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e Other examples where spatial need not refer to space on earth:

e Neuroimaging (data for each voxel in the brain)
e Genetics (position along a chromosome)



Point-referenced spatial data

e Each observation is associated with a location (point)
e Data represents a sample from a continuous spatial domain
e Also referred to as geocoded or geostatistical data
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Figure: Pollutant levels in Europe in March, 2009



Point level modeling

e Point-level modeling refers to modeling of point-referenced data
collected at locations referenced by coordinates (e.g., lat-long,
Easting-Northing).

e Data from a spatial process {Y(s) : s € D}, D is a subset in
Euclidean space.

e Example: Y(s) is a pollutant level at site s

e Conceptually: Pollutant level exists at all possible sites

e Practically: Data will be a partial realization of a spatial process —
observed at {s,...,s,}

e Statistical objectives: Inference about the process Y(s); predict at
new locations.

e Remarkable: Can learn about entire Y(s) surface. The key:
Structured dependence



Exploratory data analysis (EDA): Plotting the data

e A typical setup: Data observed at n locations {si,...,s,}

e At each s; we observe the response y(s;) and a p x 1 vector of

covariates x(s;) "

e Surface plots of the data often helps to understand spatial patterns
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Figure: Response and covariate surface plots for Dataset 1



What'’s so special about spatial?

e Linear regression model: y(s;) = x(s;)" 3 + €(s:)

e (s;) are iid N(0,72) errors

o v = (vl Y52 o Y{o)T: X = (o) Ty x() T, - () )T
e Inference: B = (XTX)IXTY ~ N(8,72(XTX)™1)

e Prediction at new location sp: @ = x(s0)7 S

e Although the data is spatial, this is an ordinary linear regression
model



Residual plots

e Surface plots of the residuals (y(s) — y/(;)) help to identify any
spatial patterns left unexplained by the covariates

Figure: Residual plot for Dataset 1 after linear regression on x(s)



Residual plots

e Surface plots of the residuals (y(s) — y/(;)) help to identify any
spatial patterns left unexplained by the covariates
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Figure: Residual plot for Dataset 1 after linear regression on x(s)

e No evident spatial pattern in plot of the residuals
e The covariate x(s) seem to explain all spatial variation in y(s)

e Does a non-spatial regression model always suffice?



Western Experimental Forestry (WEF) data

e Data consist of a census of all trees in a 10 ha. stand in Oregon
e Response of interest: Diameter at breast height (DBH)

e Covariate: Tree species (Categorical variable)
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Western Experimental Forestry (WEF) data

e Data consist of a census of all trees in a 10 ha. stand in Oregon
e Response of interest: Diameter at breast height (DBH)

e Covariate: Tree species (Categorical variable)
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e Local spatial patterns in the residual plot

e Simple regression on species seems to be not sufficient
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More EDA

e Besides eyeballing residual surfaces, how to do more formal EDA to
identify spatial pattern ?

First law of geography
"Everything is related to everything else, but near things are more
related than distant things.” — Waldo Tobler

e In general (Y (s + h) — Y(s))? roughly increasing with ||h|| will
imply a spatial correlation

e Can this be formalized to identify spatial pattern?



Empirical semivariogram

Binning: Make intervals /, = (0, my), b = (my, my), and so forth,

up to Ix = (mk—_1, mg). Representing each interval by its midpoint
ti, we define:

N(tk) = {(S,',Sj) : ||S,‘ = Sj” S Ik}, k=1,...,K.

e Empirical semivariogram:

() = m ZN( () - Y(5))?

For spatial data, the v(tx) is expected to roughly increase with tj

A flat semivariogram would suggest little spatial variation
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e Residuals display little spatial variation
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Empirical variogra WEF data

e Regression model: DBH ~ Species
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e Variogram of the residuals confirm unexplained spatial variation
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Modeling with the locations

e When purely covariate based models does not suffice, one needs to
leverage the information from locations

e General model using the locations: y(s) = x(s) "8 + w(s) + €(s) for
alse D

e How to choose the function w(-)?

e Since we want to predict at any location over the entire domain D,
this choice will amount to choosing a surface w(s)

e How to do this ?
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Gaussian Processes (GPs)

e One popular approach to model w(s) is via Gaussian Processes (GP)
e The collection of random variables {w(s)|s € D} is a GP if
e it is a valid stochastic process
e all finite dimensional densities {w(s1),...,w(sy)} follow multivariate
Gaussian distribution
e A GP is completely characterized by a mean function m(s) and a
covariance function C(,-)
e Advantage: Likelihood based inference.
w = (w(s1),...,w(s,))" ~ N(m, C) where
m = (m(s1),...,m(s,))" and C = C(s;,s;)
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Valid covariance functions and isotropy

e C(+,-) needs to be valid. For all n and all {s1,s,,...,s,}, the
resulting covariance matrix C(s;,s;) for (w(s1), w(sz), ..., w(sp))
must be positive definite

e So, C(-,-) needs to be a positive definite function

e Simplifying assumptions:

e Stationarity: C(s1,s2) only depends on h = s1 — s (and is denoted
by C(h))

e Isotropic: C(h) = C(||h||)

e Anisotropic: Stationary but not isotropic

e |sotropic models are popular because of their simplicity,
interpretability, and because a number of relatively simple parametric
forms are available as candidates for C.
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Some common isotropic covariance functions

Model Covariance function, C(t) = C(]|h||)
0 ift>1/¢

Spherical C(t)=q o?[1—3¢t+3(pt)}] ifO<t<1/9

72 + o2 otherwise

> .

Exponential C(t) = 7 :;(jf aft) :t:;efw(i)se
Powered C(t) = o?exp(—|ot|P) ift>0
exponential 72 + 02 otherwise
Matérn C(e) = 02 (1 + ¢t)exp(—ot) ift>0
at v =3/2 7% 4 02 otherwise
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Notes on exponential model

72 + o2 ift=0
C(t) =
(t) { o?exp(—¢t) ift>0

We define the effective range, tg, as the distance at which this
correlation has dropped to only 0.05. Setting exp(—¢tp) equal to
this value we obtain ty & 3/¢, since log(0.05) ~ —3.

The nugget 72 is often viewed as a “nonspatial effect variance,”
The partial sill (02) is viewed as a “spatial effect variance.”
0% + 72 gives the maximum total variance often referred to as the sill

Note discontinuity at 0 due to the nugget. Intentional! To account
for measurement error or micro-scale variability.
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Covariance functions and semivariograms

e Recall: Empirical semivariogram:
Y(8) = gty S enien Y (5) = Y(5))?

e For any stationary GP,
E(Y(s+h) = Y(s))?/2= C(0) — C(h) = v(h)

e ~y(h) is the semivariogram corresponding to the covariance function
C(h)

e Example: For exponential GP,

72+ 0%(1 — exp(—ot)) ift>0
t) = here t = ||h
A1) { . 070 where £ = [l
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Covariance functions and semivariograms
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Covariance functions and semivariograms
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The Matérn covariance function

e The Matern is a very versatile family:

C(t) = 2V1r (2VVte) K, (24/(v)tg) if t>0
7+0’ IftZO

K, is the modified Bessel function of order v (computationally

tractable)

e v is a smoothness parameter controlling process smoothness.
Remarkable!

e v = 1/2 gives the exponential covariance function
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Kriging: Spatial prediction at new locations

e Goal: Given observations w = (w(s1), w(sy),...,w(s,))", predict
w(sp) for a new location sp
e If w(s) is modeled as a GP, then (w(sp), w(s1),...,w(s,))" jointly
follow multivariate normal distribution
e w(sp)|w follows a normal distribution with
e Mean (kriging estimator): m(sp) 4+c' C™H(w — m)
e where m = E(w), C = Cov(w), ¢ = Cov(w, w(s))
e Variance: C(sp,5) —c' C lc

e The GP formulation gives the full predictive distribution p(w(sp) | w)
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Modeling with GPs

Spatial linear model

y(s) = x(s)" B + w(s) + €(s)

w(s) modeled as GP(0, C(-|60)) (usually without a nugget)

e(s) © N(0,72) contributes to the nugget

e Under isotropy: C(s+ h,s) = o?R(||h|| ; ¢)

w = (w(s1),...,w(sn))" ~ N(0,02R(¢)) where
R(¢) = o*(R(llsi — sill : 9))

o y=(y(s1),---,¥(sn)) " ~ N(XB,0%R(9) + 721)
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Parameter estimation

y=(s1),--,¥(sn) " ~ N(XB,0?R(¢) + 72I)
e We can obtain MLEs of parameters 3,72, 02, ¢ based on the above
model and use the estimates to krige at new locations

e |n practice, the likelihood is often very flat with respect to the spatial
covariance parameters and choice of initial values is important

e Initial values can be eyeballed from empirical semivariogram of the
residuals from ordinary linear regression

e Estimated parameter values can be used for kriging
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Model comparison

e For k total parameters and sample size n:
o AIC: 2k —2log(I(y | B, 6, 72))
e BIC: log(n)k — 2log(I(y | B,0,72))

e Prediction based approaches using holdout data:

e Root Mean Square Predictive Error (RMSPE): nom Yo (i

e Coverage probability (CP): ﬁ Yoret I(yi € (§4.0.025, 9i0.075))

e Width of 95

nlut Yo (910975 — §i0.025)

e The last two approaches compares the distribution of y; instead of
comparing just their point predictions
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Back to WEF data

Table: Model comparison

Spatial  Non-spatial

AIC 4419 4465

BIC 4448 4486
RMSPE 18 21

CP 93 93

CIw 77 82
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WEF d Kriged surfaces
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Geostatistics — Analysis of point-referenced spatial data

Surface plots of data and residuals

EDA with empirical semivariograms

Modeling unknown surfaces with Gaussian Processes

Kriging: Predictions at new locations

Spatial linear regression using Gaussian Processes
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