0, τ 2) errors
• y = (y(s1), y(s2), . . . , y(sn))>; X = (x(s1)>, x(s2)>, . . . , x(sn)>)>

• Inference: β̂ = (X>X )−1X>Y ∼ N(β, τ 2(X>X )−1)
• Prediction at new location s0: ŷ(s0) = x(s0)>β̂
• Although the data is spatial, this is an ordinary linear regression

model
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Residual plots

• Surface plots of the residuals (y(s)− ŷ(s)) help to identify any
spatial patterns left unexplained by the covariates

Figure: Residual plot for Dataset 1 after linear regression on x(s)

• No evident spatial pattern in plot of the residuals
• The covariate x(s) seem to explain all spatial variation in y(s)
• Does a non-spatial regression model always suffice?

6



Residual plots

• Surface plots of the residuals (y(s)− ŷ(s)) help to identify any
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Western Experimental Forestry (WEF) data

• Data consist of a census of all trees in a 10 ha. stand in Oregon
• Response of interest: Diameter at breast height (DBH)
• Covariate: Tree species (Categorical variable)

DBH Species Residuals

• Local spatial patterns in the residual plot
• Simple regression on species seems to be not sufficient
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More EDA

• Besides eyeballing residual surfaces, how to do more formal EDA to
identify spatial pattern ?

First law of geography
”Everything is related to everything else, but near things are more
related than distant things.” – Waldo Tobler

• In general (Y (s + h)− Y (s))2 roughly increasing with ||h|| will
imply a spatial correlation

• Can this be formalized to identify spatial pattern?
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Empirical semivariogram

• Binning: Make intervals I1 = (0,m1), I2 = (m1,m2), and so forth,
up to IK = (mK−1,mK ). Representing each interval by its midpoint
tk , we define:

N(tk) = {(si , sj) : ‖si − sj‖ ∈ Ik}, k = 1, . . . ,K .

• Empirical semivariogram:

γ(tk) = 1
2|N(tk)|

∑
si ,sj∈N(tk )

(Y (si )− Y (sj))2

• For spatial data, the γ(tk) is expected to roughly increase with tk

• A flat semivariogram would suggest little spatial variation
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Empirical variogram: Data 1

y residuals

• Residuals display little spatial variation
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Empirical variograms: WEF data

• Regression model: DBH ∼ Species

DBH Residuals

• Variogram of the residuals confirm unexplained spatial variation
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Modeling with the locations

• When purely covariate based models does not suffice, one needs to
leverage the information from locations

• General model using the locations: y(s) = x(s)>β + w(s) + ε(s) for
all s ∈ D

• How to choose the function w(·)?

• Since we want to predict at any location over the entire domain D,
this choice will amount to choosing a surface w(s)

• How to do this ?
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Gaussian Processes (GPs)

• One popular approach to model w(s) is via Gaussian Processes (GP)
• The collection of random variables {w(s) | s ∈ D} is a GP if

• it is a valid stochastic process
• all finite dimensional densities {w(s1), . . . ,w(sn)} follow multivariate

Gaussian distribution

• A GP is completely characterized by a mean function m(s) and a
covariance function C(·, ·)

• Advantage: Likelihood based inference.
w = (w(s1), . . . ,w(sn))> ∼ N(m,C) where
m = (m(s1), . . . ,m(sn))> and C = C(si , sj)
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Valid covariance functions and isotropy

• C(·, ·) needs to be valid. For all n and all {s1, s2, ..., sn}, the
resulting covariance matrix C(si , sj) for (w(s1),w(s2), ...,w(sn))
must be positive definite

• So, C(·, ·) needs to be a positive definite function
• Simplifying assumptions:

• Stationarity: C(s1, s2) only depends on h = s1 − s2 (and is denoted
by C(h))

• Isotropic: C(h) = C(||h||)
• Anisotropic: Stationary but not isotropic

• Isotropic models are popular because of their simplicity,
interpretability, and because a number of relatively simple parametric
forms are available as candidates for C .
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Some common isotropic covariance functions

Model Covariance function, C(t) = C(||h||)

Spherical C(t) =


0 if t ≥ 1/φ

σ2 [1− 3
2φt + 1

2 (φt)3] if 0 < t ≤ 1/φ
τ 2 + σ2 otherwise

Exponential C(t) =
{

σ2 exp(−φt) if t > 0
τ 2 + σ2 otherwise

Powered
exponential

C(t) =
{

σ2 exp(−|φt|p) if t > 0
τ 2 + σ2 otherwise

Matérn
at ν = 3/2

C(t) =
{

σ2 (1 + φt) exp(−φt) if t > 0
τ 2 + σ2 otherwise
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Notes on exponential model

C(t) =
{

τ 2 + σ2 if t = 0
σ2 exp(−φt) if t > 0

.

• We define the effective range, t0, as the distance at which this
correlation has dropped to only 0.05. Setting exp(−φt0) equal to
this value we obtain t0 ≈ 3/φ, since log(0.05) ≈ −3.

• The nugget τ 2 is often viewed as a “nonspatial effect variance,”
• The partial sill (σ2) is viewed as a “spatial effect variance.”
• σ2 + τ 2 gives the maximum total variance often referred to as the sill
• Note discontinuity at 0 due to the nugget. Intentional! To account

for measurement error or micro-scale variability.
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Covariance functions and semivariograms

• Recall: Empirical semivariogram:
γ(tk) = 1

2|N(tk )|
∑

si ,sj∈N(tk )(Y (si )− Y (sj))2

• For any stationary GP,
E (Y (s + h)− Y (s))2/2 = C(0)− C(h) = γ(h)

• γ(h) is the semivariogram corresponding to the covariance function
C(h)

• Example: For exponential GP,

γ(t) =
{

τ 2 + σ2(1− exp(−φt)) if t > 0
0 if t = 0

, where t = ||h||
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Covariance functions and semivariograms
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Covariance functions and semivariograms

18



The Matèrn covariance function

• The Matèrn is a very versatile family:

C(t) =
{

σ2

2ν−1Γ(ν) (2
√
νtφ)νKν(2

√
(ν)tφ) if t > 0

τ 2 + σ2 if t = 0

Kν is the modified Bessel function of order ν (computationally
tractable)

• ν is a smoothness parameter controlling process smoothness.
Remarkable!

• ν = 1/2 gives the exponential covariance function
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Kriging: Spatial prediction at new locations

• Goal: Given observations w = (w(s1),w(s2), . . . ,w(sn))>, predict
w(s0) for a new location s0

• If w(s) is modeled as a GP, then (w(s0),w(s1), . . . ,w(sn))> jointly
follow multivariate normal distribution

• w(s0) |w follows a normal distribution with
• Mean (kriging estimator): m(s0) + c>C−1(w −m)
• where m = E(w), C = Cov(w), c = Cov(w ,w(s0))
• Variance: C(s0, s0)− c>C−1c

• The GP formulation gives the full predictive distribution p(w(s0) |w)

20



Modeling with GPs

Spatial linear model

y(s) = x(s)>β + w(s) + ε(s)

• w(s) modeled as GP(0,C(· | θ)) (usually without a nugget)

• ε(s) iid∼ N(0, τ 2) contributes to the nugget
• Under isotropy: C(s + h, s) = σ2R(||h|| ;φ)
• w = (w(s1), . . . ,w(sn))> ∼ N(0, σ2R(φ)) where

R(φ) = σ2(R(||si − sj || ;φ))
• y = (y(s1), . . . , y(sn))> ∼ N(Xβ, σ2R(φ) + τ 2I)
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Parameter estimation

• y = (y(s1), . . . , y(sn))> ∼ N(Xβ, σ2R(φ) + τ 2I)
• We can obtain MLEs of parameters β, τ 2, σ2, φ based on the above

model and use the estimates to krige at new locations
• In practice, the likelihood is often very flat with respect to the spatial

covariance parameters and choice of initial values is important
• Initial values can be eyeballed from empirical semivariogram of the

residuals from ordinary linear regression
• Estimated parameter values can be used for kriging
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Model comparison

• For k total parameters and sample size n:
• AIC: 2k − 2 log(l(y | β̂, θ̂, τ̂ 2))
• BIC: log(n)k − 2 log(l(y | β̂, θ̂, τ̂ 2))

• Prediction based approaches using holdout data:
• Root Mean Square Predictive Error (RMSPE):

√
1

nout

∑nout
i=1 (yi − ŷi )2

• Coverage probability (CP): 1
nout

∑nout
i=1 I(yi ∈ (ŷi,0.025, ŷi,0.975))

• Width of 95% confidence interval (CIW): 1
nout

∑nout
i=1 (ŷi,0.975 − ŷi,0.025)

• The last two approaches compares the distribution of yi instead of
comparing just their point predictions
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Back to WEF data

Table: Model comparison

Spatial Non-spatial

AIC 4419 4465
BIC 4448 4486

RMSPE 18 21
CP 93 93

CIW 77 82
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WEF data: Kriged surfaces

DBH Estimates Standard errors
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Summary

• Geostatistics – Analysis of point-referenced spatial data
• Surface plots of data and residuals
• EDA with empirical semivariograms
• Modeling unknown surfaces with Gaussian Processes
• Kriging: Predictions at new locations
• Spatial linear regression using Gaussian Processes
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