High-dimensional Bayesian Geostatistics

Sudipto Banerjee
August 15, 2017

Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles

Based upon projects involving:

- Abhirup Datta (Johns Hopkins University)
- Lu Zhang (UCLA)
- Andrew O. Finley (Michigan State University)
- Alan. E. Gelfand (Duke University)

Case Study: Alaska Tanana Valley Forest Height Dataset

Forest height and tree cover

Forest fire history

- Forest height (red lines) data from LiDAR at 5×10^{6} locations
- Knowledge of forest height is important for biomass assessment, carbon management etc

Case Study: Alaska Tanana Valley Forest Height Dataset

Forest height and tree cover

Forest fire history

- Goal: High-resolution domainwide prediction maps of forest height
- Covariates: Domainwide tree cover (grey) and forest fire history (red patches) in the last 20 years

Analyzing the data

Models used:

- Non-spatial regression: $\boldsymbol{y}_{\text {FH }}=\beta_{0}+\beta_{\text {tree }} X_{\text {tree }}+\beta_{\text {fire }} X_{\text {fire }}+\epsilon$

Figure: Variogram of the residuals from non-spatial regression indicates strong spatial pattern

Geostatistical models

- $y_{F H}(\ell)=\beta_{0}+\beta_{\text {tree }} X_{\text {tree }}(\ell)+\beta_{\text {fire }} X_{\text {fire }}(\ell)+w(\ell)+\epsilon(\ell)$
- $w(\ell) \sim G P\left(0, C\left(\cdot, \cdot \mid \sigma^{2}, \phi\right)\right)$
- $y_{\text {FH }} \sim N\left(X \beta, K_{\theta}\right)$ where K_{θ} is the spatial covariance matrix:

$$
K_{\theta}=C_{(\sigma, \phi)}+\tau^{2} I, \text { where } \theta=\{\sigma, \phi, \tau\}
$$

where $C_{\left(\sigma^{2}, \phi\right)}$ is the GP covariance matrix derived from $C\left(\cdot, \cdot \mid \sigma^{2}, \phi\right)$.

Likelihood from (full rank) GP models

- $\mathscr{L}=\left\{\ell_{1}, \ell_{2}, \ldots, \ell_{n}\right\}$ are locations where data is observed
- $y\left(\ell_{i}\right)$ is outcome at the $i^{\text {th }}$ location, $y=\left(y\left(\ell_{1}\right), y\left(\ell_{2}\right), \ldots, y\left(\ell_{n}\right)\right)^{\top}$
- Model: $y \sim N\left(X \beta, K_{\theta}\right)$
- Estimating process parameters from the likelihood:

$$
-\frac{1}{2} \log \operatorname{det}\left(K_{\theta}\right)-\frac{1}{2}(y-X \beta)^{\top} K_{\theta}^{-1}(y-X \beta)
$$

- Customary: $K_{\theta}=C_{(\sigma, \phi)}+D_{\tau}$, where $\theta=\{\sigma, \phi, \tau\}$
- Bayesian inference: Priors on $\{\beta, \theta\}$
- Challenges: Storage and $\operatorname{chol}\left(K_{\theta}\right)=L D L^{\top}$.

Computational Details

- Compute the quadratic form and determinant (for any given $\{\beta, \theta\}$):

Solve for u :
Quadratic form:
Determinant:

$$
\begin{gathered}
K_{\theta} u=y-X \beta \text { (expensive) } ; \\
(y-X \beta)^{\top} u ; \\
\operatorname{det}\left(K_{\theta}\right) \text { (expensive) } .
\end{gathered}
$$

- Compute the quadratic form and determinant (for any given $\{\beta, \theta\}$):

$$
\begin{array}{lc}
\text { Cholesky: } & \operatorname{chol}\left(K_{\theta}\right)=L D L^{\top}(\text { expensive }) ; \\
\text { Solve for } v: & v=\operatorname{trsolve}(L, y-X \beta) ; \\
\text { Quadratic form: } & v^{\top} D^{-1} v=\sum_{i=1}^{n} v_{i}^{2} / d_{i j} ; \\
\text { Determinant: } & \log \operatorname{det}\left(K_{\theta}\right)=\sum_{i=1}^{n} \log d_{i i} .
\end{array}
$$

- Log-likelihood (up to a constant):

$$
-\frac{1}{2} \sum_{i=1}^{n} \log d_{i i}-\frac{1}{2} \sum_{i=1}^{n} v_{i}^{2} / d_{i i}
$$

Prediction and interpolation

- Conditional predictive density

$$
p\left(y\left(\ell_{0}\right) \mid y, \theta, \beta\right)=N\left(y\left(\ell_{0}\right) \mid \mu\left(\ell_{0}\right), \sigma^{2}\left(\ell_{0}\right)\right) .
$$

- "Kriging" (spatial prediction/interpolation)

$$
\begin{aligned}
\mu\left(\ell_{0}\right) & =\mathrm{E}\left[y\left(\ell_{0}\right) \mid y, \theta\right]=x^{\top}\left(\ell_{0}\right) \beta+k_{\theta}^{\top}\left(\ell_{0}\right) K_{\theta}^{-1}(y-X \beta), \\
\sigma^{2}\left(\ell_{0}\right) & =\operatorname{var}\left[y\left(\ell_{0}\right) \mid y, \theta\right]=K_{\theta}\left(\ell_{0}, \ell_{0}\right)-k_{\theta}^{\top}\left(\ell_{0}\right) K_{\theta}^{-1} k_{\theta}\left(\ell_{0}\right) .
\end{aligned}
$$

- Bayesian "kriging" computes (simulates) posterior predictive density:

$$
p\left(y\left(\ell_{0}\right) \mid y\right)=\int p\left(y\left(\ell_{0}\right) \mid y, \theta, \beta\right) p(\beta, \theta \mid y) \mathrm{d} \beta \mathrm{~d} \theta
$$

Computational Details for Prediction

- Compute the mean and variance (for any given $\{\beta, \theta\}$ and ℓ_{0}):

Solve for u :

$$
K_{\theta} u=k_{\theta}\left(\ell_{0}\right) ;
$$

$$
\text { Predictive mean: } \quad x^{\top}\left(\ell_{0}\right) \beta+u^{\top}(y-X \beta) ;
$$

$$
\text { Predictive variance: } \quad K_{\theta}\left(\ell_{0}, \ell_{0}\right)-u^{\top} k_{\theta}\left(\ell_{0}\right) .
$$

- Compute the mean and variance (for any given $\{\beta, \theta\}$ and ℓ_{0}):

$$
\begin{array}{lc}
\text { Cholesky: } & \operatorname{chol}\left(K_{\theta}\right)=L D L^{\top} ; \\
\text { Solve for } v: & v=\operatorname{trsolve}\left(L, k_{\theta}\left(\ell_{0}\right)\right) ; \\
\text { Solve for } u: & u=\operatorname{trsolve}\left(L^{\top}, D^{-1} v\right) ; \\
\text { Predictive mean: } & x^{\top}\left(\ell_{0}\right) \beta+u^{\top}(y-X \beta) ; \\
\text { Predictive variance: } & K_{\theta}\left(\ell_{0}, \ell_{0}\right)-u^{\top} k_{\theta}\left(\ell_{0}\right) .
\end{array}
$$

- Primary bottleneck is chol(•)

Burgeoning literature on spatial big data

- Low-rank models (Wahba, 1990; Higdon, 2002; Kamman \& Wand, 2003; Paciorek, 2007; Rasmussen \& Williams, 2006; Stein 2007, 2008; Cressie \& Johannesson, 2008; Banerjee et al., 2008; 2010; Gramacy \& Lee 2008; Sang et al., 2011, 2012; Lemos et al., 2011; Guhaniyogi et al., 2011, 2013; Salazar et al., 2013; Katzfuss, 2016)
- Sparsity: (Solve $A x=b$ by (i) sparse A, or (ii) sparse A^{-1})

1. Covariance tapering (Furrer et al. 2006; Du et al. 2009; Kaufman et al., 2009; Shaby and Ruppert, 2013)
2. GMRFs to GPs: INLA (Rue et al. 2009; Lindgren et al., 2011)
3. LAGP (Gramacy et al. 2014; Gramacy and Apley, 2015)
4. Nearest-neighbor models (Vecchia 1988; Stein et al. 2004; Stroud et al 2014; Datta et al., 2016)

- Spectral approximations and composite likelihoods: (Fuentes 2007; Paciorek, 2007; Eidsvik et al. 2016)
- Multi-resolution approaches (Nychka, 2002; Johannesson et al., 2007; Matsuo et al., 2010; Tzeng \& Huang, 2015; Katzfuss, 2016)

Bayesian low rank models

- A low rank or reduced rank process approximates a parent process over a smaller set of points (knots).
- Start with a parent process $w(\ell)$ and construct $\tilde{w}(\ell)$

$$
w(\ell) \approx \tilde{w}(\ell)=\sum_{j=1}^{r} b_{\theta}\left(\ell, \ell_{j}^{*}\right) z\left(\ell_{j}^{*}\right)=b_{\theta}^{\top}(\ell) z,
$$

where

- $z(\ell)$ is any well-defined process (could be same as $w(\ell)$);
- $b_{\theta}\left(\ell, \ell^{\prime}\right)$ is a family of basis functions indexed by parameters θ;
- $\left\{\ell_{1}^{*}, \ell_{2}^{*}, \ldots, \ell_{r}^{*}\right\}$ are the knots;
- $b_{\theta}(\ell)$ and z are $r \times 1$ vectors with components $b_{\theta}\left(\ell, \ell_{j}^{*}\right)$ and $z\left(\ell_{j}^{*}\right)$, respectively.

Bayesian low rank models (contd.)

- $\tilde{w}=\left(\tilde{w}\left(\ell_{1}\right), \tilde{w}\left(\ell_{2}\right), \ldots, \tilde{w}\left(\ell_{n}\right)\right)^{\top}$ is represented as $\tilde{w}=B_{\theta} z$
- B_{θ} is $n \times r$ with (i, j)-th element $b_{\theta}\left(\ell_{i}, \ell_{j}^{*}\right)$
- Irrespective of how big n is, we now have to work with the r (instead of $n) z\left(\ell_{j}^{*}\right)^{\prime} s$ and the $n \times r$ matrix B_{θ}.
- Since $r \ll n$, the consequential dimension reduction is evident.
- \tilde{w} is a valid stochastic process in r-dimensions space with covariance:

$$
\operatorname{cov}\left(\tilde{w}(\ell), \tilde{w}\left(\ell^{\prime}\right)\right)=b_{\theta}^{\top}(\ell) V_{z} b_{\theta}\left(\ell^{\prime}\right),
$$

where V_{z} is the variance-covariance matrix (also depends upon parameter θ) for z.

- When $n>r$, the joint distribution of \tilde{w} is singular.

The Sherman-Woodbury-Morrison formulas

- Low-rank dimension reduction is similar to Bayesian linear regression
- Consider a simple hierarchical model (with $\beta=0$):

$$
N\left(z \mid 0, V_{z}\right) \times N\left(y \mid B_{\theta} z, D_{\tau}\right),
$$

where y is $n \times 1, z$ is $r \times 1, D_{\tau}$ and V_{z} are positive definite matrices of sizes $n \times n$ and $r \times r$, respectively, and B_{θ} is $n \times r$.

- The low rank specification is $B_{\theta} z$ and the prior on z.
- D_{τ} (usually diagonal) has the residual variance components.
- Computing var(y) in two different ways yields

$$
\left(D_{\tau}+B_{\theta} V_{z} B_{\theta}^{\top}\right)^{-1}=D_{\tau}^{-1}-D_{\tau}^{-1} B_{\theta}\left(V_{z}^{-1}+B_{\theta}^{\top} D_{\tau}^{-1} B_{\theta}\right)^{-1} B_{\theta}^{\top} D_{\tau}^{-1}
$$

- A companion formula for the determinant:

$$
\operatorname{det}\left(D_{\tau}+B_{\theta} V_{z} B_{\theta}^{\top}\right)=\operatorname{det}\left(V_{z}\right) \operatorname{det}\left(D_{\tau}\right) \operatorname{det}\left(V_{z}^{-1}+B_{\theta}^{\top} D_{\tau}^{-1} B_{\theta}\right) .
$$

Practical implementation for Bayesian low rank models

- In practical implementation, better to avoid SWM formulas.

$$
\underbrace{\left[\begin{array}{c}
D_{\tau}^{-1 / 2} y \\
0
\end{array}\right]}_{y_{*}}=\underbrace{\left[\begin{array}{c}
D_{\tau}^{-1 / 2} B_{\theta} \\
V_{z}^{-1 / 2}
\end{array}\right]}_{B_{*}} z+\underbrace{\left[\begin{array}{c}
e_{1} \\
e_{2}
\end{array}\right]}_{e_{*}} .
$$

- $e_{*} \sim N\left(0, I_{n+r}\right)$.
- $V_{z}^{1 / 2}$ and $D_{\tau}^{1 / 2}$ are matrix square roots of of V_{z} and D_{τ}, respectively.
- If D_{τ} is diagonal (as is common), then $D_{\tau}^{1 / 2}$ is simply the square root of the diagonal elements of D_{τ}.
- $V_{z}^{1 / 2}=\operatorname{chol}\left(V_{z}\right)$ is the triangular (upper or lower) Cholesky factor of the $r \times r$ matrix V_{z}.
- Use backsolve to efficiently obtain $V_{z}^{-1 / 2} z$

Practical implementation for Bayesian low rank models (contd.)

- The marginal density of $p\left(y_{*} \mid \theta, \tau\right)$ after integrating out z now corresponds to the normal linear model

$$
y_{*}=B_{*} \hat{z}+e_{*},
$$

where \hat{z} is the ordinary least-square estimate of z.

- Use lm function to compute \hat{z} applying the QR decomposition to B_{*}.
- Thus, we estimate the Bayesian linear model

$$
p(\theta, \tau) \times N\left(y_{*} \mid B_{*} \hat{z}, I_{n+r}\right)
$$

- MCMC will generate posterior samples for $\{\theta, \tau\}$.
- Recover the posterior samples for z from those of $\{\theta, \tau\}$:

$$
p(z \mid y)=\int N(z \mid \hat{z}, M) \times p(\theta, \tau \mid y) \mathrm{d} \theta \mathrm{~d} \tau
$$

where $M^{-1}=V_{z}^{-1}+B_{\theta}^{\top} D_{\tau}^{-1} B_{\theta}$.

Predictive process models (Banerjee et al., JRSS-B, 2008)

- A particular low-rank model emerges by taking
- $z(\ell)=w(\ell)$
- $z=\left(w\left(\ell_{1}^{*}\right), w\left(\ell_{2}^{*}\right), \ldots, w\left(\ell_{r}^{*}\right)\right)^{\top}$ as the realizations of the parent process $w(\ell)$ over the set of knots $\mathscr{L}^{*}=\left\{\ell_{1}^{*}, \ell_{2}^{*}, \ldots, \ell_{r}^{*}\right\}$,
and then taking the conditional expectation:

$$
\tilde{w}(\ell)=\mathrm{E}\left[w(\ell) \mid w^{*}\right]=b_{\theta}^{\top}(\ell) z .
$$

- The basis functions are automatically derived from the spatial covariance structure of the parent process $w(\ell)$:

$$
b_{\theta}^{\top}(\ell)=\operatorname{cov}\left\{w(\ell), w^{*}\right\} \operatorname{var}^{-1}\left\{w^{*}\right\}=K_{\theta}\left(\ell, \mathscr{L}^{*}\right) K_{\theta}^{-1}\left(\mathscr{L}^{*}, \mathscr{L}^{*}\right) .
$$

Biases in low-rank models

- In low-rank processes, $w(\ell)=\tilde{w}(\ell)+\eta(\ell)$. What is lost in $\eta(\ell)$?

- For the predictive process,

$$
\begin{aligned}
\operatorname{var}\{w(\ell)\} & =\operatorname{var}\left\{\mathrm{E}\left[w(\ell) \mid w^{*}\right]\right\}+\mathrm{E}\left\{\operatorname{var}\left[w(\ell) \mid w^{*}\right]\right\} \\
& \geq \operatorname{var}\left\{\mathrm{E}\left[w(\ell) \mid w^{*}\right]\right\}
\end{aligned}
$$

Bias-adjusted or modified predictive processes

- $\eta(\ell)$ is a Gaussian process with covariance structure

$$
\begin{aligned}
\operatorname{Cov}\left\{\eta(\ell), \eta\left(\ell^{\prime}\right)\right\} & =K_{\eta, \theta}\left(\ell, \ell^{\prime}\right) \\
& =K_{\theta}\left(\ell, \ell^{\prime}\right)-K_{\theta}\left(\ell, \mathscr{L}^{*}\right) K_{\theta}^{-1}\left(\mathscr{L}^{*}, \mathscr{L}^{*}\right) K_{\theta}\left(\mathscr{L}^{*}, \ell^{\prime}\right) .
\end{aligned}
$$

- Remedy:

$$
\tilde{w}_{\epsilon}(\ell)=\tilde{w}(\ell)+\tilde{\epsilon}(\ell),
$$

where $\tilde{\epsilon}(\ell) \stackrel{\text { ind }}{\sim} N\left(0, \delta^{2}(\ell)\right)$ and

$$
\delta^{2}(\ell)=\operatorname{var}\{\eta(\ell)\}=K_{\theta}(\ell, \ell)-K_{\theta}\left(\ell, \mathscr{L}^{*}\right) K_{\theta}^{-1}\left(\mathscr{L}^{*}, \mathscr{L}^{*}\right) K_{\theta}\left(\mathscr{L}^{*}, \ell\right) .
$$

- Other improvements suggested by Sang et al. $(2011,2012)$ and Katzfuss (2017).

Oversmoothing in low rank models

Figure: Comparing full GP vs low-rank GP with 2500 locations. Figure (1c) exhibits oversmoothing by a low-rank process (predictive process with 64 knots)

Introducing sparsity through conditional independence

Full dependency graph

$$
\begin{aligned}
& p\left(w_{1}\right) p\left(w_{2} \mid w_{1}\right) p\left(w_{3} \mid w_{1}, w_{2}\right) p\left(w_{4} \mid w_{1}, w_{2}, w_{3}\right) \\
& \quad \times p\left(w_{5} \mid w_{1}, w_{2}, w_{3}, w_{4}\right) p\left(w_{6} \mid w_{1}, w_{2}, \ldots, w_{5}\right) p\left(w_{7} \mid w_{1}, w_{2}, \ldots, w_{6}\right)
\end{aligned}
$$

Simple method of introducing sparsity (e.g. graphical models)

3-Nearest neighbor dependency graph

$$
\begin{aligned}
& p\left(w_{1}\right) p\left(w_{2} \mid w_{1}\right) p\left(w_{3} \mid w_{1}, w_{2}\right) p\left(w_{4} \mid w_{1}, w_{2}, w_{3}\right) \\
& p\left(w_{5} \mid W_{1}, w_{2}, w_{3}, w_{4}\right) p\left(w_{6} \mid w_{1}, w_{2}, w_{3}, w_{4}, w_{5}\right) p\left(w_{7} \mid w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}\right)
\end{aligned}
$$

Gaussian graphical models: linearity

- Write a joint density $p(w)=p\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ as:

$$
p\left(w_{1}\right) p\left(w_{2} \mid w_{1}\right) p\left(w_{3} \mid w_{1}, w_{2}\right) \cdots p\left(w_{n} \mid w_{1}, w_{2}, \ldots, w_{n-1}\right)
$$

- Example: For Gaussian distribution $N\left(w \mid 0, K_{\theta}\right)$, we have a linear model

$$
\begin{aligned}
& w_{1}=0+\eta_{1} \\
& w_{2}=a_{21} w_{1}+\eta_{2} \\
& w_{3}=a_{31} w_{1}+a_{32} w_{2}+\eta_{3} \\
& w_{i}=a_{i 1} w_{1}+a_{i 2} w_{2}+\cdots+a_{i, i-1} w_{i-1}+\eta_{i} ; \quad i=4, \ldots, n
\end{aligned}
$$

- More compactly: $w=A w+\eta ; \quad \eta \sim N(0, D)$.

Simple method of introducing sparsity (e.g. graphical models)

- Assume $w \sim N\left(0, K_{\theta}\right)$. Introduce sparsity by modeling $\operatorname{chol}\left(K_{\theta}\right)$

$$
K_{\theta}=(I-A)^{-1} D(I-A)^{-\top} ; \quad D=\operatorname{diag}\left(\operatorname{var}\left\{w_{i} \mid w_{\{j<i\}}\right\}\right)
$$

- If L is from $\operatorname{chol}\left(K_{\theta}\right)=L D L^{\top}$, then $L^{-1}=I-A$.
- $a_{i j}$'s obtained from $n-1$ linear systems by comparing coefficients of w_{j} 's in

$$
\sum_{j<i} a_{i j} w_{j}=\mathrm{E}\left[w_{i} \mid w_{\{j<i\}}\right] \quad i=2, \ldots, n
$$

- Example:

```
for(i in 1:(n-1)) {
    a[i+1,1:i] = solve(K[1:i,1:i], K[1:i,i+1])
    d[i+1,i+1] = K[i+1,i+1] - dot(K[i+1,1:i],a[i+1,1:i])
}
```

- Let $a_{i j}=0$ for all but m nearest neighbors of node i implies solving

$$
\sum_{j \in N[i]} a_{i j} w_{j}=\mathrm{E}\left[w_{i} \mid w_{\{j \in N[i]\}}\right] \quad i=2, \ldots, n
$$

where $N[i]=\{j<i: j \sim i\}$ are indices for neighbors of i.

- Example:

```
for(i in 1:(n-1) {
    Pa = N[i+1] # neighbors of i+1
    a[i+1,Pa] = solve(K[Pa,Pa], K[i+1, Pa])
    d[i+1,i+1] = K[i+1,i+1] - dot(K[i+1, Pa],a[i+1,Pa])
}
```

- We need to solve $n-1$ linear systems of size at most $m \times m$. Trivially parallelizable!
- Storage and flops linear in n.

Sparse likelihood approximations (Vecchia, 1988)

- Let $\mathscr{R}=\left\{\ell_{1}, \ell_{2}, \ldots, \ell_{r}\right\}$
- With $w(\ell) \sim G P\left(0, K_{\theta}(\cdot)\right)$, write the joint density $p\left(w_{\mathscr{R}}\right)$ as:

$$
\begin{aligned}
N\left(w_{\mathscr{R}} \mid 0, K_{\theta}\right) & =\prod_{i=1}^{r} p\left(w\left(\ell_{i}\right) \mid w_{H\left(\ell_{i}\right)}\right) \\
& \approx \prod_{i=1}^{r} p\left(w\left(\ell_{i}\right) \mid w_{N\left(\ell_{i}\right)}\right)=N\left(w_{\mathscr{R}} \mid 0, \tilde{K}_{\theta}\right) .
\end{aligned}
$$

where $N\left(\ell_{i}\right) \subseteq H\left(\ell_{i}\right)$.

- Shrinkage: Choose $N(\ell)$ as the set of " m nearest-neighbors" among $H\left(\ell_{i}\right)$. Theory: "Screening" effect (Stein, 2002).
- \tilde{K}_{θ}^{-1} depends on K_{θ}, but is sparser with at most $n m^{2}$ non-zero entries

Sparse precision matrices (e.g., graphical Gaussian models)

$$
N\left(w \mid 0, K_{\theta}\right) \approx N\left(w \mid 0, \tilde{K}_{\theta}\right) ; \tilde{K}_{\theta}^{-1}=(I-A)^{\top} D^{-1}(I-A)
$$

$$
I-A
$$

D^{-1}

- $\operatorname{det}\left(\tilde{K}_{\theta}^{-1}\right)=\prod_{i=1}^{n} D_{i i}^{-1}, \tilde{K}_{\theta}^{-1}$ is sparse with $O\left(n m^{2}\right)$ entries

Extension to a GP (Datta et al., JASA, 2016)

- Fix "reference" set $\mathscr{R}=\left\{\ell_{1}, \ell_{2}, \ldots, \ell_{r}\right\}$ (e.g. observed points)
- $N(\ell)$ is the set of m-nearest neighbors of ℓ in \mathscr{R}
- This completes the consistent extension to a process $w(\ell) \sim G P$:

$$
p\left(w_{\mathscr{R}}, w(\ell) \mid \theta\right)=N\left(w_{\mathscr{R}} \mid 0, \tilde{K}_{\theta}\right) \times p\left(w(\ell) \mid\left\{w\left(\ell_{i}\right): \ell_{i} \in N(\ell)\right\}, \theta\right) .
$$

- For any $\ell, \ell^{\prime} \notin \mathscr{R}$, conditional indep: $w(\ell) \perp w\left(\ell^{\prime}\right) \mid w_{\mathscr{R}}$
- Finite-dimensional realizations of $w(\ell)$ (given \mathscr{R}) will enjoy sparse precision matrices
- Call this NNGP. In hierarchical models, substitute NNGP for GP and achieve MASSIVE scalability.

True w

Full GP

PPGP 64 knots

NNGP, $m=10$

NNGP, $m=20$

NNGP models

- Collapsed NNGP:
- $y_{\text {FH }}(\ell)=\beta_{0}+\beta_{\text {tree }} X_{\text {tree }}(\ell)+\beta_{\text {fire }} X_{\text {fire }}(\ell)+w(\ell)+\epsilon(\ell)$
- $w(\ell) \sim \operatorname{NNGP}\left(0, C\left(\cdot, \cdot \mid \sigma^{2}, \phi\right)\right)$
- $y_{\text {FH }} \sim N\left(X \beta, \tilde{C}+\tau^{2} I\right)$ where \tilde{C} is the NNGP covariance matrix derived from C
- Response NNGP:
- $y_{F H}(\ell) \sim N N G P\left(\beta_{0}+\beta_{\text {tree }} X_{\text {tree }}(\ell)+\beta_{\text {fire }} x_{\text {fire }}(\ell), \Sigma\left(\cdot, \cdot \mid \sigma^{2}, \phi, \tau^{2}\right)\right)$
- $y_{F H} \sim N(X \beta, \tilde{\Sigma})$ where $\tilde{\Sigma}$ is the NNGP covariance matrix derived from $\Sigma=C+\tau^{2} I$

NNGP models

	Non-spatial regression	Collapsed NNGP	Response NNGP
CRPS	2.3	0.86	0.86
RMSPE	4.2	1.73	1.72
CP	93%	94%	94%
CIW	16.3	6.6	6.6

Table: Model comparison metrics for the Tanana valley dataset

- NNGP models perform significantly better than the non-spatial model
- MCMC run time for the NNGP models:
- Collapsed model: 319 hours
- Response model: 38 hours
- For massive spatial data, full Bayesian output for even NNGP models require substantial time

Another look at the response model

- Original full GP model: $y(\ell) \stackrel{\text { ind }}{\sim} N\left(x^{\top}(\ell) \beta+w(\ell), \tau^{2}\right)$
- $w(\ell) \sim G P$ with a stationary covariance function $C\left(\cdot, \cdot \mid \sigma^{2}, \phi\right)$
- $\operatorname{Cov}(w)=\sigma^{2} R(\phi)$
- Full GP model: $y \sim N(X \beta, \Sigma)$ where $\Sigma=\sigma^{2} M$
- $M=R(\phi)+\alpha l$
- $\alpha=\tau^{2} / \sigma^{2}$ is the ratio of the noise to signal variance
- Response NNGP model: $y \sim N(X \beta, \tilde{\Sigma})$
- $\tilde{\Sigma}=\sigma^{2} \tilde{M}$ where \tilde{M} is the NNGP approximation for M

Conjugate NNGP

- $y \sim N\left(X \beta, \sigma^{2} \tilde{M}\right)$
- If ϕ and α are known, M, and hence \tilde{M}, are known matrices
- The model becomes a standard Bayesian linear model
- Assume a Normal Inverse Gamma (NIG) prior for $\left\{\beta, \sigma^{2}\right\}$
- $\left\{\beta, \sigma^{2}\right\} \sim \operatorname{NIG}\left(\mu_{\beta}, V_{\beta}, a_{\sigma}, b_{\sigma}\right)$, i.e.,

$$
\beta \mid \sigma^{2} \sim N\left(\mu_{\beta}, \sigma^{2} V_{\beta}\right) \text { and } \sigma^{2} \sim I G\left(a_{\sigma}, b_{\sigma}\right) .
$$

Conjugate NNGP

- $y \sim N\left(X \beta, \sigma^{2} \tilde{M}\right), \tilde{M}$ is known

Joint likelihood:

$$
N\left(y \mid X \beta, \sigma^{2} \tilde{M}\right) \times N\left(\beta \mid \mu_{\beta}, \sigma^{2} V_{\beta}\right) \times I G\left(\sigma^{2} \mid a_{\sigma}, b_{\sigma}\right)
$$

Conjugate NNGP

- $y \sim N\left(X \beta, \sigma^{2} \tilde{M}\right), \tilde{M}$ is known

Joint likelihood:

$$
N\left(y \mid X \beta, \sigma^{2} \tilde{M}\right) \times N\left(\beta \mid \mu_{\beta}, \sigma^{2} V_{\beta}\right) \times I G\left(\sigma^{2} \mid a_{\sigma}, b_{\sigma}\right)
$$

- Conjugate posterior distribution $\left\{\beta, \sigma^{2}\right\} \mid y \sim \operatorname{NIG}\left(\mu_{\beta}^{*}, V_{\beta}^{*}, a_{\sigma}^{*}, b_{\sigma}^{*}\right)$
- Expressions for $\mu_{\beta}^{*}, V_{\beta}^{*}, a_{\sigma}^{*}$ and b_{σ}^{*} can be calculated in $O(n)$ time

Conjugate NNGP

- $\left\{\beta, \sigma^{2}\right\} \mid y \sim \operatorname{NIG}\left(\mu_{\beta}^{*}, V_{\beta}^{*}, a_{\sigma}^{*}, b_{\sigma}^{*}\right)$
- Marginal posterior: $\beta \left\lvert\, y \sim M V t_{2 a_{\sigma}^{*}}\left(\mu_{\beta}^{*}, \frac{b_{\sigma}^{*}}{a_{\sigma}^{*}} V_{\beta}^{*}\right)\right.$
- $M V t_{k}(m, V)$ is the multivariate t distribution with degrees of k, mean m and scale matrix V
- $E(\beta \mid y)=\mu_{\beta}^{*}, \operatorname{Var}(\beta \mid y)=\frac{b_{\sigma}^{*}}{a_{\sigma}^{*}-1} V_{\beta}^{*}$
- Marginal posterior: $\sigma^{2} \mid y \sim I G\left(a_{\sigma}^{*}, b_{\sigma}^{*}\right)$
- $E\left(\sigma^{2} \mid y\right)=\frac{b_{\sigma}^{*}}{a_{\sigma}^{*}-1}, \operatorname{Var}\left(\sigma^{2} \mid y\right)=\frac{b_{\sigma}^{* 2}}{\left(a_{\sigma}^{*}-1\right)^{2}\left(a_{\sigma}^{*}-2\right)}$
- Exact posterior distributions of β and σ^{2} are available

Predictive distributions

- $y(\ell) \left\lvert\, y \sim t_{2 a_{\sigma}^{*}}\left(m(\ell), \frac{b_{\sigma}^{*}}{\partial_{\sigma}^{*}} v(\ell)\right)\right.$
- $E(y(\ell) \mid y)=m(\ell), \operatorname{Var}(y(\ell) \mid y)=\frac{b_{\sigma}^{*}}{a_{\sigma}^{*}-1} v(\ell)$
- $m(\ell)$ and $v(\ell)$ can be computed using $O(m)$ flops
- Exact posterior predictive distributions of $y(\ell) \mid y$ for any ℓ
- No MCMC required for parameter estimation or prediction

Choosing α and ϕ

- ϕ and α are chosen using K-fold cross validation over a grid of possible values
- Unlike MCMC, cross-validation can be completely parallelized
- Resolution of the grid for ϕ and α can be decided based on computing resources available
- In practice, a reasonably coarse grid often suffices

Choosing α and ϕ

RMSPE

Figure: Simulation experiment: True value (+) of (α, ϕ) and estimated value (○) using 5-fold cross validation

Scalability

- Computation and storage requirements are $O(n)$
- One evaluation time similar to the response NNGP model
- Unlike response NNGP, does not involve any serial MCMC iterations
- For K fold cross validation and G combinations of ϕ and α, total number of evaluations is $K G$
- Embarassingly parallel: Each of the $K G$ evaluations can proceed in parallel

Alaska Tanana Valley dataset

	Conjugate NNGP	Collapsed NNGP	Response NNGP
β_{0}	2.51	$2.41(2.35,2.47)$	$2.37(2.31,2.42)$
$\beta_{\text {TC }}$	0.02	$0.02(0.02,0.02)$	$0.02(0.02,0.02)$
$\beta_{\text {Fire }}$	0.35	$0.39(0.34,0.43)$	$0.43(0.39,0.48)$
σ^{2}	23.21	$18.67(18.50,18.81)$	$17.29(17.13,17.41)$
τ^{2}	1.21	$1.56(1.55,1.56)$	$1.55(1.54,1.55)$
ϕ	3.83	$3.73(3.70,3.77)$	$4.15(4.13,4.19)$
CRPS	0.84	0.86	0.86
RMSPE	1.71	1.73	1.72
time (hrs.)	0.002	319	38

Table: Parameter estimates and model comparison metrics for the Tanana valley dataset

- Conjugate model produces estimates and model comparison numbers very similar to the MCMC based NNGP models
- For 5×10^{6} locations, conjugate model takes 7 seconds

Summary

- MCMC free exact Bayesian approach by fixing some covariance parameters
- Conjugate posterior distributions of the parameters and posterior predictive distributions available in closed form
- Embarassingly parallel cross validation to identify best choices for fixed parameters
- Runs in seconds for massive spatial dataset with millions of locations
- Available in the spNNGP package in R

Concluding remarks

- Model-based solution for spatial "BIG DATA"
- Algorithms: Gibbs, RWM, HMC, VB, INLA. HMC-NUTS is especially promising on STAN.
- Compare with scalable multi-resolution frameworks (Katzfuss, 2016)
- Enhance scalability using META-KRIGING approaches (e.g., Rajarshi Guhaniyogi, 2017)
- Challenges: Nonstationary models; High-dimensional outcomes; High-dimensional domains; Smoother process approximations.

