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Linear Regression

e Linear regression is, perhaps, the most widely used statistical
modeling tool.

e It addresses the following question: How does a quantity of primary
interest, y, vary as (depend upon) another quantity, or set of
quantities, x?

e The quantity y is called the response or outcome variable. Some
people simply refer to it as the dependent variable.

e The variable(s) x are called explanatory variables, covariates or
simply independent variables.

e In general, we are interested in the conditional distribution of y,
given x, parametrized as p(y |, x).



Typically, we have a set of units or experimental subjects
i=1,2,...,n.

For each of these units we have measured an outcome y; and a set
of explanatory variables x;" = (1, xi1, Xi2, - - - , Xip)-

The first element of x;” is often taken as 1 to signify the presence of
an “intercept”.

We collect the outcome and explanatory variables into an n x 1
vector and an n x (p + 1) matrix:

T
n 1 X11 X12 500 le Xl
T
Y2 1 X1 X2 ... X2p Xo
y=1| .| X=1 . . . |=

Yn 1 Xp1 X2 oo Xnp X



e The linear model is the most fundamental of all serious statistical
models underpinning:

e ANOVA: y; is continuous, x;'s are all categorical
e REGRESSION: y; is continuous, x;'s are continuous

e ANCOVA: y; is continuous, x;'s are continuous for some j and
categorical for others.



Conjugate Bayesian Linear Regression

e A conjugate Bayesian linear model is given by:
.yi|ﬂia0—2>Xirn\€!N(NiaO—2); I.:1727°"7n;
i = Bo+ Bixin + -+ Boxip=x" B B=(80,B1,---,Bp)" ;i
B o2 ~ N(u@,a2 Vs); %~ IG(a, b) .

e Unknown parameters include the regression parameters and the

variance, i.e. § = {3, 0?%}.

e We assume X is observed without error and all inference is

conditional on X.

e The above model is often written it terms of the posterior density

p|y) < p(8,y):

IG(0® | a,b) x N(B| g, 0®Va) x [[ N(yi | %" B,0%) .
i=1



Conjugate Bayesian (General) Linear Regression

e A more general conjugate Bayesian linear model is given by:
y|B,0% X ~ N(XB,5%V,)

6|02 ~ N(,u,/j,0'2V3) '
0? ~ 1G(a, b) .
e V,, V3 and g are assumed fixed.
e Unknown parameters include the regression parameters and the
variance, i.e. 0 = {3,0°}.

e We assume X is observed without error and all inference is
conditional on X.

e The posterior density p(6 |y) o< p(8,y):
IG(0? | a,b) x N(B | up,a?Vs) x N(y | XB,0%V,)

e The model on the previous slide is a special case with V), = I, (n x n
identity matrix).



Conjugate Bayesian (General) Linear Regression

e The joint posterior density can be written as

5:02 () IG(o?|a*,b*) x N (B|Mm,o*M)
p(B,0°|y) x T————"" —_—

p(o?|y) p(Blo2,y)

where
W L 1y,1 T T .
m=Vilug+ X"V MTP =V XTVIX
e Exact posterior sampling from p(3,0? | y) will automatically yield
samples from p(3|y) and p(c?|y).
e Foreachi=1,2,..., N do the following:
1. Draw of) ~ IG(a", b")
2. Draw B ~ N (Mm, oy M)

e The above is sometimes referred to as composition sampling.



Exact sampling from joint posterior distributions

uppose we wish to draw samples from a joint posterior:

p(01,02|y) = p(01|y) x p(62|61,y) .

e In conjugate models, it is often easy to draw samples from p(6; | y)
and from p(62 |61, y).
e We can draw M samples from p(61,0, |y) as follows.
e Foreachi=1,2,..., N do the following:
1. Draw 615 ~ p(61]y)
2. Draw Oy ~ p(62]61,y)
e Remarkably, the 0,(;)'s drawn above have marginal distribution

p(6 because
gj 2 < u|y = Egz‘y [1(02 < u)] = E01|y {E92\917y [1(02 < u)]}

Z E92\‘91() y [1(92 < U /V Z 1(92 < u

e “Automatic Marginalization:” We draw samples p(61, 65 |y) and
automatically get samples from p(6; | y) and p(62 | y).



Bayesian predictions from linear regression

Let ¥ denote an m x 1 vector of outcomes we seek to predict based

upon predictors X.

We seek the posterior predictive density:

p(yly) = / p(716,y)p(0|y)do .

Posterior predictive inference: sample from p(y|y).

For each i =1,2,..., N do the following:
1. Draw 6y ~ p(0]y)

2. Draw ¥y ~ p(¥ |04y, y)



Bayesian predictions from linear regression (contd.)

e For legitimate probabilistic predictions (forecasting), the conditional
distribution p(¥ |6, y) must be well-defined.

e For example, consider the case with V|, = I,. Specify the linear
model:

b1l (] (s )

e Easy to derive the conditional density:
p(710.y) = p(7160) = N(7 | XB,0%Im)
e Posterior predictive density:
p71y) = [ NI XB.0%1n)p(5,02 | y)dBdo?.

e Foreachi=1,2 ..., N do the following:
1. Draw {/8(,'),0'(2,')} ~ p(/830—2 ‘Y)

2. Draw j;y ~ /V()?ﬁ(f),a(%')/m)
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Bayesian predictions from general linear regression

e For example, consider the case with general V. Specify:

- ) ~ T o
y € Vy 7 V;,

e Derive the conditional density p(y|6,y) = N ()7 | uy|y,a2 Vy‘y):

0
0

X
x|7*

2

€
€

ngly = XB+ VgV iy = XB) 5 Vo, = Vo = V5V,
e Posterior predictive density:
p719) = [ N (7 L5ty 72 Viy) p(5. 0 | )ddo

e Foreachi=1,2,..., N do the following:
L Draw {6(1')70'(21')} ~ P(B,O’2 ‘y)

2. Compute py, using B(;y and draw j;y ~ N(/Ly‘y,af,.) Vi)

10



Application to Bayesian Geostatistics

e Consider the spatial regression model
y(si) = x"(s)B + w(s;) + e(s)) ,

where w(s;)'s are spatial random effects and ¢(s;)’s are unstructured
errors (“white noise”).

o w=(w(s1),w(s2),...,w(sy))" ~ N(0,0%R(¢))
o c=(e(s1),€(s2),...,€e(sn)" ~ N(O,721I,)
e Integrating out random effects leads to a Bayesian model:

IG(0? | a,b) x N(B | up,a*Vs) x N(y | XB,0%V,)

where V, = R(¢) + al, and o = 72 /0? .
e Fixing ¢ and « (e.g., from variogram or other EDA) yields a
conjugate Bayesian model.

e Exact posterior sampling is easily achieved as before.
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Inference on spatial random effects

e Rewrite the model in terms of w as:

IG(0? | a, b)x N(B | g, * V) x N(w | 0,0%R(9))
x N(y| X8+ w,721,) .

e Posterior distribution of spatial random effects w:
p(wly) = [ Nw| M a2M) x p(3,0% | y)dBdo?.
where m = (1/a)(y — XB) and M~1 = R7Y(¢) + (1/a)l,.

e Foreachi=1,2,..., N do the following:
1. Draw {5(:‘)70(2,')} ~ P(57U2 ly)

2. Compute m from ;) and draw w; ~ N(Mm, 0(2,-)/\/1)
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Inference on the process

e Posterior distribution of w(sp) at new location sp:

p(W(SO) |)/) = /N(W(SO) | MW(50)|W70-5|/(50)\W) X p(0_2’ w ‘ y)dUZdW )
where

Lw(so)w = T (50; )R (D)W ;
Tow = 0 {1 = rT(s0; )R (¢)r(s0, 4)}

e Foreachi=1,2,..., N do the following:

1. Compute iy (sy)|w and aa,(so)‘w from w(;) and 0(2,-).

2. Draw w(;(0) ~ N(buw(sp) w> Tar(so) w)-
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Bayesian “kriging” or prediction

e Posterior predictive distribution at new location sy is p(y(so) | y):
/N(y(so) |x " (s0)8 4+ w(sp), a0?) x p(B,0%, w|y)dBdo?dw ,

e Foreachi=1,2,..., N do the following:
1. Draw y(,-)(So) ~ N(XT(So)ﬂ(,-) + W(,-)(So)7a0'(2,')).
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Non-conjugate models: The Gibbs Sampler

o Let O = (bh,...,0,) be the parameters in our model.
e 00 =69 . 6D

e Forj=1,..., M, update successively using the full conditional
distributions:
: . . -
09 ~ p(6) | 657V, o 057", 9
09 ~ p(62169,697V,...,697V,y)

(the generic k*" element)
09 ~ p(0x169),...,09 00~ 997V y)

k=127 k+1 >

09 ~ p(0,169,...,09 . y)
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e In principle, the Gibbs sampler will work for extremely complex
hierarchical models. The only issue is sampling from the full
conditionals. They may not be amenable to easy sampling — when
these are not in closed form. A more general and extremely powerful
- and often easier to code - algorithm is the Metropolis-Hastings
(MH) algorithm.

e This algorithm also constructs a Markov Chain, but does not

necessarily care about full conditionals.

e Popular approach: Embed Metropolis steps within Gibbs to draw
from full conditionals that are not accessible to directly generate

from.
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The Metropolis-Hastings Algorithm

e The Metropolis-Hastings algorithm: Start with a initial value for 8 = 0(%). Select
a candidate or proposal distribution from which to propose a value of 0 at the
j-th iteration: U) ~ q(0U=1), ). For example, q(0U=1, 1) = N(OU=D), ) with
v fixed.

e Compute

__p(0" [)a(6V 6%, v)
p(8U=1) [ y)q(6* |6U-Dv)

o If r > 1 then set 0U) = §*. If r < 1 then draw U ~ (0,1). If U < r then
0U) = 6*. Otherwise, 0U) = gU—1).

e Repeat for j = 1,... M. This yields 6, ..., 0(M) which, after a burn-in period,
will be samples from the true posterior distribution. It is important to monitor

the acceptance ratio r of the sampler through the iterations. Rough
recommendations: for vector updates r ~ 20%., for scalar updates r ~ 40%.
This can be controlled by “tuning” v.

e Popular approach: Embed Metropolis steps within Gibbs to draw from full
conditionals that are not accessible to directly generate from.
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Example: For the linear model, our parameters are (3, 2). We write 6 = (3, log(c'2)) and, at the j-th iteration, propose
0% ~ N(B(j—l), ¥). The log transformation on o2 ensures that all components of 6 have support on the entire real line and
can have meaningful proposed values from the multivariate normal. But we need to transform our prior to p(3, log(c-2)).

Let z = Iog(az) and assume p(f3, z) = p(B)p(z). Let us derive p(z). REMEMBER: we need to adjust for the jacobian. Then
p(z) = p(c2)|do? /dz| = p(e?)e?. The jacobian here is e = o2.

Let p(8) = 1 and an p(c2) = IG(02 | a, b). Then log-posterior is:

—(a+n/2+1)z+z2— eiz{b 1 %(v —xg)T(v — xB)}.
A symmetric proposal distribution, say q(6* |9(j*1), ¥) = N(G(j*l), ¥), cancels out in r. In practice it is better to compute
log(r): log(r) = log(p(8* | y) — log(p(0U=1) | )). For the proposal, N(6U—=1) | ¥) Tisa d x d variance-covariance
matrix, and d = dim(6) = p + 1.
If log r > 0 then set 0U) = 0% If log r < 0 then draw U ~ (0,1). If U < r (or log U < log r) then 6U) = g*_
Otherwise, 0U) = oU—1),
Repeat the above procedure for j = 1, ... M to obtain samples 9(1), BN B(M)A
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