## Bayesian Linear Models

## Sudipto Banerjee

September 03-05, 2017

Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles

## Linear Regression

- Linear regression is, perhaps, the most widely used statistical modeling tool.
- It addresses the following question: How does a quantity of primary interest, $y$, vary as (depend upon) another quantity, or set of quantities, $x$ ?
- The quantity $y$ is called the response or outcome variable. Some people simply refer to it as the dependent variable.
- The variable(s) $x$ are called explanatory variables, covariates or simply independent variables.
- In general, we are interested in the conditional distribution of $y$, given $x$, parametrized as $p(y \mid \theta, x)$.
- Typically, we have a set of units or experimental subjects $i=1,2, \ldots, n$.
- For each of these units we have measured an outcome $y_{i}$ and a set of explanatory variables $x_{i}^{\top}=\left(1, x_{i 1}, x_{i 2}, \ldots, x_{i p}\right)$.
- The first element of $x_{i}^{\top}$ is often taken as 1 to signify the presence of an "intercept".
- We collect the outcome and explanatory variables into an $n \times 1$ vector and an $n \times(p+1)$ matrix:

$$
y=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right) ; \quad X=\left[\begin{array}{ccccc}
1 & x_{11} & x_{12} & \ldots & x_{1 p} \\
1 & x_{21} & x_{22} & \ldots & x_{2 p} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{n 1} & x_{n 2} & \ldots & x_{n p}
\end{array}\right]=\left(\begin{array}{c}
x_{1}^{\top} \\
x_{2}^{\top} \\
\vdots \\
x_{n}^{\top}
\end{array}\right) .
$$

- The linear model is the most fundamental of all serious statistical models underpinning:
- ANOVA: $y_{i}$ is continuous, $x_{i j}$ 's are all categorical
- REGRESSION: $y_{i}$ is continuous, $x_{i j}$ 's are continuous
- ANCOVA: $y_{i}$ is continuous, $x_{i j}$ 's are continuous for some $j$ and categorical for others.


## Conjugate Bayesian Linear Regression

- A conjugate Bayesian linear model is given by:

$$
\begin{aligned}
& y_{i} \mid \mu_{i}, \sigma^{2}, X \stackrel{i n d}{\sim} N\left(\mu_{i}, \sigma^{2}\right) ; \quad i=1,2, \ldots, n ; \\
& \mu_{i}=\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{p} x_{i p}=x_{i}^{\top} \beta ; \quad \beta=\left(\beta_{0}, \beta_{1}, \ldots, \beta_{p}\right)^{\top} ; \\
& \beta \mid \sigma^{2} \sim N\left(\mu_{\beta}, \sigma^{2} V_{\beta}\right) ; \quad \sigma^{2} \sim \operatorname{IG}(a, b) .
\end{aligned}
$$

- Unknown parameters include the regression parameters and the variance, i.e. $\theta=\left\{\beta, \sigma^{2}\right\}$.
- We assume $X$ is observed without error and all inference is conditional on $X$.
- The above model is often written it terms of the posterior density $p(\theta \mid y) \propto p(\theta, y):$

$$
\operatorname{IG}\left(\sigma^{2} \mid a, b\right) \times N\left(\beta \mid \mu_{\beta}, \sigma^{2} V_{\beta}\right) \times \prod_{i=1}^{n} N\left(y_{i} \mid x_{i}^{\top} \beta, \sigma^{2}\right)
$$

## Conjugate Bayesian (General) Linear Regression

- A more general conjugate Bayesian linear model is given by:

$$
\begin{aligned}
& y \mid \beta, \sigma^{2}, X \sim N\left(X \beta, \sigma^{2} V_{y}\right) \\
& \beta \mid \sigma^{2} \sim N\left(\mu_{\beta}, \sigma^{2} V_{\beta}\right) ; \\
& \sigma^{2} \sim I G(a, b) .
\end{aligned}
$$

- $V_{y}, V_{\beta}$ and $\mu_{\beta}$ are assumed fixed.
- Unknown parameters include the regression parameters and the variance, i.e. $\theta=\left\{\beta, \sigma^{2}\right\}$.
- We assume $X$ is observed without error and all inference is conditional on $X$.
- The posterior density $p(\theta \mid y) \propto p(\theta, y)$ :

$$
I G\left(\sigma^{2} \mid a, b\right) \times N\left(\beta \mid \mu_{\beta}, \sigma^{2} V_{\beta}\right) \times N\left(y \mid X \beta, \sigma^{2} V_{y}\right)
$$

- The model on the previous slide is a special case with $V_{y}=I_{n}(n \times n$ identity matrix).


## Conjugate Bayesian (General) Linear Regression

- The joint posterior density can be written as

$$
p\left(\beta, \sigma^{2} \mid y\right) \propto \underbrace{I G\left(\sigma^{2} \mid a^{*}, b^{*}\right)}_{p\left(\sigma^{2} \mid y\right)} \times \underbrace{N\left(\beta \mid M m, \sigma^{2} M\right)}_{p\left(\beta \mid \sigma^{2}, y\right)}
$$

where

$$
\begin{aligned}
& a^{*}=a+\frac{n}{2} ; \quad b^{*}=b+\frac{1}{2}\left(\mu_{\beta}^{\top} V_{\beta}^{-1} \mu_{\beta}+y^{\top} y-m^{\top} M m\right) ; \\
& m=V_{\beta}^{-1} \mu_{\beta}+X^{\top} V_{y}^{-1} y ; \quad M^{-1}=V_{\beta}^{-1}+X^{\top} V_{y}^{-1} X .
\end{aligned}
$$

- Exact posterior sampling from $p\left(\beta, \sigma^{2} \mid y\right)$ will automatically yield samples from $p(\beta \mid y)$ and $p\left(\sigma^{2} \mid y\right)$.
- For each $i=1,2, \ldots, N$ do the following:

1. Draw $\sigma_{(i)}^{2} \sim \operatorname{IG}\left(a^{*}, b^{*}\right)$
2. Draw $\beta_{(i)} \sim N\left(M m, \sigma_{(i)}^{2} M\right)$

- The above is sometimes referred to as composition sampling.


## Exact sampling from joint posterior distributions

- Suppose we wish to draw samples from a joint posterior:

$$
p\left(\theta_{1}, \theta_{2} \mid y\right)=p\left(\theta_{1} \mid y\right) \times p\left(\theta_{2} \mid \theta_{1}, y\right)
$$

- In conjugate models, it is often easy to draw samples from $p\left(\theta_{1} \mid y\right)$ and from $p\left(\theta_{2} \mid \theta_{1}, y\right)$.
- We can draw $M$ samples from $p\left(\theta_{1}, \theta_{2} \mid y\right)$ as follows.
- For each $i=1,2, \ldots, N$ do the following:

1. Draw $\theta_{1(i)} \sim p\left(\theta_{1} \mid y\right)$
2. Draw $\theta_{2(i)} \sim p\left(\theta_{2} \mid \theta_{1}, y\right)$

- Remarkably, the $\theta_{2(i)}$ 's drawn above have marginal distribution $p\left(\theta_{2} y\right)$ because: $\left.\mathrm{E}_{2} \leq u \mid y\right)=\mathrm{E}_{\theta_{2} \mid y}\left[1\left(\theta_{2} \leq u\right)\right]=\mathrm{E}_{\theta_{1} \mid y}\left\{\mathrm{E}_{\theta_{2} \mid \theta_{1}, y}\left[1\left(\theta_{2} \leq u\right)\right]\right\}$

$$
\approx \frac{1}{N} \sum_{i=1}^{N} \mathrm{E}_{\theta_{2} \mid \theta_{1(i)}, y}\left[1\left(\theta_{2} \leq u\right)\right] \approx \frac{1}{N} \sum_{i=1}^{N} 1\left(\theta_{2(i)} \leq u\right)
$$

- "Automatic Marginalization:" We draw samples $p\left(\theta_{1}, \theta_{2} \mid y\right)$ and automatically get samples from $p\left(\theta_{1} \mid y\right)$ and $p\left(\theta_{2} \mid y\right)$.


## Bayesian predictions from linear regression

- Let $\tilde{y}$ denote an $m \times 1$ vector of outcomes we seek to predict based upon predictors $\tilde{X}$.
- We seek the posterior predictive density:

$$
p(\tilde{y} \mid y)=\int p(\tilde{y} \mid \theta, y) p(\theta \mid y) \mathrm{d} \theta
$$

- Posterior predictive inference: sample from $p(\tilde{y} \mid y)$.
- For each $i=1,2, \ldots, N$ do the following:

1. Draw $\theta_{(i)} \sim p(\theta \mid y)$
2. Draw $\tilde{y}_{(i)} \sim p\left(\tilde{y} \mid \theta_{(i)}, y\right)$

## Bayesian predictions from linear regression (contd.)

- For legitimate probabilistic predictions (forecasting), the conditional distribution $p(\tilde{y} \mid \theta, y)$ must be well-defined.
- For example, consider the case with $V_{y}=I_{n}$. Specify the linear model:

$$
\left[\begin{array}{l}
y \\
\tilde{y}
\end{array}\right]=\left[\begin{array}{l}
X \\
\tilde{X}
\end{array}\right] \beta+\left[\begin{array}{l}
\epsilon \\
\tilde{\epsilon}
\end{array}\right] ; \quad\left[\begin{array}{l}
\epsilon \\
\tilde{\epsilon}
\end{array}\right] \sim N\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right], \sigma^{2}\left[\begin{array}{cc}
I_{n} & O \\
O & I_{m}
\end{array}\right]\right) .
$$

- Easy to derive the conditional density:

$$
p(\tilde{y} \mid \theta, y)=p(\tilde{y} \mid \theta)=N\left(\tilde{y} \mid \tilde{X} \beta, \sigma^{2} I_{m}\right)
$$

- Posterior predictive density:

$$
p(\tilde{y} \mid y)=\int N\left(\tilde{y} \mid \tilde{X} \beta, \sigma^{2} I_{m}\right) p\left(\beta, \sigma^{2} \mid y\right) \mathrm{d} \beta \mathrm{~d} \sigma^{2}
$$

- For each $i=1,2, \ldots, N$ do the following:

1. $\operatorname{Draw}\left\{\beta_{(i)}, \sigma_{(i)}^{2}\right\} \sim p\left(\beta, \sigma^{2} \mid y\right)$
2. $\operatorname{Draw} \tilde{y}_{(i)} \sim N\left(\tilde{X} \beta_{(i)}, \sigma_{(i)}^{2} I_{m}\right)$

## Bayesian predictions from general linear regression

- For example, consider the case with general $V_{y}$. Specify:

$$
\left[\begin{array}{l}
y \\
\tilde{y}
\end{array}\right]=\left[\begin{array}{l}
X \\
\tilde{X}
\end{array}\right] \beta+\left[\begin{array}{l}
\epsilon \\
\tilde{\epsilon}
\end{array}\right] ; \quad\left[\begin{array}{l}
\epsilon \\
\tilde{\epsilon}
\end{array}\right] \sim N\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right], \sigma^{2}\left[\begin{array}{cc}
V_{y} & V_{y \tilde{y}} \\
V_{y \tilde{y}}^{\top} & V_{\tilde{y}}
\end{array}\right]\right) .
$$

- Derive the conditional density $p(\tilde{y} \mid \theta, y)=N\left(\tilde{y} \mid \mu_{\tilde{y} \mid y}, \sigma^{2} V_{\tilde{y} \mid y}\right)$ :

$$
\mu_{\tilde{y} \mid y}=\tilde{X} \beta+V_{y \tilde{y}}^{\top} V_{y}^{-1}(y-X \beta) ; \quad V_{\tilde{y} \mid y}=V_{\tilde{y}}-V_{y \tilde{y}}^{\top} V_{y}^{-1} V_{y \tilde{y}} .
$$

- Posterior predictive density:

$$
p(\tilde{y} \mid y)=\int N\left(\tilde{y} \mid \mu_{\tilde{y} \mid y}, \sigma^{2} V_{\tilde{y} \mid y}\right) p\left(\beta, \sigma^{2} \mid y\right) \mathrm{d} \beta \mathrm{~d} \sigma^{2} .
$$

- For each $i=1,2, \ldots, N$ do the following:

1. Draw $\left\{\beta_{(i)}, \sigma_{(i)}^{2}\right\} \sim p\left(\beta, \sigma^{2} \mid y\right)$
2. Compute $\mu_{\tilde{y} \mid y}$ using $\beta_{(i)}$ and draw $\tilde{y}_{(i)} \sim N\left(\mu_{\tilde{y} \mid y}, \sigma_{(i)}^{2} V_{\tilde{y}}\right)$

## Application to Bayesian Geostatistics

- Consider the spatial regression model

$$
y\left(s_{i}\right)=x^{\top}\left(s_{i}\right) \beta+w\left(s_{i}\right)+\epsilon\left(s_{i}\right)
$$

where $w\left(s_{i}\right)$ 's are spatial random effects and $\epsilon\left(s_{i}\right)$ 's are unstructured errors ("white noise").

- $w=\left(w\left(s_{1}\right), w\left(s_{2}\right), \ldots, w\left(s_{n}\right)\right)^{\top} \sim N\left(0, \sigma^{2} R(\phi)\right)$
- $\epsilon=\left(\epsilon\left(s_{1}\right), \epsilon\left(s_{2}\right), \ldots, \epsilon\left(s_{n}\right)\right)^{\top} \sim N\left(0, \tau^{2} I_{n}\right)$
- Integrating out random effects leads to a Bayesian model:

$$
I G\left(\sigma^{2} \mid a, b\right) \times N\left(\beta \mid \mu_{\beta}, \sigma^{2} V_{\beta}\right) \times N\left(y \mid X \beta, \sigma^{2} V_{y}\right)
$$

where $V_{y}=R(\phi)+\alpha I_{n}$ and $\alpha=\tau^{2} / \sigma^{2}$.

- Fixing $\phi$ and $\alpha$ (e.g., from variogram or other EDA) yields a conjugate Bayesian model.
- Exact posterior sampling is easily achieved as before.


## Inference on spatial random effects

- Rewrite the model in terms of $w$ as:

$$
\begin{aligned}
I G\left(\sigma^{2} \mid a, b\right) \times & N\left(\beta \mid \mu_{\beta}, \sigma^{2} V_{\beta}\right) \times N\left(w \mid 0, \sigma^{2} R(\phi)\right) \\
& \times N\left(y \mid X \beta+w, \tau^{2} I_{n}\right) .
\end{aligned}
$$

- Posterior distribution of spatial random effects $w$ :

$$
p(w \mid y)=\int N\left(w \mid M m, \sigma^{2} M\right) \times p\left(\beta, \sigma^{2} \mid y\right) \mathrm{d} \beta \mathrm{~d} \sigma^{2},
$$

where $m=(1 / \alpha)(y-X \beta)$ and $M^{-1}=R^{-1}(\phi)+(1 / \alpha) I_{n}$.

- For each $i=1,2, \ldots, N$ do the following:

1. $\operatorname{Draw}\left\{\beta_{(i)}, \sigma_{(i)}^{2}\right\} \sim p\left(\beta, \sigma^{2} \mid y\right)$
2. Compute $m$ from $\beta_{(i)}$ and draw $w_{(i)} \sim N\left(M m, \sigma_{(i)}^{2} M\right)$

## Inference on the process

- Posterior distribution of $w\left(s_{0}\right)$ at new location $s_{0}$ :

$$
p\left(w\left(s_{0}\right) \mid y\right)=\int N\left(w\left(s_{0}\right) \mid \mu_{w\left(s_{0}\right) \mid w}, \sigma_{w\left(s_{0}\right) \mid w}^{2}\right) \times p\left(\sigma^{2}, w \mid y\right) \mathrm{d} \sigma^{2} \mathrm{~d} w,
$$

where

$$
\begin{aligned}
& \mu_{w\left(s_{0}\right) \mid w}=r^{\top}\left(s_{0} ; \phi\right) R^{-1}(\phi) w ; \\
& \sigma_{w\left(s_{0}\right) \mid w}^{2}=\sigma^{2}\left\{1-r^{\top}\left(s_{0} ; \phi\right) R^{-1}(\phi) r\left(s_{0}, \phi\right)\right\}
\end{aligned}
$$

- For each $i=1,2, \ldots, N$ do the following:

1. Compute $\mu_{w\left(s_{0}\right) \mid w}$ and $\sigma_{w\left(s_{0}\right) \mid w}^{2}$ from $w_{(i)}$ and $\sigma_{(i)}^{2}$.
2. $\operatorname{Draw} w_{(i)}\left(s_{0}\right) \sim N\left(\mu_{w\left(s_{0}\right) \mid w}, \sigma_{w\left(s_{0}\right) \mid w}^{2}\right)$.

## Bayesian "kriging" or prediction

- Posterior predictive distribution at new location $s_{0}$ is $p\left(y\left(s_{0}\right) \mid y\right)$ :

$$
\int N\left(y\left(s_{0}\right) \mid x^{\top}\left(s_{0}\right) \beta+w\left(s_{0}\right), \alpha \sigma^{2}\right) \times p\left(\beta, \sigma^{2}, w \mid y\right) \mathrm{d} \beta \mathrm{~d} \sigma^{2} \mathrm{~d} w,
$$

- For each $i=1,2, \ldots, N$ do the following:

1. Draw $y_{(i)}\left(s_{0}\right) \sim N\left(x^{\top}\left(s_{0}\right) \beta_{(i)}+w_{(i)}\left(s_{0}\right), \alpha \sigma_{(i)}^{2}\right)$.

## Non-conjugate models: The Gibbs Sampler

- Let $\theta=\left(\theta_{1}, \ldots, \theta_{p}\right)$ be the parameters in our model.
- $\theta^{(0)}=\left(\theta_{1}^{(0)}, \ldots, \theta_{p}^{(0)}\right)$
- For $j=1, \ldots, M$, update successively using the full conditional distributions:

$$
\begin{aligned}
& \theta_{1}^{(j)} \sim p\left(\theta_{1}^{(j)} \mid \theta_{2}^{(j-1)}, \ldots, \theta_{p}^{(j-1)}, y\right) \\
& \theta_{2}^{(j)} \sim p\left(\theta_{2} \mid \theta_{1}^{(j)}, \theta_{3}^{(j-1)}, \ldots, \theta_{p}^{(j-1)}, y\right)
\end{aligned}
$$

(the generic $k^{\text {th }}$ element)
$\theta_{k}^{(j)} \sim p\left(\theta_{k} \mid \theta_{1}^{(j)}, \ldots, \theta_{k-1}^{(j)}, \theta_{k+1}^{(j-1)}, \ldots, \theta_{p}^{(j-1)}, y\right)$
$\theta_{p}^{(j)} \sim p\left(\theta_{p} \mid \theta_{1}^{(j)}, \ldots, \theta_{p-1}^{(j)}, y\right)$

- In principle, the Gibbs sampler will work for extremely complex hierarchical models. The only issue is sampling from the full conditionals. They may not be amenable to easy sampling - when these are not in closed form. A more general and extremely powerful - and often easier to code - algorithm is the Metropolis-Hastings $(\mathrm{MH})$ algorithm.
- This algorithm also constructs a Markov Chain, but does not necessarily care about full conditionals.
- Popular approach: Embed Metropolis steps within Gibbs to draw from full conditionals that are not accessible to directly generate from.


## The Metropolis-Hastings Algorithm

- The Metropolis-Hastings algorithm: Start with a initial value for $\theta=\theta^{(0)}$. Select a candidate or proposal distribution from which to propose a value of $\theta$ at the $j$-th iteration: $\theta^{(j)} \sim q\left(\theta^{(j-1)}, \nu\right)$. For example, $q\left(\theta^{(j-1)}, \nu\right)=N\left(\theta^{(j-1)}, \nu\right)$ with $\nu$ fixed.
- Compute

$$
r=\frac{p\left(\theta^{*} \mid y\right) q\left(\theta^{(j-1)} \mid \theta^{*}, \nu\right)}{p\left(\theta^{(j-1)} \mid y\right) q\left(\theta^{*} \mid \theta^{(j-1)} \nu\right)}
$$

- If $r \geq 1$ then set $\theta^{(j)}=\theta^{*}$. If $r \leq 1$ then draw $U \sim(0,1)$. If $U \leq r$ then $\theta^{(j)}=\theta^{*}$. Otherwise, $\theta^{(j)}=\theta^{(j-1)}$.
- Repeat for $j=1, \ldots M$. This yields $\theta^{(1)}, \ldots, \theta^{(M)}$, which, after a burn-in period, will be samples from the true posterior distribution. It is important to monitor the acceptance ratio $r$ of the sampler through the iterations. Rough recommendations: for vector updates $r \approx 20 \%$., for scalar updates $r \approx 40 \%$. This can be controlled by "tuning" $\nu$.
- Popular approach: Embed Metropolis steps within Gibbs to draw from full conditionals that are not accessible to directly generate from.
- Example: For the linear model, our parameters are $\left(\beta, \sigma^{2}\right)$. We write $\theta=\left(\beta, \log \left(\sigma^{2}\right)\right)$ and, at the $j$-th iteration, propose $\theta^{*} \sim N(\theta(j-1), \Sigma)$. The log transformation on $\sigma^{2}$ ensures that all components of $\theta$ have support on the entire real line and can have meaningful proposed values from the multivariate normal. But we need to transform our prior to $p\left(\beta, \log \left(\sigma^{2}\right)\right)$.
- Let $z=\log \left(\sigma^{2}\right)$ and assume $p(\beta, z)=p(\beta) p(z)$. Let us derive $p(z)$. REMEMBER: we need to adjust for the jacobian. Then $p(z)=p\left(\sigma^{2}\right)\left|d \sigma^{2} / d z\right|=p\left(e^{z}\right) e^{z}$. The jacobian here is $e^{z}=\sigma^{2}$.
- Let $p(\beta)=1$ and an $p\left(\sigma^{2}\right)=I G\left(\sigma^{2} \mid a, b\right)$. Then log-posterior is:

$$
-(a+n / 2+1) z+z-\frac{1}{e^{z}}\left\{b+\frac{1}{2}(Y-X \beta)^{T}(Y-X \beta)\right\} .
$$

- A symmetric proposal distribution, say $q\left(\theta^{*} \mid \theta(j-1), \Sigma\right)=N\left(\theta^{(j-1)}, \Sigma\right)$, cancels out in $r$. In practice it is better to compute $\log (r): \log (r)=\log \left(p\left(\theta^{*} \mid y\right)-\log \left(p\left(\theta^{(j-1)} \mid y\right)\right)\right.$. For the proposal, $N\left(\theta^{(j-1)}, \Sigma\right), \Sigma$ is a $d \times d$ variance-covariance matrix, and $d=\operatorname{dim}(\theta)=p+1$.
- If $\log r \geq 0$ then set $\theta^{(j)}=\theta^{*}$. If $\log r \leq 0$ then draw $U \sim(0,1)$. If $U \leq r($ or $\log U \leq \log r)$ then $\theta^{(j)}=\theta^{*}$. Otherwise, $\theta^{(j)}=\theta^{(j-1)}$.
- Repeat the above procedure for $j=1, \ldots M$ to obtain samples $\theta^{(1)}, \ldots, \theta^{(M)}$

