
High-dimensional Bayesian Geostatistics

Sudipto Banerjee
August 15, 2017

Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles

Based upon projects involving:

• Abhirup Datta (Johns Hopkins University)
• Lu Zhang (UCLA)
• Andrew O. Finley (Michigan State University)
• Alan. E. Gelfand (Duke University)

Case Study: Alaska Tanana Valley Forest Height Dataset

Forest height and tree cover Forest fire history

• Forest height (red lines) data from LiDAR at 5× 106 locations
• Knowledge of forest height is important for biomass assessment,

carbon management etc

2

Case Study: Alaska Tanana Valley Forest Height Dataset

Forest height and tree cover Forest fire history

• Goal: High-resolution domainwide prediction maps of forest height
• Covariates: Domainwide tree cover (grey) and forest fire history (red

patches) in the last 20 years

2

Analyzing the data

Models used:

• Non-spatial regression: yFH = β0 + βtreextree + βfirexfire + ε

Figure: Variogram of the residuals from non-spatial regression indicates strong
spatial pattern

3

Geostatistical models

• yFH(`) = β0 + βtreextree(`) + βfirexfire(`) + w(`) + ε(`)

• w(`) ∼ GP(0,C(·, · |σ2, φ))

• yFH ∼ N(Xβ,Kθ) where Kθ is the spatial covariance matrix:

Kθ = C(σ,φ) + τ 2I , where θ = {σ, φ, τ}

where C(σ2,φ) is the GP covariance matrix derived from C(·, · |σ2, φ).

4

Likelihood from (full rank) GP models

• L = {`1, `2, . . . , `n} are locations where data is observed

• y(`i) is outcome at the i th location, y = (y(`1), y(`2), . . . , y(`n))>

• Model: y ∼ N(Xβ,Kθ)

• Estimating process parameters from the likelihood:

−1
2 log det(Kθ)− 1

2 (y − Xβ)>K−1
θ (y − Xβ)

• Customary: Kθ = C(σ,φ) + Dτ , where θ = {σ, φ, τ}

• Bayesian inference: Priors on {β, θ}

• Challenges: Storage and chol(Kθ) = LDL>.

5

Computational Details

• Compute the quadratic form and determinant (for any given {β, θ}):

Solve for u: Kθu = y − Xβ (expensive) ;
Quadratic form: (y − Xβ)>u ;
Determinant: det(Kθ) (expensive) .

• Compute the quadratic form and determinant (for any given {β, θ}):

Cholesky: chol(Kθ) = LDL> (expensive) ;
Solve for v : v = trsolve(L, y − Xβ) ;
Quadratic form: v>D−1v =

∑n
i=1 v2

i /dii ;
Determinant: log det(Kθ) =

∑n
i=1 log dii .

• Log-likelihood (up to a constant):

−1
2

n∑
i=1

log dii −
1
2

n∑
i=1

v2
i /dii

6

Prediction and interpolation

• Conditional predictive density

p(y(`0) | y , θ, β) = N
(
y(`0)

∣∣µ(`0), σ2(`0)
)
.

• “Kriging” (spatial prediction/interpolation)

µ(`0) = E[y(`0) | y , θ] = x>(`0)β + k>θ (`0)K−1
θ (y − Xβ) ,

σ2(`0) = var[y(`0) | y , θ] = Kθ(`0, `0)− k>θ (`0)K−1
θ kθ(`0) .

• Bayesian “kriging” computes (simulates) posterior predictive density:

p(y(`0) | y) =
∫

p(y(`0) | y , θ, β)p(β, θ | y)dβdθ

7

Computational Details for Prediction

• Compute the mean and variance (for any given {β, θ} and `0):

Solve for u: Kθu = kθ(`0) ;
Predictive mean: x>(`0)β + u>(y − Xβ) ;
Predictive variance: Kθ(`0, `0)− u>kθ(`0) .

• Compute the mean and variance (for any given {β, θ} and `0):

Cholesky: chol(Kθ) = LDL> ;
Solve for v : v = trsolve(L, kθ(`0)) ;
Solve for u: u = trsolve(L>,D−1v) ;
Predictive mean: x>(`0)β + u>(y − Xβ) ;
Predictive variance: Kθ(`0, `0)− u>kθ(`0) .

• Primary bottleneck is chol(·)

8

Burgeoning literature on spatial big data

• Low-rank models (Wahba, 1990; Higdon, 2002; Kamman & Wand, 2003;
Paciorek, 2007; Rasmussen & Williams, 2006; Stein 2007, 2008; Cressie &
Johannesson, 2008; Banerjee et al., 2008; 2010; Gramacy & Lee 2008;
Sang et al., 2011, 2012; Lemos et al., 2011; Guhaniyogi et al., 2011,
2013; Salazar et al., 2013; Katzfuss, 2016)

• Sparsity: (Solve Ax = b by (i) sparse A, or (ii) sparse A−1)
1. Covariance tapering (Furrer et al. 2006; Du et al. 2009; Kaufman et

al., 2009; Shaby and Ruppert, 2013)
2. GMRFs to GPs: INLA (Rue et al. 2009; Lindgren et al., 2011)
3. LAGP (Gramacy et al. 2014; Gramacy and Apley, 2015)
4. Nearest-neighbor models (Vecchia 1988; Stein et al. 2004; Stroud et

al 2014; Datta et al., 2016)
• Spectral approximations and composite likelihoods: (Fuentes 2007;

Paciorek, 2007; Eidsvik et al. 2016)
• Multi-resolution approaches (Nychka, 2002; Johannesson et al., 2007;

Matsuo et al., 2010; Tzeng & Huang, 2015; Katzfuss, 2016)

9

Bayesian low rank models

• A low rank or reduced rank process approximates a parent process
over a smaller set of points (knots).

• Start with a parent process w(`) and construct w̃(`)

w(`) ≈ w̃(`) =
r∑

j=1
bθ(`, `∗j)z(`∗j) = b>θ (`)z ,

where
• z(`) is any well-defined process (could be same as w(`));

• bθ(`, `′) is a family of basis functions indexed by parameters θ;

• {`∗1 , `∗2 , . . . , `∗r } are the knots;

• bθ(`) and z are r × 1 vectors with components bθ(`, `∗j) and z(`∗j),
respectively.

10

Bayesian low rank models (contd.)

• w̃ = (w̃(`1), w̃(`2), . . . , w̃(`n))> is represented as w̃ = Bθz
• Bθ is n × r with (i , j)-th element bθ(`i , `

∗
j)

• Irrespective of how big n is, we now have to work with the r (instead
of n) z(`∗j)’s and the n × r matrix Bθ.

• Since r << n, the consequential dimension reduction is evident.
• w̃ is a valid stochastic process in r -dimensions space with covariance:

cov(w̃(`), w̃(`′)) = b>θ (`)Vzbθ(`′) ,

where Vz is the variance-covariance matrix (also depends upon
parameter θ) for z .

• When n > r , the joint distribution of w̃ is singular.

11

The Sherman-Woodbury-Morrison formulas

• Low-rank dimension reduction is similar to Bayesian linear regression
• Consider a simple hierarchical model (with β = 0):

N(z | 0,Vz)× N(y |Bθz ,Dτ) ,

where y is n× 1, z is r × 1, Dτ and Vz are positive definite matrices
of sizes n × n and r × r , respectively, and Bθ is n × r .

• The low rank specification is Bθz and the prior on z .
• Dτ (usually diagonal) has the residual variance components.
• Computing var(y) in two different ways yields

(Dτ + BθVzB>θ)−1 = D−1
τ − D−1

τ Bθ(V−1
z + B>θ D−1

τ Bθ)−1B>θ D−1
τ .

• A companion formula for the determinant:

det(Dτ + BθVzB>θ) = det(Vz) det(Dτ) det(V−1
z + B>θ D−1

τ Bθ) .

12

Practical implementation for Bayesian low rank models

• In practical implementation, better to avoid SWM formulas.[
D−1/2
τ y

0

]
︸ ︷︷ ︸ =

[
D−1/2
τ Bθ
V−1/2

z

]
︸ ︷︷ ︸ z +

[
e1

e2

]
︸︷︷︸

y∗ B∗ e∗

.

• e∗ ∼ N(0, In+r).
• V 1/2

z and D1/2
τ are matrix square roots of of Vz and Dτ , respectively.

• If Dτ is diagonal (as is common), then D1/2
τ is simply the square

root of the diagonal elements of Dτ .
• V 1/2

z = chol(Vz) is the triangular (upper or lower) Cholesky factor
of the r × r matrix Vz .

• Use backsolve to efficiently obtain V−1/2
z z

13

Practical implementation for Bayesian low rank models (contd.)

• The marginal density of p(y∗ | θ, τ) after integrating out z now
corresponds to the normal linear model

y∗ = B∗ẑ + e∗ ,

where ẑ is the ordinary least-square estimate of z .
• Use lm function to compute ẑ applying the QR decomposition to B∗.
• Thus, we estimate the Bayesian linear model

p(θ, τ)× N(y∗ |B∗ẑ , In+r)

• MCMC will generate posterior samples for {θ, τ}.
• Recover the posterior samples for z from those of {θ, τ}:

p(z | y) =
∫

N(z | ẑ ,M)× p(θ, τ | y)dθdτ

where M−1 = V−1
z + B>θ D−1

τ Bθ.

14

Predictive process models (Banerjee et al., JRSS-B, 2008)

• A particular low-rank model emerges by taking
• z(`) = w(`)

• z = (w(`∗1),w(`∗2), . . . ,w(`∗r))> as the realizations of the parent
process w(`) over the set of knots L ∗ = {`∗1 , `∗2 , . . . , `∗r },

and then taking the conditional expectation:

w̃(`) = E[w(`) |w∗] = b>θ (`)z .

• The basis functions are automatically derived from the spatial
covariance structure of the parent process w(`):

b>θ (`) = cov{w(`),w∗}var−1{w∗} = Kθ(`,L ∗)K−1
θ (L ∗,L ∗) .

15

Biases in low-rank models

• In low-rank processes, w(`) = w̃(`) + η(`). What is lost in η(`)?

0 50 100 150 200

0
5

10
15

20
25

knots

ta
uˆ

2

0 50 100 150 200

• For the predictive process,

var{w(`)} = var{E[w(`) |w∗]}+ E{var[w(`) |w∗]}
≥ var{E[w(`) |w∗]} .

16

Bias-adjusted or modified predictive processes

• η(`) is a Gaussian process with covariance structure

Cov{η(`), η(`′)} = Kη,θ(`, `′)
= Kθ(`, `′)− Kθ(`,L ∗)K−1

θ (L ∗,L ∗)Kθ(L ∗, `′) .

• Remedy:
w̃ε(`) = w̃(`) + ε̃(`) ,

where ε̃(`) ind∼ N(0, δ2(`)) and

δ2(`) = var{η(`)} = Kθ(`, `)− Kθ(`,L ∗)K−1
θ (L ∗,L ∗)Kθ(L ∗, `) .

• Other improvements suggested by Sang et al. (2011, 2012) and
Katzfuss (2017).

17

Oversmoothing in low rank models

True w Full GP PPGP 64 knots

Figure: Comparing full GP vs low-rank GP with 2500 locations. Figure (1c)
exhibits oversmoothing by a low-rank process (predictive process with 64 knots)

18

Introducing sparsity through conditional independence

Full dependency graph

1

2

3

4

5

67

p(w1)p(w2 |w1)p(w3 |w1,w2)p(w4 |w1,w2,w3)

× p(w5 |w1,w2,w3,w4)p(w6 |w1,w2, . . . ,w5)p(w7 |w1,w2, . . . ,w6) .
19

Simple method of introducing sparsity (e.g. graphical models)

3−Nearest neighbor dependency graph

1

2

3

4

5

67

p(w1)p(w2 |w1)p(w3 |w1,w2)p(w4 |w1,w2,w3)

p(w5 |��w1,w2,w3,w4)p(w6 |w1,��w2,��w3,w4,w5)p(w7 |w1,w2,��w3,��w4,��w5,w6)
20

Gaussian graphical models: linearity

• Write a joint density p(w) = p(w1,w2, . . . ,wn) as:

p(w1)p(w2 |w1)p(w3 |w1,w2) · · · p(wn |w1,w2, . . . ,wn−1)

• Example: For Gaussian distribution N(w | 0,Kθ), we have a linear
model

w1 = 0 + η1;
w2 = a21w1 + η2;
w3 = a31w1 + a32w2 + η3;
wi = ai1w1 + ai2w2 + · · ·+ ai,i−1wi−1 + ηi ; i = 4, . . . , n .

• More compactly: w = Aw + η ; η ∼ N(0,D).

21

Simple method of introducing sparsity (e.g. graphical models)

• Assume w ∼ N(0,Kθ). Introduce sparsity by modeling chol(Kθ)

Kθ = (I − A)−1D(I − A)−> ; D = diag(var{wi |w{j<i}})

• If L is from chol(Kθ) = LDL>, then L−1 = I − A.

• aij ’s obtained from n − 1 linear systems by comparing coefficients of
wj ’s in ∑

j<i
aijwj = E[wi |w{j<i}] i = 2, . . . , n

• Example:
for(i in 1:(n-1)) {

a[i+1,1:i] = solve(K[1:i,1:i], K[1:i,i+1])

d[i+1,i+1] = K[i+1,i+1] - dot(K[i+1,1:i],a[i+1,1:i])

}

22

• Let aij = 0 for all but m nearest neighbors of node i implies solving∑
j∈N[i]

aijwj = E[wi |w{j∈N[i]}] i = 2, . . . , n ,

where N[i] = {j < i : j ∼ i} are indices for neighbors of i .
• Example:

for(i in 1:(n-1) {

Pa = N[i+1] # neighbors of i+1

a[i+1,Pa] = solve(K[Pa,Pa], K[i+1, Pa])

d[i+1,i+1] = K[i+1,i+1] - dot(K[i+1, Pa],a[i+1,Pa])

}

• We need to solve n − 1 linear systems of size at most m ×m.
Trivially parallelizable!

• Storage and flops linear in n.

23

Sparse likelihood approximations (Vecchia, 1988)

• Let R = {`1, `2, . . . , `r}

• With w(`) ∼ GP(0,Kθ(·)), write the joint density p(wR) as:

N(wR | 0,Kθ) =
r∏

i=1
p(w(`i) |wH(`i))

≈
r∏

i=1
p(w(`i) |wN(`i)) = N(wR | 0, K̃θ) .

where N(`i) ⊆ H(`i).

• Shrinkage: Choose N(`) as the set of “m nearest-neighbors” among
H(`i). Theory: “Screening” effect (Stein, 2002).

• K̃−1
θ depends on Kθ, but is sparser with at most nm2 non-zero

entries

24

Sparse precision matrices (e.g., graphical Gaussian models)

N(w | 0,Kθ) ≈ N(w | 0, K̃θ) ; K̃−1
θ = (I − A)>D−1(I − A)

I − A D−1 K̃−1
θ

• det(K̃−1
θ) =

∏n
i=1 D−1

ii , K̃−1
θ is sparse with O(nm2) entries

25

Extension to a GP (Datta et al., JASA, 2016)

• Fix “reference” set R = {`1, `2, . . . , `r} (e.g. observed points)

• N(`) is the set of m-nearest neighbors of ` in R

• This completes the consistent extension to a process w(`) ∼ GP:

p(wR,w(`) | θ) = N(wR | 0, K̃θ)× p(w(`) | {w(`i) : `i ∈ N(`)}, θ) .

• For any `, `′ /∈ R, conditional indep: w(`) ⊥ w(`′) |wR

• Finite-dimensional realizations of w(`) (given R) will enjoy sparse
precision matrices

• Call this NNGP. In hierarchical models, substitute NNGP for GP and
achieve MASSIVE scalability.

26

True w Full GP PPGP 64 knots

NNGP, m = 10 NNGP, m = 20

27

NNGP models

• Collapsed NNGP:
• yFH (`) = β0 + βtreextree(`) + βfirexfire(`) + w(`) + ε(`)

• w(`) ∼ NNGP(0,C(·, · |σ2, φ))

• yFH ∼ N(Xβ, C̃ + τ 2I) where C̃ is the NNGP covariance matrix
derived from C

• Response NNGP:
• yFH (`) ∼ NNGP(β0 + βtreextree(`) + βfirexfire(`),Σ(·, · |σ2, φ, τ 2))

• yFH ∼ N(Xβ, Σ̃) where Σ̃ is the NNGP covariance matrix derived
from Σ = C + τ 2I

28

NNGP models

Non-spatial regression Collapsed NNGP Response NNGP
CRPS 2.3 0.86 0.86

RMSPE 4.2 1.73 1.72
CP 93% 94% 94%

CIW 16.3 6.6 6.6

Table: Model comparison metrics for the Tanana valley dataset

• NNGP models perform significantly better than the non-spatial
model

• MCMC run time for the NNGP models:
• Collapsed model: 319 hours
• Response model: 38 hours

• For massive spatial data, full Bayesian output for even NNGP
models require substantial time

29

Another look at the response model

• Original full GP model: y(`) ind∼ N(x>(`)β + w(`), τ 2)
• w(`) ∼ GP with a stationary covariance function C(·, · |σ2, φ)
• Cov(w) = σ2R(φ)
• Full GP model: y ∼ N(Xβ,Σ) where Σ = σ2M
• M = R(φ) + αI
• α = τ 2/σ2 is the ratio of the noise to signal variance
• Response NNGP model: y ∼ N(Xβ, Σ̃)
• Σ̃ = σ2M̃ where M̃ is the NNGP approximation for M

30

Conjugate NNGP

• y ∼ N(Xβ, σ2M̃)
• If φ and α are known, M, and hence M̃, are known matrices
• The model becomes a standard Bayesian linear model
• Assume a Normal Inverse Gamma (NIG) prior for {β, σ2}
• {β, σ2} ∼ NIG(µβ ,Vβ , aσ, bσ), i.e.,

β |σ2 ∼ N(µβ , σ2Vβ) and σ2 ∼ IG(aσ, bσ) .

31

Conjugate NNGP

• y ∼ N(Xβ, σ2M̃), M̃ is known

Joint likelihood:

N(y |Xβ, σ2M̃)× N(β |µβ , σ2Vβ)× IG(σ2 | aσ, bσ)

• Conjugate posterior distribution {β, σ2} | y ∼ NIG(µ∗β ,V ∗β , a∗σ, b∗σ)

• Expressions for µ∗β , V ∗β , a∗σ and b∗σ can be calculated in O(n) time

32

Conjugate NNGP

• y ∼ N(Xβ, σ2M̃), M̃ is known

Joint likelihood:

N(y |Xβ, σ2M̃)× N(β |µβ , σ2Vβ)× IG(σ2 | aσ, bσ)

• Conjugate posterior distribution {β, σ2} | y ∼ NIG(µ∗β ,V ∗β , a∗σ, b∗σ)

• Expressions for µ∗β , V ∗β , a∗σ and b∗σ can be calculated in O(n) time

32

Conjugate NNGP

• {β, σ2} | y ∼ NIG(µ∗β ,V ∗β , a∗σ, b∗σ)

• Marginal posterior: β | y ∼ MVt2a∗
σ

(µ∗β ,
b∗

σ

a∗
σ

V ∗β)
• MVtk (m,V) is the multivariate t distribution with degrees of k,

mean m and scale matrix V
• E (β | y) = µ∗β , Var(β | y) = b∗

σ

a∗
σ−1 V ∗β

• Marginal posterior: σ2 | y ∼ IG(a∗σ, b∗σ)

• E (σ2 | y) = b∗
σ

a∗
σ−1 , Var(σ2 | y) = b∗2

σ

(a∗
σ−1)2(a∗

σ−2)

• Exact posterior distributions of β and σ2 are available

33

Predictive distributions

• y(`) | y ∼ t2a∗
σ

(m(`), b∗
σ

a∗
σ

v(`))

• E (y(`) | y) = m(`), Var(y(`) | y) = b∗
σ

a∗
σ−1 v(`)

• m(`) and v(`) can be computed using O(m) flops

• Exact posterior predictive distributions of y(`) | y for any `

• No MCMC required for parameter estimation or prediction

34

Choosing α and φ

• φ and α are chosen using K -fold cross validation over a grid of
possible values

• Unlike MCMC, cross-validation can be completely parallelized
• Resolution of the grid for φ and α can be decided based on

computing resources available
• In practice, a reasonably coarse grid often suffices

35

Choosing α and φ

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

10

100

0.1 1.0 10.0
α

φ

1.05

1.10

1.15

1.20

1.25

RMSPE

RMSPE

Figure: Simulation experiment: True value (+) of (α, φ) and estimated value
(◦) using 5-fold cross validation

36

Scalability

• Computation and storage requirements are O(n)
• One evaluation time similar to the response NNGP model
• Unlike response NNGP, does not involve any serial MCMC iterations
• For K fold cross validation and G combinations of φ and α, total

number of evaluations is KG
• Embarassingly parallel: Each of the KG evaluations can proceed in

parallel

37

Alaska Tanana Valley dataset

Conjugate NNGP Collapsed NNGP Response NNGP
β0 2.51 2.41 (2.35, 2.47) 2.37 (2.31,2.42)
βTC 0.02 0.02 (0.02, 0.02) 0.02 (0.02, 0.02)
βFire 0.35 0.39 (0.34, 0.43) 0.43 (0.39, 0.48)
σ2 23.21 18.67 (18.50, 18.81) 17.29 (17.13, 17.41)
τ 2 1.21 1.56 (1.55, 1.56) 1.55 (1.54, 1.55)
φ 3.83 3.73 (3.70, 3.77) 4.15 (4.13, 4.19)

CRPS 0.84 0.86 0.86
RMSPE 1.71 1.73 1.72

time (hrs.) 0.002 319 38

Table: Parameter estimates and model comparison metrics for the Tanana
valley dataset

• Conjugate model produces estimates and model comparison
numbers very similar to the MCMC based NNGP models

• For 5× 106 locations, conjugate model takes 7 seconds

38

Summary

• MCMC free exact Bayesian approach by fixing some covariance
parameters

• Conjugate posterior distributions of the parameters and posterior
predictive distributions available in closed form

• Embarassingly parallel cross validation to identify best choices for
fixed parameters

• Runs in seconds for massive spatial dataset with millions of locations
• Available in the spNNGP package in R

39

Concluding remarks

• Model-based solution for spatial “BIG DATA”

• Algorithms: Gibbs, RWM, HMC, VB, INLA. HMC-NUTS is
especially promising on STAN.

• Compare with scalable multi-resolution frameworks (Katzfuss, 2016)

• Enhance scalability using META-KRIGING approaches (e.g., Rajarshi
Guhaniyogi, 2017)

• Challenges: Nonstationary models; High-dimensional outcomes;
High-dimensional domains; Smoother process approximations.

40

