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Areal data

Figure: Standardized stomach cancer incidence in 194 municipalities in
Slovenia

• Each datapoint is associated with a region like state, county,
municipality etc.

• Usually a result of aggregating point level data
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Spatial disease mapping

Standardized cancer incidence Socio-economic score

Figure: Slovenia stomach cancer data

• Goal: Identify factors (covariates) associated with the disease
• Goal: Identify spatial pattern, if any, and smooth spatially
• Inference is often restricted only to the given set of regions
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Key Issues

• Is there spatial pattern? Spatial pattern implies that observations
from units closer to each other are more similar than those recorded
in units farther away.

• Do we want to smooth the data? Perhaps to adjust for low
population sizes (or sample sizes) in certain units? How much do we
want to smooth?

• Inference for new areal units? Is prediction meaningful here? If we
modify the areal units to new units (e.g. from zip codes to county
values), what can we say about the new counts we expect for the
latter given those for the former? This is the Modifiable Areal Unit
Problem (MAUP) or Misalignment.
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Proximity Matrices

• A, entries aij , (aii = 0); choices for aij :
• aij = 1 if i , j share a common boundary (possibly a common vertex)
• aij is an inverse distance between units
• aij = 1 if distance between units is ≤ K
• aij = 1 for m nearest neighbors.

• A need not be symmetric.

• Ã: standardize row i by Ai+ =
∑

j aij (row stochastic but need not
be symmetric).

• A elements often called “weights”; nicer interpretation?
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• Note that proximity matrices are user-defined.

• We can define distance intervals, (0, d1], (d1, d2], and so on.
• First order neighbours: all units within distance d1.

• First order proximity matrix A(1). Analogous to A, a(1)
ij = 1 if i and j

are first order neighbors; 0 otherwise.

• Second order neighbors: all units within distance d2, but separated
by more than d1.

• Second order proximity matrix A(2); a(2)
ij = 1 if i and j are second

order neighbors; 0 otherwise

• And so on...
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• There are analogues for areal data of the empirical correlation
function and the variogram.

• Moran’s I: analogue of lagged autocorrelation

I =
n

∑
i
∑

j aij(Yi − Ȳ )(Yj − Ȳ )
(
∑

i 6=j aij)(
∑

i (Yi − Ȳ )2

I is not supported on [−1, 1].

• Geary’s C : analogue of Durbin-Watson statistic

C =
(n − 1)

∑
i
∑

j aij(Yi − Yj)2∑
i 6=j aij)

∑
i (Yi − Ȳ )2

• Both are asymptotically normal if Yi are i.i.d., the first with mean
−1/(n − 1) and the second with mean 1.

• Significance testing using a Monte Carlo test, permutation invariance
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• The areal correlogram is a useful tool to study spatial association
with areal data.

• Working with I, we can replace aij with a(1)
ij taken from A(1) and

compute → I(1)

• Next replace aij with a(2)
ij taken from A(2) and compute → I(2), etc.

• Plot I(r) vs. r

• If there is spatial pattern, we expect I(r) to decline in r initially and
then vary about 0.
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Spatial smoothers

• To smooth Yi , replace with Ŷi =
∑

i
aij Yj

ai+
Note: K -nearest

neighbours (KNN) regression falls within this framework.

• More generally,
(1− α)Yi + αŶi

Linear (convex) combination, shrinkage

• Model-based smoothing, e.g.,
E (Yi |{Yj , j = 1, 2, ..., n})
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Markov Random Fields

• First, consider Y = (y1, y2, ..., yn) and consider the set
{p(yi | yj , j 6= i)}

• We know p(y1, y2, ...yn) determines {p(yi | yj , j 6= i)} (full
conditional distributions)

• ??? Does {p(yi | yj , j 6= i)} determine p(y1, y2, ...yn)? If so, we call
the joint distribution a Markov Random Field.

• In general we cannot write down an arbitrary set of conditionals and
assert that they determine the joint distribution. Example:

Y1 |Y2 ∼ N(α0 + α1Y2, σ
2
1)

Y2 |Y1 ∼ N(β0 + β1Y 3
1 , σ

2
2).

• The first equation implies that E [Y1] = α0 + α1E [Y2], i.e., E [Y1] is
linear in E [Y2]. The second equation implies that
E [Y2] = β0 + β1E [Y 3

1 ], i.e. E [Y2] is linear in E [Y 3
1 ]. Clearly this

isn’t true in general. Hence no joint distribution.
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• Also p(y1, . . . , yn) may be improper even if all the full conditionals
are proper.

p(y1, y2) ∝ exp{(y1 − y2)2}

But p(Y2 |Y1) ∝ N(Y2) and p(Y1 |Y2) ∝ N(Y2, 1). Yet the joint
distribution is improper.

• Compatibility: Brook’s Lemma. Let y0 = (y10, . . . , yn0) be any fixed
point in the support of p(·).

p(y1, . . . , yn) = p(y1 | y2, . . . , yn)
p(y10 | y2, . . . , yn)

p(y2 | y10, y3, . . . , yn)
p(y20 | y10, y3, . . . , yn)

. . .
p(yn | y10, . . . , yn−1,0)
p(yn0 | y10, . . . , yn−1,0)p(y10, . . . , yn0).

If LHS is proper, the fact that it integrates to 1 determines the
normalizing constant!
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GLM for Spatial disease mapping

• At unit (region) i , we observe response yi and covariate xi

• g(E (yi )) = x>i β + wi where g(·) denotes a suitable link function

Hierarchical areal model:
k∏

i=1
p1(yi |x ′i β + wi )× N−1(w | 0, τw Q(ρ))× p2(β, τw , ρ)

• Notation: N−1(m,Q) denotes normal distribution with mean m and
precision (inverse covariance) Q

• p1 denotes the functional form of the density corresponding to the
link g(·)
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How to model Q(ρ)

• Choice of Q(ρ) should enable spatial smoothing

• One possibility: Represent each region by a single point and use
Gaussian Process covariance i.e. Q(ρ)−1

ij = C(m(i),m(j))

• Many possible choices to map the region i into a Euclidean
coordinate m(i)

• Is it appropriate to represent a large area with a single point?

• Also GP approach is computationally very expensive

• Alternate approach: Represent spatial information in terms of a
graph depicting the relative orientation of the regions
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CAR models

• Conditional autoregressive (CAR) model (Besag, 1974; Clayton and
Bernardinelli, 1992)

• Areal data modeled as a graph or network: V is the set of vertices
(regions)

• i ∼ j if regions i and j share a common border
• Adjacency matrix A = (aij) such that aij = I(i ∼ j)
• ni is the number of neighbors of i
• CAR model:

wi |w−i ∼ N−1( ρni

∑
j | i∼j

wj , τw ni )
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CAR models

• CAR model:
wi |w−i ∼ N−1( 1

ni

∑
j | i∼j

wj , τw ni )

• w = (w1,w2, . . . ,wk)> ∼ N−1(0, τw (D − ρA)) where
D = diag(n1, n2, . . . , nk)

• ρ = 1⇒ Improper distribution as (D − A)1 = 0 (ICAR)
• Can be still used as a prior for random effects
• Cannot be used directly as a data generating model
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CAR models

• CAR model:
wi |w−i ∼ N−1( 1

ni

∑
j | i∼j

wj , τw ni )

• w = (w1,w2, . . . ,wk)> ∼ N−1(0, τw (D − ρA)) where
D = diag(n1, n2, . . . , nk)

• ρ = 1⇒ Improper distribution as (D − A)1 = 0 (ICAR)
• Can be still used as a prior for random effects
• Cannot be used directly as a data generating model

• ρ < 1⇒ Proper distribution with added parameter flexibility
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SAR models

• Simultaneous Autoregressive (SAR) model (Whittle, 1954)
• Instead of taking the conditional route, SAR model proceeds by

simultaneously modeling the random effects

wi = ρ
∑
i 6=j

bijwj + εi for i = 1, 2, . . . , k

• εi
ind∼ N−1(0, τi ) are errors independent of w

• A common choice is to define bij = I(i ∼ j)/ni

• Joint distribution: w ∼ N−1(0, (I − ρB)>F (I − ρB)), B = (bij) and
F = diag(τ1, τ2, . . . , τk)

• ρ = 1⇒ Improper distribution
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Interpretation of ρ in proper CAR and SAR models

• Calibration of ρ as a correlation, e.g., (as reported in Banerjee et al.
2014)

ρ = 0.80 yields 0.1 ≤ Moran’s I ≤ 0.15,
ρ = 0.90 yields 0.2 ≤ Moran’s I ≤ 0.25,
ρ = 0.99 yields Moran’s I ≤ 0.5

• So, used with random effects, scope of spatial pattern may be limited
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Interpretation of ρ in proper CAR and SAR models

• ρ cannot be interpreted as correlation between neighboring wi ’s
(Wall, 2004; Assuncao and Krainski, 2009)

Figure: Neighbor pair correlations as a function of ρ for proper CAR and
SAR models over the graph of US states
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SAR model and Cholesky factors

• General SAR model:

wi =
∑
i 6=j

bijwj + εi for i = 1, 2, . . . , k

• w ∼ N−1(0, (I − B)>F (I − B)) where F = diag(τ1, τ2, . . . , τk)
• Only proper when I − B is invertible which is not guaranteed for

arbitrary B
• SAR is essentially modeling the precision matrix through the

Cholesky factor I − B

• Cholesky factors are not unique
• We can always choose a lower triangular Cholesky factor
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New model

w1 = ε1

w2 = b21w1 + ε2

w3 = b31w1 + b32w2 + ε3

...
wk = bk1w1 + bk1w2 + . . .+ bk,k−1wk−1 + εk

• B = (bij) is now a strictly lower triangular matrix.
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New model

• Advantages of lower triangular B:

• w ∼ N−1(0, (I −B)>F (I −B)) is a proper distribution for any choice
of lower triangular B

• det(L>FL) =
∏n

i=1 τi where F = diag(τ1, . . . , τk ) and L = I − B

• w>L>FLw = τ1w2
1 +

∑k
i=2 τi (wi −

∑
{j<i} wjbij )2

• Likelihood N−1(w | 0, (I − B)>F (I − B)) can be computed using
O(k + s) flops where s denotes the sparsity (number of non-zero
entries) of B.

• Even if k is large, evaluation of likelihood is fast if each region only
shares border with a few others

19



Choice of B and F

• How to specify B and F ?
• Sparsity of B is desirable
• If data had replicates for each region, there is large literature on fully

data driven estimation of sparse Cholesky factors (Wu and
Pourahmadi, 2003; Huang et al., 2006; Rothman et al., 2008; Levina
et al., 2008; Wagaman and Levina, 2009; Lam and Fan, 2009)

• Unfortunately many areal datasets lack replication
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Choice of B and F

• How to specify B and F ?

• Sparsity of B is desirable

• Like in NNGP set bij = 0 for j outside neighbor sets N(i)
• Pros: For graphs neighbor sets are naturally chosen:

N(i) = {j | j ∼ i , j < i}
• Cons: There is no covariance function on arbitrary graphs from

which we can obtain non-zero bij ’s and F
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Autoregressive models on trees

• D = (dij) is the shortest distance matrix on the graph

• If the graph was a tree (no loops), then ρD = (ρdij is then a valid
autoregressive correlation matrix (AR(1) model on a tree, Basseville
et al., 2006).

• Areal graphs are loopy and are not usually trees
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Local embedded spanning trees

• Embedded spanning trees (EST) of a graph G is a subgraph of G
which is a tree and spans all the vertices of G

• Note that to specify wi =
∑

j∈N(i) bijwj + εi we only need a joint
distribution on {i} ∪ N(i)

• Let Gi denote the subgraph of G which includes vertices {i} ∪ N(i)
and the edges among them

• The subgraph Ti of Gi which only contains the edges
{i ∼ j | j ∈ N(i)} is an embedded spanning tree of Gi

• Use the local embedded spanning trees Ti to specify the bij ’s and τi
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Directed acyclic graph autoregressive (DAGAR) model

• ARi denotes the AR(1) distribution on Ti

• Solve for bij and τi such that EARi (wi |wN(i)) =
∑

j∈N(i) bijwj and
τi = 1/VarARi (wi |wN(i))

• No edge is left out !

Figure: Decomposing a graph into a sequence of embedded spanning trees
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Properties of DAGAR models

• bij = bi = ρ/(1 + (|N(i)| − 1)ρ2)

• τi = (1 + (|N(i)| − 1)ρ2)/(1− ρ2)

• det(QDAGAR) =
∏k

i=1 τi

• Positive definite for any 0 ≤ ρ ≤ 1

• Interpretability of ρ:
• If the graph is a tree, then DAGAR model is same as the AR(1)

model on the tree i.e. correlation between d th order neighbors is ρd

for d = 1, 2, . . .
• If the graph is a closed two-dimensional grid, then each neighbor pair

correlation is ρ

• pDAGAR(w) can be stored and evaluated using O(e + k) flops where
e is the total number of neighbor pairs
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Dependence on ordering

• DAGAR model depends on the ordering of the regions when
decomposing into local trees

• We can define a DAGAR model for every ordering

• Spatial regions do not have natural ordering

• How to choose the ordering?

• Coordinate based orderings were used in Datta et al., 2016; Stein,
2004; Vecchia, 1988

• Model averaging over orderings ? Too many possibilities (k!)
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Order-free model

• Let Q be the average over DAGAR precision matrices corresponding
to all k! possible orderings
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Order-free model

• Let Q be the average over DAGAR precision matrices corresponding
to all k! possible orderings

• Q is is free of ordering and available in closed form

• Q(i , j) is non-zero if and only if either i ∼ j or i ≈ j
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Order-free model

• Sparsity of Q is e2 where e2 is the number of edges in the second
order graph (moral graph) created from G

• As e2 > e, Q is less sparse than the CAR model or the ordered
DAGAR model precision matrix and has higher flop count

• Total computational total cost for evaluating Q is O(e2nmax)

• e2 < knmax(nmax + 1)/2 where nmax = max(ni )

• If nmax is small, i.e., as long as each region only shares border with a
few others (which is often the case), Q is still quite sparse even for
large k
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Interpretation of ρ
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Figure: Average neighbor pair correlations as a funcion of ρ for proper CAR
and DAGAR models
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Simulated data analysis
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Slovenia stomach cancer data

Standardized cancer incidence Socio-economic score

Figure: Slovenia stomach cancer data

• Observed (Oi ) and expected (Ei ) number of cancer counts for each
of the 194 municipalities of the country

• Oi ∼ Poisson(Ei exp(α + βSEi + wi )) where w ∼ N−1(0, τw Q(ρ))
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Slovenia stomach cancer data

Table: Parameter estimates with confidence intervals and model comparison
metrics

α β ρ DIC LPPDLOOCV
1

CAR 0.09 (0.02, 0.16) -0.12 (-0.19, -0.04) 0.33 (0.02, 0.86) 1097 1170
DAGAR 0.11 (0.03, 0.18) -0.12 (-0.19, -0.06) 0.08 (0.004, 0.24) 1091 1127

DAGAROF 0.11 (0.05, 0.17) -0.12 (-0.18, -0.06) 0.06 (0.003, 0.2) 1090 1133

• Zadnik and Reich (2006) observed spatial confounding with ICAR
model (β̂ICAR = −0.02(−0.10, 0.06))

• Here for all three models the CIs for β lie outside zero
• Estimates of ρ are much smaller than 1
• Estimates of β here are closer to those obtained in the non-spatial

(NS) analysis (β̂NS = −1.4(−0.17,−0.10))

1Log-predictive posterior density using Leave one out cross validation
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Summary

• DAGAR models for areal data constructed from sparse Cholesky
factors

• Scalability for large areal data
• Ordered vs order-free DAGAR

• For all analysis, ordered model performed very similar to the
order-free model

• Ordered model is faster with theoretical results about interpretability
of ρ

• DAGAR models are positive definite and can be directly used to
model or simulate any multivariate data on graphs (like imaging or
social network data)

• Better performance than CAR modes for many scenarios
• DAGAR available at https://arxiv.org/pdf/1704.07848.pdf
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