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Linear Regression

• Linear regression is, perhaps, the most widely used statistical
modeling tool.

• It addresses the following question: How does a quantity of primary
interest, y , vary as (depend upon) another quantity, or set of
quantities, x?

• The quantity y is called the response or outcome variable. Some
people simply refer to it as the dependent variable.

• The variable(s) x are called explanatory variables, covariates or
simply independent variables.

• In general, we are interested in the conditional distribution of y ,
given x , parametrized as p(y | θ, x).
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• Typically, we have a set of units or experimental subjects
i = 1, 2, . . . , n.

• For each of these units we have measured an outcome yi and a set
of explanatory variables x>i = (1, xi1, xi2, . . . , xip).

• The first element of x>i is often taken as 1 to signify the presence of
an “intercept”.

• We collect the outcome and explanatory variables into an n × 1
vector and an n × (p + 1) matrix:

y =


y1

y2
...

yn

 ; X =


1 x11 x12 . . . x1p

1 x21 x22 . . . x2p
...

...
...

...
...

1 xn1 xn2 . . . xnp

 =


x>1
x>2

...
x>n

 .
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• The linear model is the most fundamental of all serious statistical
models underpinning:

• ANOVA: yi is continuous, xij ’s are all categorical

• REGRESSION: yi is continuous, xij ’s are continuous

• ANCOVA: yi is continuous, xij ’s are continuous for some j and
categorical for others.
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Conjugate Bayesian Linear Regression

• A conjugate Bayesian linear model is given by:

yi |µi , σ
2,X ind∼ N(µi , σ

2); i = 1, 2, . . . , n ;
µi = β0 + β1xi1 + · · ·+ βpxip = x>i β ; β = (β0, β1, . . . , βp)> ;
β |σ2 ∼ N(µβ , σ2Vβ) ; σ2 ∼ IG(a, b) .

• Unknown parameters include the regression parameters and the
variance, i.e. θ = {β, σ2}.

• We assume X is observed without error and all inference is
conditional on X .

• The above model is often written it terms of the posterior density
p(θ | y) ∝ p(θ, y):

IG(σ2 | a, b)× N(β |µβ , σ2Vβ)×
n∏

i=1
N(yi | x>i β, σ2) .
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Conjugate Bayesian (General) Linear Regression

• A more general conjugate Bayesian linear model is given by:

y |β, σ2,X ∼ N(Xβ, σ2Vy )
β |σ2 ∼ N(µβ , σ2Vβ) ;
σ2 ∼ IG(a, b) .

• Vy , Vβ and µβ are assumed fixed.
• Unknown parameters include the regression parameters and the

variance, i.e. θ = {β, σ2}.
• We assume X is observed without error and all inference is

conditional on X .
• The posterior density p(θ | y) ∝ p(θ, y):

IG(σ2 | a, b)× N(β |µβ , σ2Vβ)× N(y |Xβ, σ2Vy )

• The model on the previous slide is a special case with Vy = In (n× n
identity matrix).
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Conjugate Bayesian (General) Linear Regression

• The joint posterior density can be written as

p(β, σ2 | y) ∝
IG(σ2 | a∗, b∗)︸ ︷︷ ︸ × N

(
β |Mm, σ2M

)︸ ︷︷ ︸
p(σ2 | y) p(β |σ2, y)

,

where

a∗ = a + n
2 ; b∗ = b + 1

2

(
µ>β V−1

β µβ + y>y −m>Mm
)

;

m = V−1
β µβ + X>V−1

y y ; M−1 = V−1
β + X>V−1

y X .

• Exact posterior sampling from p(β, σ2 | y) will automatically yield
samples from p(β | y) and p(σ2 | y).

• For each i = 1, 2, . . . ,N do the following:
1. Draw σ2

(i) ∼ IG(a∗, b∗)
2. Draw β(i) ∼ N

(
Mm, σ2

(i)M
)

• The above is sometimes referred to as composition sampling.

6



Exact sampling from joint posterior distributions
• Suppose we wish to draw samples from a joint posterior:

p(θ1, θ2 | y) = p(θ1 | y)× p(θ2 | θ1, y) .

• In conjugate models, it is often easy to draw samples from p(θ1 | y)
and from p(θ2 | θ1, y).

• We can draw M samples from p(θ1, θ2 | y) as follows.
• For each i = 1, 2, . . . ,N do the following:

1. Draw θ1(i) ∼ p(θ1 | y)
2. Draw θ2(i) ∼ p(θ2 | θ1, y)

• Remarkably, the θ2(i)’s drawn above have marginal distribution
p(θ2 | y) because:

P(θ2 ≤ u | y) = Eθ2|y [1(θ2 ≤ u)] = Eθ1|y
{

Eθ2|θ1,y [1(θ2 ≤ u)]
}

≈ 1
N

N∑
i=1

Eθ2|θ1(i),y [1(θ2 ≤ u)] ≈ 1
N

N∑
i=1

1(θ2(i) ≤ u) .

• “Automatic Marginalization:” We draw samples p(θ1, θ2 | y) and
automatically get samples from p(θ1 | y) and p(θ2 | y).
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Bayesian predictions from linear regression

• Let ỹ denote an m × 1 vector of outcomes we seek to predict based
upon predictors X̃ .

• We seek the posterior predictive density:

p(ỹ | y) =
∫

p(ỹ | θ, y)p(θ | y)dθ .

• Posterior predictive inference: sample from p(ỹ | y).

• For each i = 1, 2, . . . ,N do the following:
1. Draw θ(i) ∼ p(θ | y)

2. Draw ỹ(i) ∼ p(ỹ | θ(i), y)

8



Bayesian predictions from linear regression (contd.)

• For legitimate probabilistic predictions (forecasting), the conditional
distribution p(ỹ | θ, y) must be well-defined.

• For example, consider the case with Vy = In. Specify the linear
model:[

y
ỹ

]
=
[

X
X̃

]
β +

[
ε

ε̃

]
;
[
ε

ε̃

]
∼ N

([
0
0

]
, σ2

[
In O
O Im

])
.

• Easy to derive the conditional density:

p(ỹ | θ, y) = p(ỹ | θ) = N(ỹ | X̃β, σ2Im)

• Posterior predictive density:

p(ỹ | y) =
∫

N(ỹ | X̃β, σ2Im)p(β, σ2 | y)dβdσ2 .

• For each i = 1, 2, . . . ,N do the following:
1. Draw {β(i), σ

2
(i)} ∼ p(β, σ2 | y)

2. Draw ỹ(i) ∼ N(X̃β(i), σ
2
(i)Im)
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Bayesian predictions from general linear regression

• For example, consider the case with general Vy . Specify:

[
y
ỹ

]
=
[

X
X̃

]
β +

[
ε

ε̃

]
;
[
ε

ε̃

]
∼ N

([
0
0

]
, σ2

[
Vy Vyỹ

V>yỹ Vỹ

])
.

• Derive the conditional density p(ỹ | θ, y) = N
(
ỹ |µỹ |y , σ

2Vỹ |y
)
:

µỹ |y = X̃β + V>yỹ V−1
y (y − Xβ) ; Vỹ |y = Vỹ − V>yỹ V−1

y Vyỹ .

• Posterior predictive density:

p(ỹ | y) =
∫

N
(
ỹ |µỹ |y , σ

2Vỹ |y
)

p(β, σ2 | y)dβdσ2 .

• For each i = 1, 2, . . . ,N do the following:
1. Draw {β(i), σ

2
(i)} ∼ p(β, σ2 | y)

2. Compute µỹ|y using β(i) and draw ỹ(i) ∼ N(µỹ|y , σ
2
(i)Vỹ )
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Application to Bayesian Geostatistics

• Consider the spatial regression model

y(si ) = x>(si )β + w(si ) + ε(si ) ,

where w(si )’s are spatial random effects and ε(si )’s are unstructured
errors (“white noise”).

• w = (w(s1),w(s2), . . . ,w(sn))> ∼ N(0, σ2R(φ))
• ε = (ε(s1), ε(s2), . . . , ε(sn))> ∼ N(0, τ 2In)
• Integrating out random effects leads to a Bayesian model:

IG(σ2 | a, b)× N(β |µβ , σ2Vβ)× N(y |Xβ, σ2Vy )

where Vy = R(φ) + αIn and α = τ 2/σ2 .
• Fixing φ and α (e.g., from variogram or other EDA) yields a

conjugate Bayesian model.
• Exact posterior sampling is easily achieved as before.
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Inference on spatial random effects

• Rewrite the model in terms of w as:

IG(σ2 | a, b)×N(β |µβ , σ2Vβ)× N(w | 0, σ2R(φ))
× N(y |Xβ + w , τ 2In) .

• Posterior distribution of spatial random effects w :

p(w | y) =
∫

N(w |Mm, σ2M)× p(β, σ2 | y)dβdσ2 ,

where m = (1/α)(y − Xβ) and M−1 = R−1(φ) + (1/α)In.

• For each i = 1, 2, . . . ,N do the following:
1. Draw {β(i), σ

2
(i)} ∼ p(β, σ2 | y)

2. Compute m from β(i) and draw w(i) ∼ N(Mm, σ2
(i)M)
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Inference on the process

• Posterior distribution of w(s0) at new location s0:

p(w(s0) | y) =
∫

N(w(s0) |µw(s0)|w , σ
2
w(s0)|w )× p(σ2,w | y)dσ2dw ,

where

µw(s0)|w = r>(s0;φ)R−1(φ)w ;
σ2

w(s0)|w = σ2{1− r>(s0;φ)R−1(φ)r(s0, φ)}

• For each i = 1, 2, . . . ,N do the following:
1. Compute µw(s0)|w and σ2

w(s0)|w from w(i) and σ2
(i).

2. Draw w(i)(s0) ∼ N(µw(s0)|w , σ
2
w(s0)|w ).
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Bayesian “kriging” or prediction

• Posterior predictive distribution at new location s0 is p(y(s0) | y):∫
N(y(s0) | x>(s0)β + w(s0), ασ2)× p(β, σ2,w | y)dβdσ2dw ,

• For each i = 1, 2, . . . ,N do the following:
1. Draw y(i)(s0) ∼ N(x>(s0)β(i) + w(i)(s0), ασ2

(i)).
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Non-conjugate models: The Gibbs Sampler

• Let θ = (θ1, . . . , θp) be the parameters in our model.

• θ(0) = (θ(0)
1 , . . . , θ

(0)
p )

• For j = 1, . . . ,M, update successively using the full conditional
distributions:

θ
(j)
1 ∼ p(θ(j)

1 | θ
(j−1)
2 , . . . , θ

(j−1)
p , y)

θ
(j)
2 ∼ p(θ2 | θ(j)

1 , θ
(j−1)
3 , . . . , θ

(j−1)
p , y)

...
(the generic k th element)
θ

(j)
k ∼ p(θk |θ(j)

1 , . . . , θ
(j)
k−1, θ

(j−1)
k+1 , . . . , θ

(j−1)
p , y)

...
θ

(j)
p ∼ p(θp | θ(j)

1 , . . . , θ
(j)
p−1, y)
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• In principle, the Gibbs sampler will work for extremely complex
hierarchical models. The only issue is sampling from the full
conditionals. They may not be amenable to easy sampling – when
these are not in closed form. A more general and extremely powerful
- and often easier to code - algorithm is the Metropolis-Hastings
(MH) algorithm.

• This algorithm also constructs a Markov Chain, but does not
necessarily care about full conditionals.

• Popular approach: Embed Metropolis steps within Gibbs to draw
from full conditionals that are not accessible to directly generate
from.
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The Metropolis-Hastings Algorithm

• The Metropolis-Hastings algorithm: Start with a initial value for θ = θ(0). Select
a candidate or proposal distribution from which to propose a value of θ at the
j-th iteration: θ(j) ∼ q(θ(j−1), ν). For example, q(θ(j−1), ν) = N(θ(j−1), ν) with
ν fixed.

• Compute

r =
p(θ∗ | y)q(θ(j−1) | θ∗, ν)

p(θ(j−1) | y)q(θ∗ | θ(j−1)ν)

• If r ≥ 1 then set θ(j) = θ∗. If r ≤ 1 then draw U ∼ (0, 1). If U ≤ r then
θ(j) = θ∗. Otherwise, θ(j) = θ(j−1).

• Repeat for j = 1, . . .M. This yields θ(1), . . . , θ(M), which, after a burn-in period,
will be samples from the true posterior distribution. It is important to monitor
the acceptance ratio r of the sampler through the iterations. Rough
recommendations: for vector updates r ≈ 20%., for scalar updates r ≈ 40%.
This can be controlled by “tuning” ν.

• Popular approach: Embed Metropolis steps within Gibbs to draw from full
conditionals that are not accessible to directly generate from.

17



• Example: For the linear model, our parameters are (β, σ2). We write θ = (β, log(σ2)) and, at the j-th iteration, propose
θ∗ ∼ N(θ(j−1), Σ). The log transformation on σ2 ensures that all components of θ have support on the entire real line and
can have meaningful proposed values from the multivariate normal. But we need to transform our prior to p(β, log(σ2)).

• Let z = log(σ2) and assume p(β, z) = p(β)p(z). Let us derive p(z). REMEMBER: we need to adjust for the jacobian. Then
p(z) = p(σ2)|dσ2/dz| = p(ez )ez . The jacobian here is ez = σ2.

• Let p(β) = 1 and an p(σ2) = IG(σ2 | a, b). Then log-posterior is:

−(a + n/2 + 1)z + z −
1

ez
{b +

1

2
(Y − Xβ)T (Y − Xβ)}.

• A symmetric proposal distribution, say q(θ∗|θ(j−1), Σ) = N(θ(j−1), Σ), cancels out in r . In practice it is better to compute
log(r): log(r) = log(p(θ∗ | y) − log(p(θ(j−1) | y)). For the proposal, N(θ(j−1), Σ), Σ is a d × d variance-covariance
matrix, and d = dim(θ) = p + 1.

• If log r ≥ 0 then set θ(j) = θ∗ . If log r ≤ 0 then draw U ∼ (0, 1). If U ≤ r (or log U ≤ log r) then θ(j) = θ∗ .
Otherwise, θ(j) = θ(j−1).

• Repeat the above procedure for j = 1, . . .M to obtain samples θ(1), . . . , θ(M).
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