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Basic concepts

Basic
concepts

What is ‘Survival analysis’ ?

Introduction

o Survival analysis (or duration analysis) is an area of
statistics that models and studies the time until an
event of interest takes place.

o In practice, for some subjects the event of interest
cannot be observed for various reasons, e.g.
« the event is not yet observed at the end of the study
¢ another event takes place before the event of interest

o In survival analysis the aim is

e to model ‘time-to-event data’ in an appropriate way
¢ to do correct inference taking these special features of
the data into account.
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Examples

< Medicine :
¢ time to death for patients having a certain disease
e time to getting cured from a certain disease
o time to relapse of a certain disease
o Agriculture :
o time until a farm experiences its first case of a certain
disease
o Sociology (‘duration analysis’) :

¢ time to find a new job after a period of unemployment
o time until re-arrest after release from prison

o Engineering (‘reliability analysis’) :
¢ time to the failure of a machine



Common functions in survival analysis
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o Let T be a non-negative continuous random variable,
representing the time until the event of interest

o Denote
F(t)=P(T <t) distribution function
f(t) probability density function
« For survival data, we consider rather
S(t) survival function
H(t) cumulative hazard function
h(t) hazard function

o Knowing one of these functions suffices to determine
the other functions
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Survival function :
S(t)=P(T>t)=1-F(1)

o Probability that a randomly selected individual will
survive beyond time t

o Decreasing function, taking values in [0, 1]
o Equalstatt=0andOatt=
Cumulative hazard function :
H(t) = —log S(t)

o Increasing function, taking values in [0, +oc]
o S(t) = exp(—H(t))



Hazard function (or hazard rate) :

e Pt<T<t+At|T>1)
concepts _ H — -
M = fm, S
_ 1 PUsT<tran
~ P(T >t) at—o At
f(ty —d d
Introduction — — I = —H t
Ongoing research (t) dt og S( t) dt ( )

o h(t) measures the instantaneous risk of dying right

after time ¢ given the individual is alive at time ¢

o Positive function (not necessarily increasing or
decreasing)

o The hazard function h(t) can have many different
shapes and is therefore a useful tool to summarize
survival data
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Basic Random right censoring :

concepts

o For certain individuals under study, only a lower bound
for the true survival time is observed

o Ex: In aclinical trial, some patients have not yet died at
iroducton the time of the analysis of the data

o Two latent variables :
T = survival time
C = censoring time
= Data: (Y,A) with
Y = min(T,C)
A = [(T<CO)
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o Censoring can occur for various reasons :

end of study

lost to follow up

competing event (e.g. death due to some cause other

than the cause of interest)
— patient withdrawing from the study, change of treatment,

Introduction

Ongoing research

o We assume that T and C are independent (called
independent censoring)
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Example : Random right censoring in HIV study
¢ Study enrolment: January 2005 - December 2006
o Study end: December 2008

o Objective: HIV patients followed up to death due to
AIDS or AIDS related complication (time in month from
confirmed diagnosis)
o Possible causes of censoring :
¢ death due to other cause

e |ost to follow up / dropped out
o still alive at the end of study



Table: Data of first 6 patients in HIV study

S::écepts Patient id Entry Date Date last seen Status Time Censoring
1 18 March 2005 20 June 2005 Dropped out 3 0
2 19 Sept 2006 20 March 2007 Dead due to AIDS 6 1
eduction 3 15 May 2006 16 Oct 2006 Dead due to accident 5 0
Ongoing research 4 01 Dec 2005 31 Dec 2008 Alive 37 0
5 9 Apr 2005 10 Feb 2007 Dead due to AIDS 22 1
6 25 Jan 2005 24 Jan 2006 Dead due to AIDS 12 1
Introduction
Ongoing research
\in oduction 6 a
Ongoing researct
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Nonparametric estimation

Likelihood for randomly right censored data
o Random sample of size n: (Y;, A;) (i=1,...,n) with
Yi = min(T;, C;)
A= (T <)

and where
Ti,....,Th (latent) survival times
Ci,...,Cp (latent) censoring times
< Denote

f(-) and F(-) for the density and distribution of T
g(-) and G(-) for the density and distribution of C
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It can be shown that the likelihood for random right
censored data equals :

n A, 1-4;
[T [0 = avnrn] ™ [ - Fipe(v)
i=1
We assume that censoring is uninformative, i.e. the
distribution of the censoring times does not depend on the
parameters of interest related to the survival function.

= The factors (1 — G(Y;))?" and g(Y;)'~% are
non-informative for inference on the survival function

= They can be removed from the likelihood, leading to
[[rvy2s(y)' =2 = H h(Y;

where S(-) =1 — F(-) (survival function)
h(-) = f(-)/S(-) (hazard function)
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Kaplan-Meier (KM) estimator of the survival function

o Kaplan and Meier (JASA, 1958)
< Nonparametric estimation of the survival function for

right censored data

< Based on the order in which events and censored

observations occur

Notations :
o nobservations Yy, ..., Y, with censoring indicators
Aq,..., A,
o rdistinct event times (r < n)
o ordered eventtimes : Y(4),..., ¥(;) and corresponding
number of events: d(y), ...,
&

R(j) is the size of the risk set at event time Y(j)
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o Log-likelihood for right censored data :
n

>~ |Bilog (Y) + (1 - A)log S(Y))
i=1
o Replacing the density function f(Y;) by S(Y;_) — S(Y)),
yields the nonparametric log-likelihood :

gL =" [Arloa(S(Y,) — S(¥) + (1~ A)log S(¥)

o Aim : finding an estimator S(-) which maximizes log L

o It can be shown that the maximizer of log L takes the
following form :
[T (1 —hg).
IYp=t
for some h(1), RN h(r)
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o Plugging-in fS(') into the log-likelihood, gives after some
algebra :

r
log L =Y~ [dyylog hy + (Rg) — dp) log(1 — )
j=1

o Using this expression to solve

logL =0
dhy)
leads to
5 i
"0 =Ry

o Plugging in this estimate fg; in 5(t) = [T, vy <t(1 = hgy)
we obtain :

A Ry — dp;
S(t) = H % = Kaplan-Meier estimator
jYp=t 0
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© Step function with jumps at the event times
o If the largest observation, say Y, is censored :
« 5(t) does not attain 0
intoucton o Impossible to estimate S(t) consistently beyond Y,

e Various solutions :
-Set §(t) =0fort > Y,
-Set 5(t) = §(Y,) for t > Y,
- Let §(t) be undefined for t > Y,

o When all data are uncensored, the Kaplan-Meier
estimator reduces to the empirical distribution function



Asymptotic normality of the KM estimator

The variance can be consistently estimated by (Greenwood
b
= formula)

2 2 ag)
Var(S(1)) = $%(1)
o ,-%:St Ry (Ry) — dy)

‘e Asymptotic normality of S(t) :

A

S(t) — S(t)

L % N(0,1)
Var(5(t))

Nelson-Aalen estimator of the cumulative hazard function
Proposed by Nelson (1972) and Aalen (1978) :

R djj
A=Y g2 fort<
i<t

The estimator is also asymptotically normal



Point estimate of the mean survival time
©» Nonparametric estimator can be obtained using the

Somepis Kaplan-Meier estimator, since
= E(T) = / tf(t)alt = / S(t)at

= We can estimate p by replacing S(t) by the KM
estimator S(f)

o But, §(t) is inconsistent in the right tail if the largest
observation (say Yj) is censored
e Proposal 1 : assume Y, experiences the event
immediately after the censoring time :

Yn R
v, = | Syt
0
e Proposal 2 : restrict integration to a predetermined

interval [0, tnax] and consider S(t) = S(Y,) for
Yo <t <tmpax:

tmax A
fityey = S(t)at
0
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Point estimate of the median survival time
< Advantages of the median over the mean :

e As survival function is often skewed to the right, the
mean is often influenced by outliers, whereas the
median is not

¢ Median can be estimated in a consistent way (if
censoring is not too heavy)

o An estimator of the p quantile x, is given by :
f(p:inf{t| 3(1) < 1 —p}
= An estimate of the median is given by X,_¢ 5
o The variance of X, can be estimated by :

D

where 7 is an estimator of the density f



Basic © Estimation of f involves smoothing techniques and the
concepts

° choice of a bandwidth sequence
= We prefer not to use this variance estimator in the

construction of a Cl
o Thanks to the asymptotic normality of S(x)

A

P Var(30%))

with obviously S(x,) =1 — p.
= A 100(1 — «)% Cl for xp is given by

{t: a/2 < W <Za/2}
Var(S(t))

SZa/z) ~1-—aq,
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Example : Schizophrenia patients
© Schizophrenia is one of the major mental illnesses
encountered in Ethiopia

— disorganized and abnormal thinking, behavior and
language + emotionally unresponsive

— higher mortality rates due to natural and unnatural
causes
o Project on schizophrenia in Butajira, Ethiopia

— survey of the entire population (68491 individuals) in
the age group 15-49 years

= 280 cases of schizophrenia identified and followed for 5
years (1997-2001)
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Patid Time Censor Education Onset Marital Gender Age

1 1 1 1 37 3 1 44
o 2 3 1 3 15 2 23
3 4 1 6 26 1 1 33

e 4 5 1 12 25 1 1 31
. 5 5 0 5 29 3 1 33
278 1787 0 2 16 2 1 18

279 1792 0 2 23 1 1 25

280 1794 1 2 28 1 1 35
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o In R : survfit

schizo <- read.table("c://...//Schizophrenia.csv", header=T,sep=";")

KM_schizo_g <- survfit(Surv(Time,Censor)~1,data=schizo,
type="kaplan-meier", conf.type="plain")

plot(KM_schizo_g, conf.int=T, xlab="Estimated survival", ylab="Time",
yscale=1)

mtext("Kaplan-Meier estimate of the survival function for Schizophrenic
patients", 3,-3)

mtext("(confidence interval based on Greenwood formula)", 3,-4)

In SAS : proc lifetest

title1 ’Kaplan-Meier estimate of the survival function for Schizophrenic
patients’;

proc lifetest method=km width=0.5 data=schizo;

time Time*Censor(0);

run;
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> KM_schizo_g
Call: survfit(formula = Surv(Time, Censor) ~ 1, dat a = schizo, type =
"kaplan-meier", conf.type = "plain”)

Introduction
Ongoing research
n events median 0.95LCL 0.95UCL
280 163 933 766 1099

Introduction > summary(KM_schizo_g)
Ongoing research Call: survfit(formula = Surv(Time, Censor) ~ 1, dat a = schizo, type =
"kaplan-meier", conf.type = "plain”)
time n.risk n.event survival std.err lower 95% CI upper 95% CI
S 1 280 1 0.996 0.00357 0.9894 1.000
3 279 1 0.9930.00503 0.9830 1.000
Onging researct 4 277 1 0.9890.00616 09772 1.000
1770 13 1 0.219 0.03998 0.1409 0.298
1773 12 1 0.201 0.04061 0.1214 0.281
1784 8 2 0.1510.04329 0.0659 0.236
1785 6 2 0.100 0.04092 0.0203 0.181
1794 1 1 0.000 NA NA NA
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Proportional hazards models
The semiparametric proportional hazards (PH) model
. o Cox, 1972

o Popular regression model in survival analysis

Ongoing research

< We will work with semiparametric proportional hazards
models, but there also exist parametric variations
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o Case of two treatment groups (Treated vs. Control) :
hr(t) = vhe(1),

S with hr(t) and hg(t) the hazard function of the treated

and control group

o Proportional hazards model :

e Ratio ¢ = hr(t)/hc(t) is constant over time

e 1) <1 (¢ > 1): hazard of the treated group is smaller
(larger) than the hazard of the control group at any time

e Survival curves of the 2 treatment groups can never
cross each other
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o Consider a treatment covariate x; (0 = control, 1 =
S treatment) and an exponential relationship between the
hazard and the covariate x; :

hi(t) = exp(Bxi)ho (1),
with
e e h;(t) : hazard function for subject /
e hy(t) : hazard function of the control group
e exp(8) = ¢ : hazard ratio (HR) or relative risk

o Other functional relationships can be used between the
hazard and the covariate



More complex model

Basic o Consider a set of covariates x; = (X1, . .., x,-p)T for
coneepts subject / :

hi(t) = ho(t) exp(57 x;),

with

o e 3 :the p x 1 parameter vector

Sz e ho(t) : the baseline hazard function (i.e. hazard for a

subject with x; =0, j=1,...,p)

o Proportional hazards (PH) assumption : ratio of the
hazards of two subjects with covariates x; and x; is
constant over time :
hi(t) _ exp(87x;)
h(t)  exp(87x))
o Semiparametric PH model : leave the form of hy(t)
completely unspecified and estimate the model in a
semiparametric way




Fitting the semiparametric PH model

o Based on likelihood maximization

Basic
coneepis o As ho(t) is left unspecified, we maximize a so-called
partial likelihood instead of the full likelihood :
| O | i
= T
S =1 2oken(yy) &P (¢ F)
' where
o o r observed event times
e Yy, Y ordered event times
® X(1), -5 X(r) corresponding covariate vectors
e R(Yy) risk set at time Y(;

o It can be shown that the partial likelihood is actually a
profile likelihood, in which the baseline hazard is
profiled out.

o This expression is used to estimate S through
numerical maximization



Inference under the Cox model

Basic o Variance-covariance matrix of 3 can be approximated
concepts ~

’ by the inverse of the information matrix evaluated at
— Var(fp) can be approximated by [/(3)],/

o Properties (consistency, asymptotic normality) of 3 are
well established (Gill, 1984)

o A 100(1-a)% confidence interval for 3, is given by
Bh =+ 2o 20/ Var(Bp)
o Testing hypotheses of the form

Ho : 81 = Bio

Hy = B1 # Bio

regarding a subvector ;1 of 3, can be done using the
Wald, score or likelihood-ratio test, exactly as in
parametric regression models.
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Example : Active antiretroviral treatment cohort study

o CD4 cells protect the body from infections and other
types of disease
— if count decreases beyond a certain threshold the
patients will die

o As HIV infection progresses, most people experience a
gradual decrease in CD4 count
o Highly Active AntiRetroviral Therapy (HAART)
¢ AntiRetroviral Therapy (ART) + 3 or more drugs
¢ Not a cure for AIDS but greatly improves the health of
HIV/AIDS patients
o Data from a study conducted in Ethiopia :

e 100 individuals older than 18 years and placed under
HAART for the last 4 years
e only use data collected for the first 2 years



oeente Table: Data of HAART Study

Pat Time Censo- Gen- Age Weight Func. Clin. CD4 ART

ID ring  der Status Status
1 699 O 1 42 37 2 4 3 1
2 455 1 2 30 50 3 111 1
3 705 0 1 32 57 0 3 165 1
et 4 694 0 2 50 40 1 3 95 1
5 86 0 2 35 37 0 4 34 1
97 101 0O 1 39 37 2 . 1
98 709 O 2 35 66 2 3 103 1
99 464 O 1 27 37 . . .2
100 537 1 2 30 76 1 4 11
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How is survival influenced by gender and age ?

o Define agecat = 1 if age < 40 years
= 2 if age > 40 years
o Define gender = 1 if male
= 2 if female

< Fit a semiparametric PH model including gender and
agecat as covariates :
¢ Bagecat = 0.226 (HR=1.25)
o Byender = 1.120 (HR=3.06)
e Inverse of the observed information matrix :
1,5 0.4645 0.1476
)= 01476 0.4638

o 95% Cl for fagecar : [-1.11, 1.56]
95% Cl for HR of old vs. young : [0.33, 4.77]
o 95% Cl for fgenger : [-0.21, 2.45]
95% Cl for HR of female vs. male : [0.81, 11.64]



Survival function estimation in the semiparametric model
o Survival function for subject with covariate x; :

Basic

concepts S,(t) = eXp(—H,(l‘))

= exp(—Ho(t) exp(5'x)))

Ongoing _ (So(t))exp(/gtxl)

with So(t) = exp(—Ho(t)) and Hy(t) = J; ho(s)ds

o Estimate the baseline cumulative hazard Hy(t) by
" a;

h‘n’nd \","rrv ‘ Ho(t) — Z (j)

o Define

8(t) = (éo(r))exp‘@x’),

with So(t) = exp(—FHo(t))

o It can be shown that the estimator is asymptotically
normal



Example : Survival function estimates for marital status
groups in the schizophrenic patients data

Basic
concepts

Single group : 0.755 95% CI :[0.690, 0.827]
Married group : 0.796 95% CI :[0.730, 0.867]
Alone again group : 0.537 95% CI : [0.453, 0.636]
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Checking the proportional hazards assumption

o PH assumption : hazard ratio between two subjects
with different covariates is constant over time

o Diagnostic plots :

e Consider for simplicity the case of a covariate with r

levels

o Estimate the cumulative hazard function for each level
of the covariate by means of the Nelson-Aalen estimator
= Hi(t), Ha(t), ..., H/(t) should be constant multiples

of each other :

PH assumption holds if

parallel curves
constant lines
straight lines through origin
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Parametric survival models
Some common parametric distributions

o Exponential distribution : Sy(t) = exp(—Af)
o Weibull distribution : Sp(t) = exp(—At*)

1
()

o Log-normal distribution : Sp(t) =1 — Fp (W)

o Log-logistic distribution : Sy()
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concepts Parametric survival models

The parametric models considered here have two

Introduction

cemsss o representations
¢ Accelerated failure time model (AFT) :
Ongoing researn Si(t) = So(exp(67 x))t),
where
e 0=(64,...,0p)" = vector of regression coefficients

 exp(07x;) = acceleration factor
e Sy belongs to a parametric family of distributions

Hence,
h,(t) = exp (GTX,') ho(exp(GTx,-)t)



and
Basic

concepts Mi — exp(_eTXi)MO
where M; = median of S;, since

So(Mp) = % = 5i(M;) = So(exp(67 x;)M))

Ex : For one binary variable (say treatment (T) and
control (C)), we have My = exp(—0)M :

1

——  Control
- Treated

Survival function
0 025 05 0.75

0.0 05 1.0 15 20
Time
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¢ Linear model :

log T =p+~"x+ oW,
where
T e 1 = intercept
creane e e v=(m,...,7p)" = vector of regression coefficients

e o = scale parameter

e W has known distribution, that is
e independent of x (random design)
e the same for all x (fixed design)

and the mean and variance of W are fixed to identify
the model
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concepts o These two models are equivalent, if we choose
e Sy = survival function of exp(u + o W)
!r [ ] 0 = —’)/
Indeed,
S Si(t) = P(Ti>1)

= P(log T; > logt)
= P(u+ oW >logt—~'x)
So(exp(logt —~'x;))

= Sy(texp(6'x)))

= The two models are equivalent



Basic Special case : the Weibull distribution

oneers < Consider the accelerated failure time model
Si(t) = So(exp(0'x)t),
i where Sy(t) = exp(—At*) is Weibull

= Si(t) = exp (— Aexp(5'x;)t*) with 3 = af
= fi(t) = At exp(B'x;) exp ( — Aexp(B'x)t*)
= hi(t) = aXt*~ exp(B'x;)= ho(t) exp(5'x),

with ho(t) = axt®~" the hazard of a Weibull

= We also have a Cox PH model
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o The above model is also equivalent to the following

linear model :
logT = p+~!x+ oW,
where W has a standard extreme value distribution, i.e.
Sw(w) = exp(—e"). Indeed,
P(W>w) = P(exp(p+oW)>exp(u+ow))
= So(exp(p+ow))
= exp (— Aexp(ap + aow))
Since W has a known distribution, we fix A exp(au) = 1
and ao = 1 (identifiability constraint), and hence

P(W>w) = exp(—e")
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o It follows that
Weibull accelerated failure time model
= Cox PH model with Weibull baseline hazard
= Linear model with standard extreme value error

distribution
and
e 0=—v=p/a
e a=1/c

o A =exp(—u/o)
< Note that the Weibull distribution is the only continuous

distribution that can be written as an AFT model and as
a PH model
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Estimation

o It suffices to estimate the model parameters in one of

the equivalent model representations. Consider e.g. the
linear model :

logT =p+~"x+oW
o The likelihood function for right censored data equals

L(p,v,0) Hf, A
i=1

12[[ (IogY—,u—y x,)}

ag
i=1

log Yj — = 7T xi\ 114
X[Sw( )]
Since W has a known distribution, this likelihood can

be maximized w.r.t. its parameters u, vy, o
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o Let
(f,%,6) = argmax,, . . L(u, 7, 0)

o It can be shown that
e (f1,%,6) is asymptotically unbiased and normal

e The estimators of the accelerated failure time model (or
any other equivalent model) and their asymptotic
distribution can be obtained from the Delta-method
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Part Il : Cure models
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Introduction to cure models



Introduction

o In classical survival models, we assume that all

Introduction

individuals will experience the event of interest, so
lim S(t) =0
t—o0

where

S(t)=P(T >1t)

and T is the time until the event of interest occurs.
o This assumption is realistic when studying e.g.
e Time to death (all causes confounded)
e Time to failure of a machine
e Time to retirement



o However, in many situations, a fraction of the
population will never experience the event of interest :

Introduction

e Medicine : time until recurrence of a certain disease

e Economics : time to find a new job after a period of
MR unemployment

Ongoing research

e Demography : time to a second child after a first one
e Finance : time until a bank goes bankrupt

e Marketing : time until someone buys a new product
e Sociology : time until a re-arrest for released prisoners
e Education : time taken to solve a problem



o Two groups of individuals :
e Cured individuals
e Susceptible individuals

o The survival function is not proper :

Introduction

lim S(t) > 0
t—o0

b o Cure rate = probability of being cured :
1—p= lim S(%)
t—o0

o Example : Kaplan-Meier plot of time to distant
metastasis for breast cancer patients :

3 o

metastasis (in days)

= Height of the plateau correspondsto 1 — p
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Exponential Survival Exponential Survival with Cure
1.0 1.0
Introduction 08 08
Ongoing research -
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Ongoing research 0 0 4;_
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Example of exponential model with cure
(where height of the plateau = cure rate = 1 — p)



o The binary variable
B=I(T < )

[—— indicating if someone is cured or not, is latent

Ongoing research

o The observable variables are still Y and A as before,
but

Introduction

Ongoing researc

e when A = 1, the individual is susceptible
e when A = 0, we don’t know whether he is susceptible

Introduction

Ongoing ressarc or cured
start of study end of study
L 0
52 —
e} 2
e . e i ®
T T T T \
0 20 40 60 80 100

time since start of study



< Cure models are also called

e ‘split population models’ in economics
e ‘limited-failure population life models’ in engineering

Introduction

Ongoing research

S < How can we know that we need to use a cure model if
‘ we cannot distinguish cured observations from
censored uncured observations ?

seeat ¢ Informal: ‘if we have a long plateau that contains a large
number of data points, we can be confident that
(almost) all observations in the plateau correspond to
cured observations’

e Context of the study
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Is a cure model identified ?

Or : how can we know whether a censored observation in
the right tail is cured or not cured ?
Let

S(t) = P(T > t|B=0)P(B=0)+ P(T > t|B=1)P(B=1)
= 1-—p+pSy(t),

where Sy(t) = P(T > t|B = 1) is the (proper) survival
function of the susceptibles.
Let F,=1-S,

G = the censoring distribution

7f is the right endpoint of the support of F (for any F)

TF, < TG

then the model is identified !



Cure regression models

Two main families exist :
gzt o Mixture cure models :

Ongoing research

S(t|x,z) = p(2)Su(t | x) +1—p(2),

where
‘ e X and Z are two vectors of covariates
——— e p(z) = P(B=1|Z = z) is the probability of being

susceptible (incidence part)

o Su(t|x)=P(T >t]|X=x,B=1)is the (proper)
conditional survival function of the susceptibles (latency
part)

— the curerate is 1 — p(2)

The model has been proposed by Boag (1949),
Berkson and Gage (1952), Farewell (1982)
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< Promotion time cure models (also called bounded
cumulative hazard models or PH cure models) :

S(t] x) = exp{-0(x)F (1)},

where

e X is the complete vector of covariates
e 0(x) captures the effect of the covariates x on the
survival function S(t | x)

— proportional hazards structure
—the curerateis P(B=0| X = x) = exp{—0(x)}
The model has been proposed by Yakovlev et al (1996)

There also exist models that unify the mixture and the
promotion time cure model into one over-arching model



Is it important to account for cure?

Simulate data from a mixture cure model

Introduction

S(t] x.2) = p(2)Su(t | X) + 1= p(2)
nrion. with
o Incidence : logistic regression model with
Z=(1,Z,2)7, average cure proportion of 32%
o Latency : exponential model with covariate X = Z
o Censoring times follow an exponential distribution,
average censoring rate of 34%
o n=300
o For each dataset, we fit

e a Cox PH model
e a mixture cure model
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250 datasets from the classical Cox PH model (grey curves) and the misture cure model (yellow
curves) - (b) Boaplots of B1 (red line : B1) - (c) Bozplots of B2 (red line : f2)

= Not taking into account the presence of a cure fraction in
survival data has important consequences that may lead to

wrong conclusions



Examples

Example 1 : Breast cancer data
o Time to distant metastasis (in days)

Introduction

© 286 patients with a lymph-node-negative breast cancer
o Covariates :
e Age : range = [26-83], median = 52
o Estrogen receptor status : 0 = ER- (77 pts), 1 = ER+
(209 pts)
e Size of the tumor : range = [1-4], median = 1
e Menopausal status : 0 = premenopausal (129 pts),
1 = postmenopausal (157 pts)
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Time to distant metastasis (in days)
Figure 3
Introduction Kaplan & Meier (1958) estimator for the data from Wang et al. (2005) (+ : censored

observations)
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— 179 patients are right-censored, among which 88.3% are
censored after the last observed event time

— strong medical evidence for a fraction of cure in breast
cancer relapse



Example 2 : Personal loan data
< Data from a U.K. financial institution
o Data used in Stepanova and Thomas (2002), Tong et
. al. (2012)

Ongoing researct

o Application information for 7521 loans

S o Default observed for 376 out of 7521 observations (5%)
Var number Description Type
I v1 The gender of the customer (1=M, 0=F) categorical
v2 Amount of the loan continuous
v3 Number of years at current address continuous
v4 Number of years at current employer continuous
v5 Amount of insurance premium continuous
v6 Homephone or not (1=N, 0=Y) categorical
v7 Own house or not (1=N, 0=Y) categorical

v8 Frequency of payment (1=low/unknown, O=high) categorical




Note that
o heavy right censoring
o default will not/never take place for a large part of the

v population
= lim¢—o0 S(t) #0

S = we use a mixture cure model

A; =1 = the individual is susceptible
A; = 0 = we do not know whether default will ever take

oreon reseas place or not
Default No default

prob = p(z) prob =1 — p(2)



Mixture cure models
Recall the model :

Itroduction S(t ‘ X, Z) = p(Z)Su(t ‘ X) +1— p(z)

Ongoing research

Incidence :
o models the probability of being susceptible
p(z)=P(B=1|2Z=2)
o Most often logistic regression model :

exp(z’a)
p(z) = 1 +exp(z7a)
Latency :
< models the conditional survival function of the
susceptibles Sy(t| x) =P(T>t| X=x,B=1)

e parametric model
e Cox PH model
e AFT model, ...



Fully parametric model
e Ex: Logistic/Weibull model (Farewell, 1982)

< Conditional survival function of the uncured :

Su(t | x) = exp(—(re” ™ *)t)

with A > 0 the shape parameter and p > 0 the scale
parameter.
o Maximum likelihood estimation :

e Numerical optimization, e.g., Newton-Raphson
e Variance of the estimators via the inverse of the
observed information matrix
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Logistic / Cox PH model

< Conditional survival function of the uncured:
Su(t | x) = Sy’

with the baseline survival function S;(t) left unspecified.

o The PH assumption remains valid for the susceptibles
but is not valid anymore at the level of the population
= Partial likelihood approach developed for the Cox PH
model can not be used

o Several approaches have been proposed :

e Approaches based on the marginal likelihood
e Approaches based on the EM algorithm
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Other mixture cure models
o Logistic / semi parametric AFT models
o Other link functions in the incidence: probit,
complementary log-log link function

o Flexible semiparametric models, e.g.

e Cox model for latency and single-index structure in the
incidence : p(z) = g(vy' z) where g(-) is unspecified

o Logistic regression for incidence and non-parametric
model in the latency

o Non-parametric mixture cure models



Promotion time cure models

< Also called bounded cumulative hazard model or PH
Introduction
cure model

o Introduced by Yakovlev et al (1996) and formally
proposed by Tsodikov (1998)

¢ ldea : since, in the presence of cure, the survival
function is improper, the idea is to ‘bound’ the
cumulative hazard function

H(t) = 60F (1)

with F(-) a proper distribution function and 6 > 0
In this way
lim H(t) =0

t—o00



o If 6 depends on covariates, the (improper) survival
function is then given by

I;\:ridu:‘(icjt“t S(t | X) = exp{_e(X)F(t)}
where
o e X is the complete vector of covariates (with an
intercept)

o 6(x) captures the effect of the covariates x on the
survival function S(t | x)

o This formulation has a proportional hazards structure

o This model has a specific biological interpretation
(leading to the name ‘promotion time model’)

o Usually, §(x) = exp(37 x), and F is unspecified
o The cure rate is 1 — exp{—6(x)}
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<o Book :
e Maller and Zhou (1996)
o Review papers :

e Peng and Taylor (2014)
e Amico and VK (2018)
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The focused information criterion for a

~~=  mixture cure model
(joint with Gerda Claeskens)

Ongoing research
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Proportional hazards mixture cure model
We consider the model
S(t] x,z) =p(2)Su(t| x) +1 - p(2)

where
o survival function : proportional hazards model, i.e.

Su(tlx) = Sy(t)e’d
= oxp (— exp(x B)Hy(1))

where S,(-) and Hy(+) are the baseline survival and
baseline cumulative hazard function of the susceptibles

© cure rate : logistic model, i.e.

exp(z’a)
P o) 9 p

=Z «

p(z) ) T
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The data consist of iid vectors (X, Z;, Y;, A, i=1,...,n,
with
\/i — mln(Tl' C/)7 Ai — I(—rl S C/)7

and C; is independent of T; given (X, Z).

Maximum likelihood estimation :
The likelihood under the PH mixture cure model is given by

(. B, H ]ﬂ[[{ (ZTa)H{Y;}e¥ ﬁe—HW)exp(xw)}

=

]
><{1 o)+ 7(ZTa)e H(Yl-)exp(xirﬁ)}1—Ai},
(

where 7(t) = exp(t)/[1 + exp(t)].
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Define
(@, B, Hy) = argmax,, s 1y Ln(c, 8, H).

Asymptotic properties of (&, B, I:Iu) have been established
by Fang, Li and Sun (2005) and Lu (2007) :

n'/2(Hy(-) — Hu(-)) = Gaussian process

and
n'"2(@—a,B - B) % Multivariate normal

(for the case where the model is correctly specified)



Variable selection in a mixture cure model

The parameters in the model are
o « : for logistic model on cure rate 7 (+)

Ongoing research

o B, Hy(-) : for Cox PH model on survival function Sy(-|-)

Suppose we are interested in a certain quantity

p= (e, B, Hu(+)),

which we call the focus.

Of interest : Variable selection in order to estimate as well
as possible (in MSE sense) the focus .
Literature on variable selection for mixture cure models :
o Scolas et al (2016) (using Lasso)
o Dirick et al (2015) (using AIC)



Examples :

¢ Personalized prediction of the (unconditional) survival
of a given patient (or for given values of x and z) :

Ongoing research

S(t|x,z) = p(z)Su(t|x) +1 — p(2)
o Personalized prediction of the (unconditional) risk :

p(2)fult]x)
p(2)S4(tX) + 1 - p(2)

h(t|x,z) =

o Mean or median survival time for given values of x and
z (conditional or unconditional)

o Probability of being cured for given z : p(z)



How to do variable selection ?

Note that

‘ o Incorporating the full vectors x and z will lead to a full
gracnaesesch model with a large variance but a smaller bias as
compared to a narrow model that leaves out all
components of x and z, resulting in a large bias but a
smaller variance.

o One could construct intermediate model selection
scenarios where some of the components of x and z
are protected (i.e. forced to be present in all models).
The unprotected variables take part in the model
selection step.

For simplicity, we ignore this division and assume that all
components of x and z are unprotected.
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Focused Information Criterion (FIC)

General idea : ‘best’ model depends on the focus and is
selected by minimizing the MSE of the estimator of the
focus.

References : Claeskens and Hjort (2008), Cambridge.

Some notation : In each submodel we estimate the focus
by maximixing the semiparametric likelihood introduced
before, and we define

is,.s, = (s, 8,0 Bs. s, Hus,s,(*))s

where S; is the subset of {1, ..., p} (logistic) and S, is the
subset of {1,..., g} (Cox PH) that indicates which
components of x and z are present in the considered model.

Define

o~ o~ —

(S1, S2) = argming s, FIC(Sy, Sp) = argming, s, MSE(jis, s,)



Introduction

Ongoing researc

In order to be able to calculate the MSE of each submodel,
we need to make an assumption regarding the true model.

. We work with local misspecification :
o The true hazard rate is
Hu,me(t]X) = Hou(t) exp (x7 (8o + b/v/n)),
o The true logistic model is
logit{prue(2)} = 2" (a0 + a/V/n),

where ag and 3y are known, and a and b do not depend on
the sample size n.
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Asymptotic theory

Define

H H0U7 a — o, ﬁ ﬁ0> ( )

/ g1(t) d(Hy — Hou)(t) + 94 (@

where g = (91(-), 92)-
Note that
o If g = (0, ex), then

~

Hy — Hou, @ — ao, /3 50)( )

—~

— Qp, B_ 60)7

= k-th component of (@ — ag, B— Bo)

o lfg=( t),0), then

I <
H H0U7 o — g, B BO) ( )

—~

I/:Iu(t) - HOu(t)



Note that

U(HOU, ag + 2 0 and Un(ﬁ a, B) =0,

b
it ) =

Ongoing research

where

Un(N)(9) Un(Hy, @, 8)(9)
— Un(0)(@1) + Ura()(g2)
o - = score operator

and
u(r) = EUL(TN),

where the expected value is with respect to the true model.



For any submodel (S;, S,),

172,13 _ 2
n'/2(Hys, s, — Hou, @s,.s, — @0, Bs,.s, — Bo)

converges weakly to a Gaussian process G with covariance
function

Cov(G(g), G(@)) = /O C01(05'6,(9):0) (D 75 6,01 (@)(1) dHo (1)

+(05 52)(8).0) T02(05 5,(9),0),

Introduction
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Introduction

S and with mean function
E(G(9)) = B (Us 3(1)(9)) +B2(‘7§11732(2)(g)70)~
Note that

o If g = (0, ex), we get the asymptotic normallty of the
k-th component of n'/2(as, s, — a0, Bs,.s, — Bo)

o If g = (I(- <t),0), we get the asymptotic normality of
n'/2(Hys, s,(1) — Hou(t))
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Hence,
n'2(fis, s, — 1o) > N(Bias(u, Sy, Sz, a, b), Var(y, S, S2)).

Estimation of Bias(u, S, Sz, a, b) and Var(u, S, S») :
o Variance : plug-in estimation of the asymptotic variance
o Bias : based on @ = n'/2ag, and b = n'/23g

Hence, -
FIC(S1,Sz) = MSE(jis, s,)-

This result can now be used to select the best model for
by minimizing FIC(S;, S2) over all possible submodels.
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Simulations

Only preliminary simulation results ...

Consider the following Cox/logistic cure model :
S(t|x, z) = p(2)Su(t|x) + 1 — p(2)

where
o X,Z ~ Unif[—1,1]

_ _exp(agtayZ)
© p(z) — 1+exp(apgtaiz)’

o Sy(t|x) = [exp(—1.65t)]PPBX) with gy = 2
o C ~ Exp(mean=1.7)
Then,

with apg = =2

%cure=0.2 and % censoring=0.4
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Focus parameters :

function (j = 1,2, 3)

9 candidate models :

/Lj = HOU(Z')

for t = 15, 279 or 3@ quartile of baseline cumulative survival

logistic | Cox

Estimated MSE (x 103)

True MSE (x10%)

X Z

X Z | m H2 H3 HA H2 H3
171 1 1 11162 7.30 29.9 156 645 36.0
21 1 1 0| 157 6.73 26.1 1.57 6.13 33.6
3|1 1 0 1]222 202 37.4 250 275 56.7
411 o1 1]172 8.31 36.8 1.78 8.16 50.2
5(1 0|1 0155 6.66 25.9 1.63 6.59 35.9
6| 1 0|0 1]155 9.0 68.8 176 142 835
710 1 1 1150 6.62 26.9 1.42 580 34.7
8|0 1 1 0 ]147 6.26 243 143 554 324
910 1 0 1] 124 546 100.1 141 109 1242

The true model is model 8.
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logistic | Cox | FIC model selection prob.

X Z | X Z| m P2 13
11 1 1 1 10.08 0.01 0.02
2|1 1 1 0| 0.07 0.02 0.10
3|1 1[0 1/0.00 0.05 0.11
411 0|1 10.01 0.00 0.00
5/1 0|1 0)0.18 0.09 0.20
6|1 0|0 1/0.00 0.19 0.12
710 1|1 1]0.20 0.05 0.07
8/ 0 1|1 0046 0.20 0.33
9|0 1 |0 1]0.00 0.39 0.05




Data analysis

Personal loan data :
< Data from a U.K. financial institution

© Data used in Stepanova and Thomas (2002), Tong et
al. (2012)

o Application information for 7521 loans
o Default observed for 376 out of 7521 observations (5%)

Introduction
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Var number Description Type
vi The gender of the customer (1=M, 0=F) categorical
v2 Amount of the loan continuous
v3 Number of years at current address continuous
v4 Number of years at current employer continuous
v5 Amount of insurance premium continuous
v6 Homephone or not (1=N, 0=Y) categorical
v7 Own house or not (1=N, 0=Y) categorical

v8 Frequency of payment (1=low/unknown, O=high) categorical
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Note that
o heavy right censoring

o default will not/never take place for a large part of the
population

= im0 S(E) #0
= we use a mixture cure model

A; =1 = the individual is susceptible
A; = 0 = we do not know whether default will ever take

place or not

prob = p(z) prob =1 — p(2)



o 7521 observations and 8 variables
« Default observed for 376 out of 7521 observations
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o 2 covariate vectors (o and ), empty models excluded :
(28 — 1) x (28 — 1) = 65025 FICs to calculate !

o Focus : probability of cure 1 — p(z) at z = median(2)

Part vi v2 v3 v4 v5 v6 v/ v8

Cure rate i 1 1 1 1 0 0 1
Survival of uncured | 1 0 1 0o 1 1 1 1




Conclusions

©» We considered a proportional hazards mixture cure
model, and developed the asymptotic distribution of the
estimators of the model components under local
misspecification of the model.

o This asymptotic distribution can then be used to select
the best variables to estimate a certain quantity (focus)
in the model via FIC minimization.
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Dependent
censoring
Introduction
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Part lll : Dependent
censoring
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. Introduction to dependent censoring
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o Random right censoring assumes that the survival time
(T) and the censoring time (C) are independent
o We observe
Y=min(T,C)and A = (T < C),
so we observe either T or C, but not both
= Relation between T and C not identifiable in general
= Relation between T and C needs to be specified in
order to identify the model
= Independence assumption is most natural
assumption, and holds true in many contexts

(See Tsiatis, 1975)



Independence of T and C is satisfied if

o Administrative censoring : individuals alive at the end of
the study are censored
= Censoring is unrelated to survival time
= Independence assumption makes sense

o Censoring happens for other reasons that are
completely unrelated to the event of interest
Eg. In medical studies, patients might move, die
because of car accident, etc.

o Many other contexts



Independence of T and C might be doubtful if

¢ Medical studies : Patients may withdraw from the study

e because their condition is deteriorating or because they
are showing side effects which need alternative
treatments (positive relation between T and C)

e because their health condition has improved and so
they no longer follow the treatment (negative relation
between T and C)

o Unemployment studies : Unemployed people with low
chances on the job market could decide to go abroad to
improve their chances, leading to censoring times that
depend on the duration of unemployment



o Transplantation studies : Often the length of time a
patient has to wait before he gets transplanted (C)
depends on his/her medical condition, so on his time to
death (T7)
¢ Health economics :

e Let U be the medical cost, then

U=AT)

for some increasing function A

e Suppose that the cost accumulation rate is constant
over time, but the rate may vary from individual to
individual :

A(T) = RT,

where R is the cost accumulation rate
e If T is censored by C, then U is censored by
A(C) = RC, and so we observe min(RT, RC)
e Clearly, RT and RC are dependent



Basic
concepts

Cure models
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Dependent
censoring
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Measurement
errors
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Example of accumulated medical cost data :

Accumulated cost (1K USD)
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Note that
o The independence between T and C can not be tested
in practice !
o It needs to be motivated based on the context of the
study

o Standard methods may lead to wrong or biased
inference

= It is important to propose a model under which the
dependence between T and C can be identified, and
which is flexible enough to cover a wide range of
situations



What happens if independence is assumed when T and C
are in reality correlated ?

Consider

(IogT7IogC)~N2<< 8),(; 1p>>7

where p = 0,+0.3,4+0.6 or £0.9
Further,let Y =min(T,C)and A = I(T < C)

For an arbitrary sample of size n = 200, we calculate
o the true survival function S(t) of T ~ exp(N(0, 1))

o the Kaplan-Meier estimator 5(t) (which assumes
T10)
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= The larger p, the more the Kaplan-Meier estimator

lies above the true survival function
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I