Introduction to Geostatistics

Sudipto Banerjee September 03–05, 2017

Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles

• Any data with some geographical information

- Any data with some geographical information
- Common sources of spatial data: climatology, forestry, ecology, environmental health, disease epidemiology, real estate marketing etc
 - have many important predictors and response variables
 - are often presented as maps

- Any data with some geographical information
- Common sources of spatial data: climatology, forestry, ecology, environmental health, disease epidemiology, real estate marketing etc
 - have many important predictors and response variables
 - are often presented as maps
- Other examples where spatial need not refer to space on earth:
 - Neuroimaging (data for each voxel in the brain)
 - Genetics (position along a chromosome)

Point-referenced spatial data

- Each observation is associated with a location (point)
- Data represents a sample from a continuous spatial domain
- Also referred to as geocoded or geostatistical data

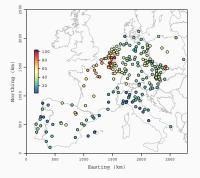


Figure: Pollutant levels in Europe in March, 2009

Point level modeling

- Point-level modeling refers to modeling of point-referenced data collected at locations referenced by coordinates (e.g., lat-long, Easting-Northing).
- Data from a spatial process {Y(s) : s ∈ D}, D is a subset in Euclidean space.
- Example: Y(s) is a pollutant level at site s
- Conceptually: Pollutant level exists at all possible sites
- Practically: Data will be a partial realization of a spatial process observed at {s₁,..., s_n}
- Statistical objectives: Inference about the process Y(s); predict at new locations.
- Remarkable: Can learn about entire *Y*(*s*) surface. The key: Structured dependence

Exploratory data analysis (EDA): Plotting the data

- A typical setup: Data observed at n locations $\{s_1, \ldots, s_n\}$
- At each s_i we observe the response y(s_i) and a p × 1 vector of covariates x(s_i)[⊤]
- Surface plots of the data often helps to understand spatial patterns

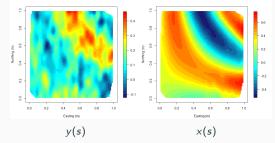


Figure: Response and covariate surface plots for Dataset 1

- Linear regression model: $y(s_i) = x(s_i)^\top \beta + \epsilon(s_i)$
- $\epsilon(s_i)$ are iid $N(0, \tau^2)$ errors
- $y = (y(s_1), y(s_2), \dots, y(s_n))^\top; X = (x(s_1)^\top, x(s_2)^\top, \dots, x(s_n)^\top)^\top$
- Inference: $\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y \sim N(\beta, \tau^2(X^{\top}X)^{-1})$
- Prediction at new location s_0 : $\widehat{y(s_0)} = x(s_0)^{\top} \hat{\beta}$
- Although the data is spatial, this is an ordinary linear regression model

Residual plots

• Surface plots of the residuals (y(s) - y(s)) help to identify any spatial patterns left unexplained by the covariates

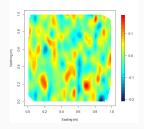


Figure: Residual plot for Dataset 1 after linear regression on x(s)

Residual plots

• Surface plots of the residuals (y(s) - y(s)) help to identify any spatial patterns left unexplained by the covariates

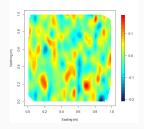
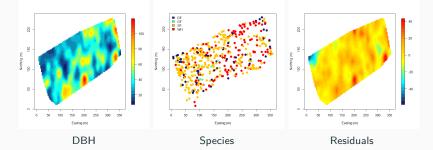


Figure: Residual plot for Dataset 1 after linear regression on x(s)

- No evident spatial pattern in plot of the residuals
- The covariate x(s) seem to explain all spatial variation in y(s)
- Does a non-spatial regression model always suffice?

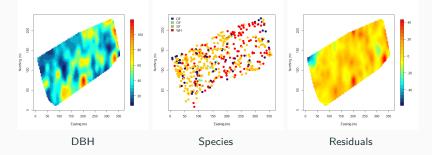
Western Experimental Forestry (WEF) data

- Data consist of a census of all trees in a 10 ha. stand in Oregon
- Response of interest: Diameter at breast height (DBH)
- Covariate: Tree species (Categorical variable)



Western Experimental Forestry (WEF) data

- Data consist of a census of all trees in a 10 ha. stand in Oregon
- Response of interest: Diameter at breast height (DBH)
- Covariate: Tree species (Categorical variable)



- Local spatial patterns in the residual plot
- Simple regression on species seems to be not sufficient

• Besides eyeballing residual surfaces, how to do more formal EDA to identify spatial pattern ?

• Besides eyeballing residual surfaces, how to do more formal EDA to identify spatial pattern ?

First law of geography

"Everything is related to everything else, but near things are more related than distant things." – Waldo Tobler • Besides eyeballing residual surfaces, how to do more formal EDA to identify spatial pattern ?

First law of geography

"Everything is related to everything else, but near things are more related than distant things." – Waldo Tobler

- In general (Y(s + h) − Y(s))² roughly increasing with ||h|| will imply a spatial correlation
- Can this be formalized to identify spatial pattern?

Empirical semivariogram

• Binning: Make intervals $I_1 = (0, m_1)$, $I_2 = (m_1, m_2)$, and so forth, up to $I_K = (m_{K-1}, m_K)$. Representing each interval by its midpoint t_k , we define:

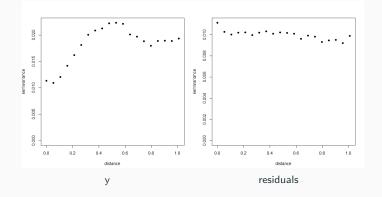
$$N(t_k) = \{(s_i, s_j) : \|s_i - s_j\| \in I_k\}, k = 1, \dots, K.$$

• Empirical semivariogram:

$$\gamma(t_k) = rac{1}{2|N(t_k)|} \sum_{s_i, s_j \in N(t_k)} (Y(s_i) - Y(s_j))^2$$

- For spatial data, the $\gamma(t_k)$ is expected to roughly increase with t_k
- A flat semivariogram would suggest little spatial variation

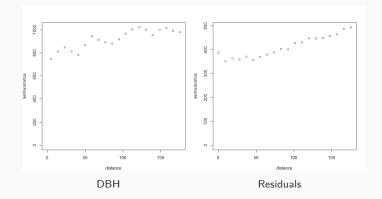
Empirical variogram: Data 1



• Residuals display little spatial variation

Empirical variograms: WEF data

• Regression model: DBH \sim Species



• Variogram of the residuals confirm unexplained spatial variation

- When purely covariate based models does not suffice, one needs to leverage the information from locations
- General model using the locations: $y(s) = x(s)^{\top}\beta + w(s) + \epsilon(s)$ for all $s \in D$
- How to choose the function $w(\cdot)$?
- Since we want to predict at any location over the entire domain *D*, this choice will amount to choosing a surface *w*(*s*)
- How to do this ?

- One popular approach to model w(s) is via Gaussian Processes (GP)
- The collection of random variables $\{w(s) | s \in D\}$ is a GP if
 - it is a valid stochastic process
 - all finite dimensional densities {w(s₁),...,w(s_n)} follow multivariate Gaussian distribution
- A GP is completely characterized by a mean function m(s) and a covariance function C(·, ·)
- Advantage: Likelihood based inference.

 $w = (w(s_1), \dots, w(s_n))^\top \sim N(m, C)$ where $m = (m(s_1), \dots, m(s_n))^\top$ and $C = C(s_i, s_j)$

Valid covariance functions and isotropy

- C(·, ·) needs to be valid. For all n and all {s₁, s₂, ..., s_n}, the resulting covariance matrix C(s_i, s_j) for (w(s₁), w(s₂), ..., w(s_n)) must be positive definite
- So, $C(\cdot, \cdot)$ needs to be a positive definite function
- Simplifying assumptions:
 - Stationarity: C(s₁, s₂) only depends on h = s₁ s₂ (and is denoted by C(h))
 - Isotropic: C(h) = C(||h||)
 - Anisotropic: Stationary but not isotropic
- Isotropic models are popular because of their simplicity, interpretability, and because a number of relatively simple parametric forms are available as candidates for *C*.

Model	Covariance function, $C(t) = C(h)$
Spherical	$\mathcal{C}(t) = \left\{ egin{array}{c} 0 & ext{if } t \geq 1/\phi \ \sigma^2 \left[1 - rac{3}{2}\phi t + rac{1}{2}(\phi t)^3 ight] & ext{if } 0 < t \leq 1/\phi \ au^2 + \sigma^2 & ext{otherwise} \end{array} ight.$
Exponential	$\mathcal{C}(t) = \left\{ egin{array}{cc} \sigma^2 \exp(-\phi t) & ext{if } t > 0 \ & au^2 + \sigma^2 & ext{otherwise} \end{array} ight.$
Powered exponential	$\mathcal{C}(t) = \left\{ egin{array}{c} \sigma^2 \exp(- \phi t ^p) & ext{if } t > 0 \ & au^2 + \sigma^2 & ext{otherwise} \end{array} ight.$
Matérn at $ u=3/2$	$C(t) = \begin{cases} \sigma^{2} \exp(-\phi t) & \text{if } t > 0 \\ \tau^{2} + \sigma^{2} & \text{otherwise} \end{cases}$ $C(t) = \begin{cases} \sigma^{2} \exp(- \phi t ^{p}) & \text{if } t > 0 \\ \tau^{2} + \sigma^{2} & \text{otherwise} \end{cases}$ $C(t) = \begin{cases} \sigma^{2} (1 + \phi t) \exp(-\phi t) & \text{if } t > 0 \\ \tau^{2} + \sigma^{2} & \text{otherwise} \end{cases}$

Notes on exponential model

$$C(t) = \begin{cases} \tau^2 + \sigma^2 & \text{if } t = 0\\ \sigma^2 \exp(-\phi t) & \text{if } t > 0 \end{cases}$$

- We define the effective range, t_0 , as the distance at which this correlation has dropped to only 0.05. Setting $\exp(-\phi t_0)$ equal to this value we obtain $t_0 \approx 3/\phi$, since $\log(0.05) \approx -3$.
- The nugget τ^2 is often viewed as a "nonspatial effect variance,"
- The partial sill (σ^2) is viewed as a "spatial effect variance."
- $\sigma^2 + \tau^2$ gives the maximum total variance often referred to as the sill
- Note discontinuity at 0 due to the nugget. Intentional! To account for measurement error or micro-scale variability.

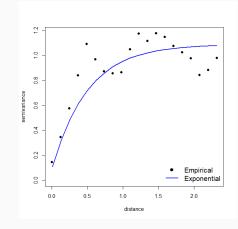
• Recall: Empirical semivariogram:

$$\gamma(t_k) = rac{1}{2|N(t_k)|} \sum_{s_i, s_j \in N(t_k)} (Y(s_i) - Y(s_j))^2$$

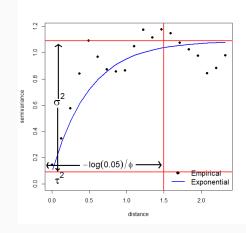
- For any stationary GP, $E(Y(s+h) - Y(s))^2/2 = C(0) - C(h) = \gamma(h)$
- $\gamma(h)$ is the semivariogram corresponding to the covariance function C(h)
- Example: For exponential GP,

$$\gamma(t) = \left\{ egin{array}{c} au^2 + \sigma^2(1 - \exp(-\phi t)) & ext{if } t > 0 \ 0 & ext{if } t = 0 \end{array}
ight.$$
 , where $t = ||h|$

Covariance functions and semivariograms



Covariance functions and semivariograms



• The Matèrn is a very versatile family:

$$C(t) = \begin{cases} \frac{\sigma^2}{2^{\nu-1}\Gamma(\nu)} (2\sqrt{\nu}t\phi)^{\nu} \mathcal{K}_{\nu}(2\sqrt{(\nu)}t\phi) & \text{if } t > 0\\ \tau^2 + \sigma^2 & \text{if } t = 0 \end{cases}$$

 ${\cal K}_{\nu}$ is the modified Bessel function of order ν (computationally tractable)

- ν is a smoothness parameter controlling process smoothness. Remarkable!
- $\nu = 1/2$ gives the exponential covariance function

Kriging: Spatial prediction at new locations

- Goal: Given observations w = (w(s₁), w(s₂),..., w(s_n))[⊤], predict w(s₀) for a new location s₀
- If w(s) is modeled as a GP, then (w(s₀), w(s₁),..., w(s_n))[⊤] jointly follow multivariate normal distribution
- $w(s_0) \mid w$ follows a normal distribution with
 - Mean (kriging estimator): $m(s_0) + c^{\top} C^{-1}(w m)$
 - where m = E(w), C = Cov(w), $c = Cov(w, w(s_0))$
 - Variance: $C(s_0, s_0) c^{\top} C^{-1} c$
- The GP formulation gives the full predictive distribution $p(w(s_0) | w)$

Spatial linear model

$$y(s) = x(s)^{\top}\beta + w(s) + \epsilon(s)$$

- w(s) modeled as $GP(0, C(\cdot | \theta))$ (usually without a nugget)
- $\epsilon(s) \stackrel{\text{iid}}{\sim} N(0, \tau^2)$ contributes to the nugget
- Under isotropy: $C(s + h, s) = \sigma^2 R(||h||; \phi)$
- $w = (w(s_1), \dots, w(s_n))^\top \sim N(0, \sigma^2 R(\phi))$ where $R(\phi) = \sigma^2 (R(||s_i - s_j||; \phi))$
- $y = (y(s_1), \ldots, y(s_n))^\top \sim N(X\beta, \sigma^2 R(\phi) + \tau^2 I)$

Parameter estimation

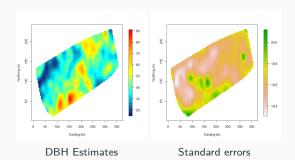
- $y = (y(s_1), \ldots, y(s_n))^\top \sim N(X\beta, \sigma^2 R(\phi) + \tau^2 I)$
- We can obtain MLEs of parameters $\beta, \tau^2, \sigma^2, \phi$ based on the above model and use the estimates to krige at new locations
- In practice, the likelihood is often very flat with respect to the spatial covariance parameters and choice of initial values is important
- Initial values can be eyeballed from empirical semivariogram of the residuals from ordinary linear regression
- Estimated parameter values can be used for kriging

- For k total parameters and sample size n:
 - AIC: $2k 2\log(l(y | \hat{\beta}, \hat{\theta}, \hat{\tau}^2))$
 - BIC: $\log(n)k 2\log(I(y \mid \hat{\beta}, \hat{\theta}, \hat{\tau}^2))$
- Prediction based approaches using holdout data:
 - Root Mean Square Predictive Error (RMSPE): $\sqrt{\frac{1}{n_{out}}\sum_{i=1}^{n_{out}}(y_i \hat{y}_i)^2}$
 - Coverage probability (CP): $\frac{1}{n_{out}} \sum_{i=1}^{n_{out}} I(y_i \in (\hat{y}_{i,0.025}, \hat{y}_{i,0.975}))$
 - Width of 95% confidence interval (CIW): $\frac{1}{n_{out}} \sum_{i=1}^{n_{out}} (\hat{y}_{i,0.975} \hat{y}_{i,0.025})$
 - The last two approaches compares the distribution of y_i instead of comparing just their point predictions

Table: Model comparison

	Spatial	Non-spatial
AIC	4419	4465
BIC	4448	4486
RMSPE	18	21
CP	93	93
CIW	77	82

WEF data: Kriged surfaces



- Geostatistics Analysis of point-referenced spatial data
- Surface plots of data and residuals
- EDA with empirical semivariograms
- Modeling unknown surfaces with Gaussian Processes
- Kriging: Predictions at new locations
- Spatial linear regression using Gaussian Processes