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Part I : Basic concepts
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Basic concepts

What is ‘Survival analysis’ ?

� Survival analysis (or duration analysis) is an area of
statistics that models and studies the time until an
event of interest takes place.

� In practice, for some subjects the event of interest
cannot be observed for various reasons, e.g.

• the event is not yet observed at the end of the study
• another event takes place before the event of interest
• ...

� In survival analysis the aim is
• to model ‘time-to-event data’ in an appropriate way
• to do correct inference taking these special features of

the data into account.
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Examples

� Medicine :
• time to death for patients having a certain disease
• time to getting cured from a certain disease
• time to relapse of a certain disease

� Agriculture :
• time until a farm experiences its first case of a certain

disease

� Sociology (‘duration analysis’) :
• time to find a new job after a period of unemployment
• time until re-arrest after release from prison

� Engineering (‘reliability analysis’) :
• time to the failure of a machine
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Common functions in survival analysis

� Let T be a non-negative continuous random variable,
representing the time until the event of interest

� Denote

F (t) = P(T ≤ t) distribution function
f (t) probability density function

� For survival data, we consider rather

S(t) survival function
H(t) cumulative hazard function
h(t) hazard function

� Knowing one of these functions suffices to determine
the other functions
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Survival function :

S(t) = P(T > t) = 1− F (t)

� Probability that a randomly selected individual will
survive beyond time t

� Decreasing function, taking values in [0,1]

� Equals 1 at t = 0 and 0 at t =∞

Cumulative hazard function :

H(t) = − log S(t)

� Increasing function, taking values in [0,+∞]

� S(t) = exp(−H(t))
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Hazard function (or hazard rate) :

h(t) = lim
∆t→0

P(t ≤ T < t + ∆t | T ≥ t)
∆t

=
1

P(T ≥ t)
lim

∆t→0

P(t ≤ T < t + ∆t)
∆t

=
f (t)
S(t)

=
−d
dt

log S(t) =
d
dt

H(t)

� h(t) measures the instantaneous risk of dying right
after time t given the individual is alive at time t

� Positive function (not necessarily increasing or
decreasing)

� The hazard function h(t) can have many different
shapes and is therefore a useful tool to summarize
survival data
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Random right censoring :

� For certain individuals under study, only a lower bound
for the true survival time is observed

� Ex : In a clinical trial, some patients have not yet died at
the time of the analysis of the data

� Two latent variables :

T = survival time

C = censoring time

⇒ Data : (Y ,∆) with

Y = min(T ,C)

∆ = I(T ≤ C)
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� Censoring can occur for various reasons :
– end of study
– lost to follow up
– competing event (e.g. death due to some cause other

than the cause of interest)
– patient withdrawing from the study, change of treatment,

...

� We assume that T and C are independent (called
independent censoring)
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Example : Random right censoring in HIV study

� Study enrolment: January 2005 - December 2006

� Study end: December 2008

� Objective: HIV patients followed up to death due to
AIDS or AIDS related complication (time in month from
confirmed diagnosis)
� Possible causes of censoring :

• death due to other cause
• lost to follow up / dropped out
• still alive at the end of study
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Table: Data of first 6 patients in HIV study

Patient id Entry Date Date last seen Status Time Censoring
1 18 March 2005 20 June 2005 Dropped out 3 0
2 19 Sept 2006 20 March 2007 Dead due to AIDS 6 1
3 15 May 2006 16 Oct 2006 Dead due to accident 5 0
4 01 Dec 2005 31 Dec 2008 Alive 37 0
5 9 Apr 2005 10 Feb 2007 Dead due to AIDS 22 1
6 25 Jan 2005 24 Jan 2006 Dead due to AIDS 12 1
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Nonparametric estimation

Likelihood for randomly right censored data

� Random sample of size n : (Yi ,∆i) (i = 1, . . . ,n) with

Yi = min(Ti ,Ci)

∆i = I(Ti ≤ Ci)

and where
T1, . . . ,Tn (latent) survival times
C1, . . . ,Cn (latent) censoring times

� Denote
f (·) and F (·) for the density and distribution of T
g(·) and G(·) for the density and distribution of C
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It can be shown that the likelihood for random right
censored data equals :

n∏
i=1

[
(1−G(Yi))f (Yi)

]∆i
[
(1− F (Yi))g(Yi)

]1−∆i

We assume that censoring is uninformative, i.e. the
distribution of the censoring times does not depend on the
parameters of interest related to the survival function.

⇒ The factors (1−G(Yi))∆i and g(Yi)
1−∆i are

non-informative for inference on the survival function

⇒ They can be removed from the likelihood, leading to

n∏
i=1

f (Yi)
∆i S(Yi)

1−∆i =
n∏

i=1

h(Yi)
∆i S(Yi)

where S(·) = 1− F (·) (survival function)
h(·) = f (·)/S(·) (hazard function)
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Kaplan-Meier (KM) estimator of the survival function

� Kaplan and Meier (JASA, 1958)

� Nonparametric estimation of the survival function for
right censored data

� Based on the order in which events and censored
observations occur

Notations :

� n observations Y1, . . . ,Yn with censoring indicators
∆1, . . . ,∆n

� r distinct event times (r ≤ n)

� ordered event times : Y(1), . . . ,Y(r) and corresponding
number of events: d(1), . . . ,d(r)

� R(j) is the size of the risk set at event time Y(j)
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� Log-likelihood for right censored data :
n∑

i=1

[
∆i log f (Yi) + (1−∆i) log S(Yi)

]
� Replacing the density function f (Yi) by S(Yi−)− S(Yi),

yields the nonparametric log-likelihood :

log L =
n∑

i=1

[
∆i log(S(Yi−)− S(Yi)) + (1−∆i) log S(Yi)

]
� Aim : finding an estimator Ŝ(·) which maximizes log L

� It can be shown that the maximizer of log L takes the
following form :

Ŝ(t) =
∏

j:Y(j)≤t

(1− h(j)),

for some h(1), . . . ,h(r)
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� Plugging-in Ŝ(·) into the log-likelihood, gives after some
algebra :

log L =
r∑

j=1

[
d(j) log h(j) +

(
R(j) − d(j)

)
log(1− h(j))

]
� Using this expression to solve

d
dh(j)

log L = 0

leads to

ĥ(j) =
d(j)

R(j)

� Plugging in this estimate ĥ(j) in Ŝ(t) =
∏

j:Y(j)≤t (1− h(j))

we obtain :

Ŝ(t) =
∏

j:Y(j)≤t

R(j) − d(j)

R(j)
= Kaplan-Meier estimator
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� Step function with jumps at the event times

� If the largest observation, say Yn, is censored :
• Ŝ(t) does not attain 0
• Impossible to estimate S(t) consistently beyond Yn

• Various solutions :
- Set Ŝ(t) = 0 for t ≥ Yn

- Set Ŝ(t) = Ŝ(Yn) for t ≥ Yn

- Let Ŝ(t) be undefined for t ≥ Yn

� When all data are uncensored, the Kaplan-Meier
estimator reduces to the empirical distribution function
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Asymptotic normality of the KM estimator

The variance can be consistently estimated by (Greenwood
formula)

V̂ar(Ŝ(t)) = Ŝ2(t)
∑

j:Y(j)≤t

d(j)

R(j)(R(j) − d(j))

Asymptotic normality of Ŝ(t) :

Ŝ(t)− S(t)√
V̂ar(Ŝ(t))

d→ N(0,1)

Nelson-Aalen estimator of the cumulative hazard function

Proposed by Nelson (1972) and Aalen (1978) :

Ĥ(t) =
∑

j:Y(j)≤t

d(j)

R(j)
for t ≤ Y(r)

The estimator is also asymptotically normal
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Point estimate of the mean survival time

� Nonparametric estimator can be obtained using the
Kaplan-Meier estimator, since

µ = E(T ) =

∫ ∞
0

tf (t)dt =

∫ ∞
0

S(t)dt

⇒We can estimate µ by replacing S(t) by the KM
estimator Ŝ(t)

� But, Ŝ(t) is inconsistent in the right tail if the largest
observation (say Yn) is censored

• Proposal 1 : assume Yn experiences the event
immediately after the censoring time :

µ̂Yn =

∫ Yn

0
Ŝ(t)dt

• Proposal 2 : restrict integration to a predetermined
interval [0, tmax ] and consider Ŝ(t) = Ŝ(Yn) for
Yn ≤ t ≤ tmax :

µ̂tmax =

∫ tmax

0
Ŝ(t)dt
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Point estimate of the median survival time
� Advantages of the median over the mean :

• As survival function is often skewed to the right, the
mean is often influenced by outliers, whereas the
median is not

• Median can be estimated in a consistent way (if
censoring is not too heavy)

� An estimator of the pth quantile xp is given by :

x̂p = inf
{

t | Ŝ(t) ≤ 1− p
}

⇒ An estimate of the median is given by x̂p=0.5

� The variance of x̂p can be estimated by :

V̂ar(x̂p) =
V̂ar(Ŝ(xp))

f̂ 2(xp)
,

where f̂ is an estimator of the density f
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� Estimation of f involves smoothing techniques and the
choice of a bandwidth sequence
⇒We prefer not to use this variance estimator in the
construction of a CI

� Thanks to the asymptotic normality of Ŝ(xp) :

P
(
− zα/2 ≤

Ŝ(xp)− S(xp)√
V̂ar(Ŝ(xp))

≤ zα/2

)
≈ 1− α,

with obviously S(xp) = 1− p.

⇒ A 100(1− α)% CI for xp is given byt : −zα/2 ≤
Ŝ(t)− (1− p)√

V̂ar(Ŝ(t))

≤ zα/2


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Example : Schizophrenia patients

� Schizophrenia is one of the major mental illnesses
encountered in Ethiopia

→ disorganized and abnormal thinking, behavior and
language + emotionally unresponsive

→ higher mortality rates due to natural and unnatural
causes

� Project on schizophrenia in Butajira, Ethiopia

→ survey of the entire population (68491 individuals) in
the age group 15-49 years

⇒ 280 cases of schizophrenia identified and followed for 5
years (1997-2001)
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Table: Data on schizophrenia patients

Patid Time Censor Education Onset Marital Gender Age
1 1 1 1 37 3 1 44
2 3 1 3 15 2 2 23
3 4 1 6 26 1 1 33
4 5 1 12 25 1 1 31
5 5 0 5 29 3 1 33

. . .
278 1787 0 2 16 2 1 18
279 1792 0 2 23 1 1 25
280 1794 1 2 28 1 1 35
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� In R : survfit
schizo <- read.table("c://...//Schizophrenia.csv", header=T,sep=";")
KM_schizo_g <- survfit(Surv(Time,Censor)∼1,data=schizo,

type="kaplan-meier", conf.type="plain")
plot(KM_schizo_g, conf.int=T, xlab="Estimated survival", ylab="Time",

yscale=1)
mtext("Kaplan-Meier estimate of the survival function for Schizophrenic

patients", 3,-3)
mtext("(confidence interval based on Greenwood formula)", 3,-4)

� In SAS : proc lifetest
title1 ’Kaplan-Meier estimate of the survival function for Schizophrenic

patients’;
proc lifetest method=km width=0.5 data=schizo;
time Time*Censor(0);
run;
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> KM_schizo_g 
Call: survfit(formula = Surv(Time, Censor) ~ 1, dat a = schizo, type = 
"kaplan-meier", conf.type = "plain") 
 
      n  events  median 0.95LCL 0.95UCL  
    280     163     933     766    1099  
 
> summary(KM_schizo_g) 
Call: survfit(formula = Surv(Time, Censor) ~ 1, dat a = schizo, type = 
"kaplan-meier", conf.type = "plain") 
 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI 
    1    280       1    0.996 0.00357       0.9894        1.000 
    3    279       1    0.993 0.00503       0.9830        1.000 
    4    277       1    0.989 0.00616       0.9772        1.000 
 … 
 1770     13       1    0.219 0.03998       0.1409        0.298 
 1773     12       1    0.201 0.04061       0.1214        0.281 
 1784      8       2    0.151 0.04329       0.0659        0.236 
 1785      6       2    0.100 0.04092       0.0203        0.181 
 1794      1       1    0.000      NA           NA           NA 
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Proportional hazards models

The semiparametric proportional hazards (PH) model

� Cox, 1972

� Popular regression model in survival analysis

� We will work with semiparametric proportional hazards
models, but there also exist parametric variations
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Simplest expression of the model

� Case of two treatment groups (Treated vs. Control) :

hT (t) = ψhC(t),

with hT (t) and hC(t) the hazard function of the treated
and control group
� Proportional hazards model :

• Ratio ψ = hT (t)/hC(t) is constant over time
• ψ < 1 (ψ > 1): hazard of the treated group is smaller

(larger) than the hazard of the control group at any time
• Survival curves of the 2 treatment groups can never

cross each other
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More generalizable expression of the model

� Consider a treatment covariate xi (0 = control, 1 =
treatment) and an exponential relationship between the
hazard and the covariate xi :

hi(t) = exp(βxi)h0(t),
with

• hi (t) : hazard function for subject i
• h0(t) : hazard function of the control group
• exp(β) = ψ : hazard ratio (HR) or relative risk

� Other functional relationships can be used between the
hazard and the covariate
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More complex model

� Consider a set of covariates xi = (xi1, . . . , xip)T for
subject i :

hi(t) = h0(t) exp(βT xi),

with
• β : the p × 1 parameter vector
• h0(t) : the baseline hazard function (i.e. hazard for a

subject with xij = 0, j = 1, . . . ,p)

� Proportional hazards (PH) assumption : ratio of the
hazards of two subjects with covariates xi and xj is
constant over time :

hi(t)
hj(t)

=
exp(βT xi)

exp(βT xj)

� Semiparametric PH model : leave the form of h0(t)
completely unspecified and estimate the model in a
semiparametric way
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Fitting the semiparametric PH model

� Based on likelihood maximization

� As h0(t) is left unspecified, we maximize a so-called

partial likelihood instead of the full likelihood :

L (β) =
r∏

j=1

exp
(
xT

(j)β
)∑

k∈R(Y(j)) exp
(
xT

k β
)

where
• r observed event times
• Y(1), . . . ,Y(r) ordered event times
• x(1), . . . , x(r) corresponding covariate vectors
• R(Y(j)) risk set at time Y(j)

� It can be shown that the partial likelihood is actually a
profile likelihood, in which the baseline hazard is
profiled out.

� This expression is used to estimate β through
numerical maximization
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Inference under the Cox model

� Variance-covariance matrix of β̂ can be approximated
by the inverse of the information matrix evaluated at β̂
→ Var(β̂h) can be approximated by [I(β̂)]−1

hh

� Properties (consistency, asymptotic normality) of β̂ are
well established (Gill, 1984)

� A 100(1-α)% confidence interval for βh is given by

β̂h ± zα/2

√
Var(β̂h)

� Testing hypotheses of the form

H0 : β1 = β10

H1 : β1 6= β10

regarding a subvector β1 of β, can be done using the
Wald, score or likelihood-ratio test, exactly as in
parametric regression models.



Basic
concepts

Cure models
Introduction

Ongoing research

Dependent
censoring
Introduction

Ongoing research

Measurement
errors
Introduction

Ongoing research

Example : Active antiretroviral treatment cohort study

� CD4 cells protect the body from infections and other
types of disease
→ if count decreases beyond a certain threshold the
patients will die

� As HIV infection progresses, most people experience a
gradual decrease in CD4 count
� Highly Active AntiRetroviral Therapy (HAART)

• AntiRetroviral Therapy (ART) + 3 or more drugs
• Not a cure for AIDS but greatly improves the health of

HIV/AIDS patients

� Data from a study conducted in Ethiopia :
• 100 individuals older than 18 years and placed under

HAART for the last 4 years
• only use data collected for the first 2 years
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Table: Data of HAART Study

Pat Time Censo- Gen- Age Weight Func. Clin. CD4 ART
ID ring der Status Status
1 699 0 1 42 37 2 4 3 1
2 455 1 2 30 50 1 3 111 1
3 705 0 1 32 57 0 3 165 1
4 694 0 2 50 40 1 3 95 1
5 86 0 2 35 37 0 4 34 1

. . .
97 101 0 1 39 37 2 . . 1
98 709 0 2 35 66 2 3 103 1
99 464 0 1 27 37 . . . 2
100 537 1 2 30 76 1 4 1 1
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How is survival influenced by gender and age ?

� Define agecat = 1 if age < 40 years
= 2 if age ≥ 40 years

� Define gender = 1 if male
= 2 if female

� Fit a semiparametric PH model including gender and
agecat as covariates :

• β̂agecat = 0.226 (HR=1.25)
• β̂gender = 1.120 (HR=3.06)
• Inverse of the observed information matrix :

I−1(β̂) =

[
0.4645 0.1476
0.1476 0.4638

]
• 95% CI for β̂agecat : [-1.11, 1.56]

95% CI for HR of old vs. young : [0.33, 4.77]
• 95% CI for β̂gender : [-0.21, 2.45]

95% CI for HR of female vs. male : [0.81, 11.64]
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Survival function estimation in the semiparametric model
� Survival function for subject with covariate xi :

Si(t) = exp(−Hi(t))

= exp(−H0(t) exp(βtxi))

= (S0(t))exp(βt xi )

with S0(t) = exp(−H0(t)) and H0(t) =
∫ t

0 h0(s)ds
� Estimate the baseline cumulative hazard H0(t) by

Ĥ0(t) =
∑

j:Y(j)≤t

d(j)∑
k∈R(Y(j)) exp

(
x t

k β̂
) ,

� Define

Ŝi(t) =
(

Ŝ0(t)
)exp(β̂t xi )

,

with Ŝ0(t) = exp(−Ĥ0(t))

� It can be shown that the estimator is asymptotically
normal



Basic
concepts

Cure models
Introduction

Ongoing research

Dependent
censoring
Introduction

Ongoing research

Measurement
errors
Introduction

Ongoing research

Example : Survival function estimates for marital status
groups in the schizophrenic patients data
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Consider e.g. survival at 505 days :

Single group : 0.755 95% CI : [0.690, 0.827]
Married group : 0.796 95% CI : [0.730, 0.867]
Alone again group : 0.537 95% CI : [0.453, 0.636]
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Checking the proportional hazards assumption

� PH assumption : hazard ratio between two subjects
with different covariates is constant over time
� Diagnostic plots :

• Consider for simplicity the case of a covariate with r
levels

• Estimate the cumulative hazard function for each level
of the covariate by means of the Nelson-Aalen estimator
⇒ Ĥ1(t), Ĥ2(t), . . . , Ĥr (t) should be constant multiples
of each other :

Plot PH assumption holds if

log(Ĥ1(t)), ..., log(Ĥr (t)) vs t parallel curves

log(Ĥj (t))− log(Ĥ1(t)) vs t constant lines

Ĥj (t) vs Ĥ1(t) straight lines through origin
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Example :
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Parametric survival models

Some common parametric distributions

� Exponential distribution : S0(t) = exp(−λt)

� Weibull distribution : S0(t) = exp(−λtρ)

� Log-logistic distribution : S0(t) =
1

1 + (tλ)κ

� Log-normal distribution : S0(t) = 1− FN

(
log(t)− µ
√
γ

)
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Parametric survival models

The parametric models considered here have two
representations :

� Accelerated failure time model (AFT) :

Si(t) = S0(exp(θT xi)t),
where

• θ = (θ1, . . . , θp)T = vector of regression coefficients
• exp(θT xi ) = acceleration factor
• S0 belongs to a parametric family of distributions

Hence,

hi(t) = exp
(
θT xi

)
h0
(

exp(θT xi)t
)
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and

Mi = exp(−θT xi)M0

where Mi = median of Si , since

S0(M0) =
1
2

= Si(Mi) = S0
(

exp(θT xi)Mi
)

Ex : For one binary variable (say treatment (T) and
control (C)), we have MT = exp(−θ)MC :
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� Linear model :

log T = µ+ γT x + σW ,

where
• µ = intercept
• γ = (γ1, . . . , γp)T = vector of regression coefficients
• σ = scale parameter
• W has known distribution, that is

• independent of x (random design)
• the same for all x (fixed design)

and the mean and variance of W are fixed to identify
the model
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� These two models are equivalent, if we choose
• S0 = survival function of exp(µ+ σW )

• θ = −γ

Indeed,

Si(t) = P(Ti > t)

= P(log Ti > log t)

= P(µ+ σWi > log t − γtxi)

= S0
(

exp(log t − γtxi)
)

= S0
(
t exp(θtxi)

)
⇒ The two models are equivalent
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Special case : the Weibull distribution

� Consider the accelerated failure time model

Si(t) = S0
(

exp(θtxi)t
)
,

where S0(t) = exp(−λtα) is Weibull

⇒ Si(t) = exp
(
− λexp(βtxi)tα) with β = αθ

⇒ fi(t) = λαtα−1 exp(βtxi) exp
(
− λexp(βtxi)tα)

⇒ hi(t) = αλtα−1 exp(βtxi)= h0(t) exp(βtxi),

with h0(t) = αλtα−1 the hazard of a Weibull

⇒We also have a Cox PH model
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� The above model is also equivalent to the following
linear model :

log T = µ+ γtx + σW ,

where W has a standard extreme value distribution, i.e.
SW (w) = exp(−ew ). Indeed,

P(W > w) = P
(

exp(µ+ σW ) > exp(µ+ σw)
)

= S0
(

exp(µ+ σw)
)

= exp
(
− λexp(αµ+ ασw)

)
Since W has a known distribution, we fix λexp(αµ) = 1
and ασ = 1 (identifiability constraint), and hence

P(W > w) = exp(−ew )
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� It follows that

Weibull accelerated failure time model

= Cox PH model with Weibull baseline hazard

= Linear model with standard extreme value error

distribution
and

• θ = −γ = β/α

• α = 1/σ
• λ = exp(−µ/σ)

� Note that the Weibull distribution is the only continuous
distribution that can be written as an AFT model and as
a PH model
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Estimation

� It suffices to estimate the model parameters in one of
the equivalent model representations. Consider e.g. the
linear model :

log T = µ+ γT x + σW

� The likelihood function for right censored data equals

L(µ, γ, σ) =
n∏

i=1

fi(Yi)
∆i Si(Yi)

1−∆i

=
n∏

i=1

[ 1
σYi

fW
( log Yi − µ− γT xi

σ

)]∆i

×
[
SW

( log Yi − µ− γT xi

σ

)]1−∆i

Since W has a known distribution, this likelihood can
be maximized w.r.t. its parameters µ, γ, σ
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� Let

(µ̂, γ̂, σ̂) = argmaxµ,γ,σL(µ, γ, σ)

� It can be shown that
• (µ̂, γ̂, σ̂) is asymptotically unbiased and normal

• The estimators of the accelerated failure time model (or
any other equivalent model) and their asymptotic
distribution can be obtained from the Delta-method
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Part II : Cure models
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Introduction to cure models
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Introduction

� In classical survival models, we assume that all
individuals will experience the event of interest, so

lim
t→∞

S(t) = 0

where
S(t) = P(T > t)

and T is the time until the event of interest occurs.
� This assumption is realistic when studying e.g.

• Time to death (all causes confounded)
• Time to failure of a machine
• Time to retirement
• ...
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� However, in many situations, a fraction of the
population will never experience the event of interest :

• Medicine : time until recurrence of a certain disease

• Economics : time to find a new job after a period of
unemployment

• Demography : time to a second child after a first one

• Finance : time until a bank goes bankrupt

• Marketing : time until someone buys a new product

• Sociology : time until a re-arrest for released prisoners

• Education : time taken to solve a problem

• ...
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�� Two groups of individuals :
• Cured individuals
• Susceptible individuals

� The survival function is not proper :

lim
t→∞

S(t) > 0

� Cure rate = probability of being cured :

1− p = lim
t→∞

S(t)

� Example : Kaplan-Meier plot of time to distant
metastasis for breast cancer patients :
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Example of exponential model with cure
(where height of the plateau = cure rate = 1− p)
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� The binary variable

B = I(T <∞)

indicating if someone is cured or not, is latent

� The observable variables are still Y and ∆ as before,
but

• when ∆ = 1, the individual is susceptible

• when ∆ = 0, we don’t know whether he is susceptible
or cured
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� Cure models are also called

• ‘split population models’ in economics

• ‘limited-failure population life models’ in engineering

� How can we know that we need to use a cure model if
we cannot distinguish cured observations from
censored uncured observations ?

• Informal: ‘if we have a long plateau that contains a large
number of data points, we can be confident that
(almost) all observations in the plateau correspond to
cured observations’

• Context of the study
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Is a cure model identified ?

Or : how can we know whether a censored observation in
the right tail is cured or not cured ?
Let

S(t) = P(T > t |B = 0)P(B = 0) + P(T > t |B = 1)P(B = 1)

= 1− p + pSu(t),

where Su(t) = P(T > t |B = 1) is the (proper) survival
function of the susceptibles.
Let Fu = 1− Su

G = the censoring distribution
τF is the right endpoint of the support of F (for any F )

If
τFu ≤ τG,

then the model is identified !
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Cure regression models

Two main families exist :

� Mixture cure models :

S(t | x , z) = p(z)Su(t | x) + 1− p(z),

where
• X and Z are two vectors of covariates
• p(z) = P(B = 1 | Z = z) is the probability of being

susceptible (incidence part)
• Su(t | x) = P(T > t | X = x ,B = 1) is the (proper)

conditional survival function of the susceptibles (latency
part)

→ the cure rate is 1− p(z)

The model has been proposed by Boag (1949),
Berkson and Gage (1952), Farewell (1982)
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� Promotion time cure models (also called bounded
cumulative hazard models or PH cure models) :

S(t | x) = exp{−θ(x)F (t)},

where
• X is the complete vector of covariates
• θ(x) captures the effect of the covariates x on the

survival function S(t | x)

→ proportional hazards structure

→ the cure rate is P(B = 0 | X = x) = exp{−θ(x)}
The model has been proposed by Yakovlev et al (1996)

There also exist models that unify the mixture and the
promotion time cure model into one over-arching model
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Is it important to account for cure?

Simulate data from a mixture cure model

S(t | x , z) = p(z)Su(t | x) + 1− p(z)

with

� Incidence : logistic regression model with
Z = (1,Z1,Z2)T , average cure proportion of 32%

� Latency : exponential model with covariate X = Z

� Censoring times follow an exponential distribution,
average censoring rate of 34%

� n = 300
� For each dataset, we fit

• a Cox PH model
• a mixture cure model
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⇒ Not taking into account the presence of a cure fraction in
survival data has important consequences that may lead to
wrong conclusions



Basic
concepts

Cure models
Introduction

Ongoing research

Dependent
censoring
Introduction

Ongoing research

Measurement
errors
Introduction

Ongoing research

Examples

Example 1 : Breast cancer data

� Time to distant metastasis (in days)

� 286 patients with a lymph-node-negative breast cancer
� Covariates :

• Age : range = [26-83], median = 52
• Estrogen receptor status : 0 = ER- (77 pts), 1 = ER+

(209 pts)
• Size of the tumor : range = [1-4], median = 1
• Menopausal status : 0 = premenopausal (129 pts),

1 = postmenopausal (157 pts)
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→ 179 patients are right-censored, among which 88.3% are
censored after the last observed event time
→ strong medical evidence for a fraction of cure in breast
cancer relapse
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Example 2 : Personal loan data

� Data from a U.K. financial institution

� Data used in Stepanova and Thomas (2002), Tong et
al. (2012)

� Application information for 7521 loans

� Default observed for 376 out of 7521 observations (5%)

Var number Description Type
v1 The gender of the customer (1=M, 0=F) categorical
v2 Amount of the loan continuous
v3 Number of years at current address continuous
v4 Number of years at current employer continuous
v5 Amount of insurance premium continuous
v6 Homephone or not (1=N, 0=Y) categorical
v7 Own house or not (1=N, 0=Y) categorical
v8 Frequency of payment (1=low/unknown, 0=high) categorical
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Note that

� heavy right censoring

� default will not/never take place for a large part of the
population

⇒ limt→∞ S(t) 6= 0
⇒ we use a mixture cure model

∆i = 1⇒ the individual is susceptible
∆i = 0⇒ we do not know whether default will ever take
place or not

Loans

Default No default

prob = p(z) prob = 1− p(z)
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Mixture cure models

Recall the model :

S(t | x , z) = p(z)Su(t | x) + 1− p(z)

Incidence :
� models the probability of being susceptible

p(z) = P(B = 1 | Z = z)

� Most often logistic regression model :

p(z) =
exp(zTα)

1 + exp(zTα)

Latency :
� models the conditional survival function of the

susceptibles Su(t | x) = P(T > t | X = x ,B = 1)
• parametric model
• Cox PH model
• AFT model, ...
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Fully parametric model
Ex: Logistic/Weibull model (Farewell, 1982)

� Conditional survival function of the uncured :

Su(t | x) = exp(−(λeβ
T x )tρ)

with λ > 0 the shape parameter and ρ > 0 the scale
parameter.
� Maximum likelihood estimation :

• Numerical optimization, e.g., Newton-Raphson
• Variance of the estimators via the inverse of the

observed information matrix
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Logistic / Cox PH model

� Conditional survival function of the uncured:

Su(t | x) = Su(t)exp(xTβ)

with the baseline survival function Su(t) left unspecified.

� The PH assumption remains valid for the susceptibles
but is not valid anymore at the level of the population
⇒ Partial likelihood approach developed for the Cox PH
model can not be used
� Several approaches have been proposed :

• Approaches based on the marginal likelihood
• Approaches based on the EM algorithm
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Other mixture cure models

� Logistic / semi parametric AFT models

� Other link functions in the incidence: probit,
complementary log-log link function
� Flexible semiparametric models, e.g.

• Cox model for latency and single-index structure in the
incidence : p(z) = g(γT z) where g(·) is unspecified

• Logistic regression for incidence and non-parametric
model in the latency

� Non-parametric mixture cure models
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Promotion time cure models

� Also called bounded cumulative hazard model or PH
cure model

� Introduced by Yakovlev et al (1996) and formally
proposed by Tsodikov (1998)

� Idea : since, in the presence of cure, the survival
function is improper, the idea is to ‘bound’ the
cumulative hazard function

H(t) = θF (t)

with F (·) a proper distribution function and θ > 0
In this way

lim
t→∞

H(t) = θ
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� If θ depends on covariates, the (improper) survival
function is then given by

S(t | x) = exp{−θ(x)F (t)}

where
• X is the complete vector of covariates (with an

intercept)
• θ(x) captures the effect of the covariates x on the

survival function S(t | x)

� This formulation has a proportional hazards structure

� This model has a specific biological interpretation
(leading to the name ‘promotion time model’)

� Usually, θ(x) = exp(βT x), and F is unspecified

� The cure rate is 1− exp{−θ(x)}
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The focused information criterion for a
mixture cure model

(joint with Gerda Claeskens)
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Proportional hazards mixture cure model

We consider the model

S(t | x , z) = p(z)Su(t | x) + 1− p(z)

where

� survival function : proportional hazards model, i.e.

Su(t |x) = Su(t)exp(xTβ)

= exp
(
− exp(xTβ)Hu(t)

)
where Su(·) and Hu(·) are the baseline survival and
baseline cumulative hazard function of the susceptibles

� cure rate : logistic model, i.e.

p(z) =
exp(zTα)

1 + exp(zTα)
or log

( p(z)

1− p(z)

)
= zTα
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The data consist of iid vectors (Xi ,Zi ,Yi ,∆i), i = 1, . . . ,n,
with

Yi = min(Ti ,Ci), ∆i = I(Ti ≤ Ci),

and Ci is independent of Ti given (Xi ,Zi).

Maximum likelihood estimation :
The likelihood under the PH mixture cure model is given by

Ln(α, β,H) =
n∏

i=1

[{
π(Z T

i α)H{Yi}eX T
i βe−H(Yi ) exp(X T

i β)
}∆i

×
{

1− π(Z T
i α) + π(Z T

i α)e−H(Yi ) exp(X T
i β)
}1−∆i

]
,

where π(t) = exp(t)/[1 + exp(t)].
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Define
(α̂, β̂, Ĥu) = argmaxα,β,H Ln(α, β,H).

Asymptotic properties of (α̂, β̂, Ĥu) have been established
by Fang, Li and Sun (2005) and Lu (2007) :

n1/2(Ĥu(·)− Hu(·)
)
⇒ Gaussian process

and
n1/2(α̂− α, β̂ − β)

d→ Multivariate normal

(for the case where the model is correctly specified)
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Variable selection in a mixture cure model

The parameters in the model are

� α : for logistic model on cure rate π(·)
� β,Hu(·) : for Cox PH model on survival function Su(·|·)

Suppose we are interested in a certain quantity

µ = µ(α, β,Hu(·)),

which we call the focus.

Of interest : Variable selection in order to estimate as well
as possible (in MSE sense) the focus µ.

Literature on variable selection for mixture cure models :

� Scolas et al (2016) (using Lasso)

� Dirick et al (2015) (using AIC)
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Examples :

� Personalized prediction of the (unconditional) survival
of a given patient (or for given values of x and z) :

S(t |x , z) = p(z)Su(t |x) + 1− p(z)

� Personalized prediction of the (unconditional) risk :

h(t |x , z) =
p(z)fu(t |x)

p(z)Su(t |x) + 1− p(z)

� Mean or median survival time for given values of x and
z (conditional or unconditional)

� Probability of being cured for given z : p(z)
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How to do variable selection ?

Note that

� Incorporating the full vectors x and z will lead to a full
model with a large variance but a smaller bias as
compared to a narrow model that leaves out all
components of x and z, resulting in a large bias but a
smaller variance.

� One could construct intermediate model selection
scenarios where some of the components of x and z
are protected (i.e. forced to be present in all models).
The unprotected variables take part in the model
selection step.

For simplicity, we ignore this division and assume that all
components of x and z are unprotected.
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Focused Information Criterion (FIC)

General idea : ‘best’ model depends on the focus and is
selected by minimizing the MSE of the estimator of the
focus.

References : Claeskens and Hjort (2008), Cambridge.

Some notation : In each submodel we estimate the focus µ
by maximixing the semiparametric likelihood introduced
before, and we define

µ̂S1,S2 = µ(α̂S1,S2 , β̂S1,S2 , ĤuS1,S2(·)),

where S1 is the subset of {1, . . . ,p} (logistic) and S2 is the
subset of {1, . . . ,q} (Cox PH) that indicates which
components of x and z are present in the considered model.

Define

(Ŝ1, Ŝ2) = argminS1,S2
FIC(S1,S2) = argminS1,S2

M̂SE(µ̂S1,S2)
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In order to be able to calculate the MSE of each submodel,
we need to make an assumption regarding the true model.

We work with local misspecification :

� The true hazard rate is

Hu,true(t |x) = H0u(t) exp
(
xT (β0 + b/

√
n)
)
,

� The true logistic model is

logit{ptrue(z)} = zT (α0 + a/
√

n
)
,

where α0 and β0 are known, and a and b do not depend on
the sample size n.
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Asymptotic theory

Define

〈Ĥu − H0u, α̂− α0, β̂ − β0〉 (g)

=

∫ τ

0
g1(t) d(Ĥu − H0u)(t) + gT

2 (α̂− α0, β̂ − β0),

where g = (g1(·),g2).

Note that

� If g = (0,ek ), then
〈Ĥu − H0u, α̂− α0, β̂ − β0〉 (g)

= k -th component of (α̂− α0, β̂ − β0)

� If g = (I(· ≤ t),0), then
〈Ĥu − H0u, α̂− α0, β̂ − β0〉 (g) = Ĥu(t)− H0u(t)
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Note that

U
(

H0u, α0 +
a√
n
, β0 +

b√
n

)
= 0 and Un(Ĥu, α̂, β̂) = 0,

where

Un(Γ)(g) = Un(Hu, α, β)(g)

= Un1(Γ)(g1) + Un2(Γ)(g2)

= score operator

and
U(Γ) = EUn(Γ),

where the expected value is with respect to the true model.
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For any submodel (S1,S2),

n1/2〈ĤuS1,S2 − H0u, α̂S1,S2 − α0, β̂S1,S2 − β0〉

converges weakly to a Gaussian process G with covariance
function

Cov
(
G(g),G(g̃)

)
=

∫ τ

0
σ1
(
σ−1

S1,S2
(g),0

)
(t)σ−1

S1,S2(1)(g̃)(t) dH0(t)

+
(
σ−1

S1,S2(2)(g̃),0
)T
σ2
(
σ−1

S1,S2
(g),0

)
,

and with mean function

E
(
G(g)

)
= B1

(
σ−1

S1,S2(1)(g)
)

+ B2
(
σ−1

S1,S2(2)(g),0
)
.

Note that

� If g = (0,ek ), we get the asymptotic normality of the
k -th component of n1/2(α̂S1,S2 − α0, β̂S1,S2 − β0)

� If g = (I(· ≤ t),0), we get the asymptotic normality of
n1/2(ĤuS1,S2(t)− H0u(t))
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Hence,

n1/2(µ̂S1,S2 − µ0)
d→ N

(
Bias(µ,S1,S2,a,b),Var(µ,S1,S2)

)
.

Estimation of Bias(µ,S1,S2,a,b) and Var(µ,S1,S2) :

� Variance : plug-in estimation of the asymptotic variance

� Bias : based on â = n1/2α̂Full and b̂ = n1/2β̂Full

Hence,
FIC(S1,S2) = M̂SE(µ̂S1,S2).

This result can now be used to select the best model for µ
by minimizing FIC(S1,S2) over all possible submodels.
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Simulations

Only preliminary simulation results ...

Consider the following Cox/logistic cure model :

S(t |x , z) = p(z)Su(t |x) + 1− p(z)

where

� X ,Z ∼ Unif[−1,1]

� p(z) = exp(α0+α1z)
1+exp(α0+α1z) , with α0 = α1 = 2

� Su(t |x) = [exp(−1.65t)]exp(β1x), with β1 = 2

� C ∼ Exp(mean = 1.7)

Then,

% cure = 0.2 and % censoring = 0.4
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Focus parameters :
µj = H0u(t)

for t = 1st ,2nd or 3rd quartile of baseline cumulative survival
function (j = 1,2,3)

9 candidate models :

logistic Cox Estimated MSE (×103) True MSE (×103)
X Z X Z µ1 µ2 µ3 µ1 µ2 µ3

1 1 1 1 1 1.62 7.30 29.9 1.56 6.45 36.0
2 1 1 1 0 1.57 6.73 26.1 1.57 6.13 33.6
3 1 1 0 1 22.2 20.2 37.4 25.0 27.5 56.7
4 1 0 1 1 1.72 8.31 36.8 1.78 8.16 50.2
5 1 0 1 0 1.55 6.66 25.9 1.63 6.59 35.9
6 1 0 0 1 15.5 9.50 68.8 17.6 14.2 83.5
7 0 1 1 1 1.50 6.62 26.9 1.42 5.80 34.7
8 0 1 1 0 1.47 6.26 24.3 1.43 5.54 32.4
9 0 1 0 1 12.4 5.46 100.1 14.1 10.9 124.2

The true model is model 8.
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logistic Cox FIC model selection prob.
X Z X Z µ1 µ2 µ3

1 1 1 1 1 0.08 0.01 0.02
2 1 1 1 0 0.07 0.02 0.10
3 1 1 0 1 0.00 0.05 0.11
4 1 0 1 1 0.01 0.00 0.00
5 1 0 1 0 0.18 0.09 0.20
6 1 0 0 1 0.00 0.19 0.12
7 0 1 1 1 0.20 0.05 0.07
8 0 1 1 0 0.46 0.20 0.33
9 0 1 0 1 0.00 0.39 0.05
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Data analysis

Personal loan data :

� Data from a U.K. financial institution

� Data used in Stepanova and Thomas (2002), Tong et
al. (2012)

� Application information for 7521 loans

� Default observed for 376 out of 7521 observations (5%)

Var number Description Type
v1 The gender of the customer (1=M, 0=F) categorical
v2 Amount of the loan continuous
v3 Number of years at current address continuous
v4 Number of years at current employer continuous
v5 Amount of insurance premium continuous
v6 Homephone or not (1=N, 0=Y) categorical
v7 Own house or not (1=N, 0=Y) categorical
v8 Frequency of payment (1=low/unknown, 0=high) categorical
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Note that

� heavy right censoring

� default will not/never take place for a large part of the
population

⇒ limt→∞ S(t) 6= 0
⇒ we use a mixture cure model

∆i = 1⇒ the individual is susceptible
∆i = 0⇒ we do not know whether default will ever take
place or not

Loans

Default No default

prob = p(z) prob = 1− p(z)
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� 7521 observations and 8 variables

� Default observed for 376 out of 7521 observations

� 2 covariate vectors (α and β), empty models excluded :
(28 − 1)× (28 − 1) = 65025 FICs to calculate !

� Focus : probability of cure 1− p(z) at z = median(Z )

Part v1 v2 v3 v4 v5 v6 v7 v8

Cure rate 1 1 1 1 1 0 0 1
Survival of uncured 1 0 1 0 1 1 1 1
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Conclusions

� We considered a proportional hazards mixture cure
model, and developed the asymptotic distribution of the
estimators of the model components under local
misspecification of the model.

� This asymptotic distribution can then be used to select
the best variables to estimate a certain quantity (focus)
in the model via FIC minimization.
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Part III : Dependent
censoring
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Introduction to dependent censoring



Basic
concepts

Cure models
Introduction

Ongoing research

Dependent
censoring
Introduction

Ongoing research

Measurement
errors
Introduction

Ongoing research

Introduction

� Random right censoring assumes that the survival time
(T ) and the censoring time (C) are independent

� We observe

Y = min(T ,C) and ∆ = I(T ≤ C),
so we observe either T or C, but not both
⇒ Relation between T and C not identifiable in general
⇒ Relation between T and C needs to be specified in

order to identify the model
⇒ Independence assumption is most natural

assumption, and holds true in many contexts

(See Tsiatis, 1975)
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Independence of T and C is satisfied if

� Administrative censoring : individuals alive at the end of
the study are censored
⇒ Censoring is unrelated to survival time
⇒ Independence assumption makes sense

� Censoring happens for other reasons that are
completely unrelated to the event of interest
Eg. In medical studies, patients might move, die
because of car accident, etc.

� Many other contexts
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Independence of T and C might be doubtful if

� Medical studies : Patients may withdraw from the study
• because their condition is deteriorating or because they

are showing side effects which need alternative
treatments (positive relation between T and C)

• because their health condition has improved and so
they no longer follow the treatment (negative relation
between T and C)

� Unemployment studies : Unemployed people with low
chances on the job market could decide to go abroad to
improve their chances, leading to censoring times that
depend on the duration of unemployment
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� Transplantation studies : Often the length of time a
patient has to wait before he gets transplanted (C)
depends on his/her medical condition, so on his time to
death (T )

� Health economics :

• Let U be the medical cost, then

U = A(T )

for some increasing function A
• Suppose that the cost accumulation rate is constant

over time, but the rate may vary from individual to
individual :

A(T ) = RT ,

where R is the cost accumulation rate
• If T is censored by C, then U is censored by

A(C) = RC, and so we observe min(RT ,RC)

• Clearly, RT and RC are dependent
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Example of accumulated medical cost data :
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Note that

� The independence between T and C can not be tested
in practice !

� It needs to be motivated based on the context of the
study

� Standard methods may lead to wrong or biased
inference

⇒ It is important to propose a model under which the
dependence between T and C can be identified, and
which is flexible enough to cover a wide range of
situations
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What happens if independence is assumed when T and C
are in reality correlated ?

Consider

(log T , log C) ∼ N2

((
0
0

)
,

(
1 ρ

ρ 1

))
,

where ρ = 0,±0.3,±0.6 or ±0.9

Further, let Y = min(T ,C) and ∆ = I(T ≤ C)

For an arbitrary sample of size n = 200, we calculate

� the true survival function S(t) of T ∼ exp(N(0,1))

� the Kaplan-Meier estimator Ŝ(t) (which assumes
T ⊥⊥ C)
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⇒ The larger ρ, the more the Kaplan-Meier estimator
lies above the true survival function
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⇒ The smaller ρ, the more the Kaplan-Meier estimator
lies below the true survival function
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Example : liver transplant data

� See Collett, 2015

� 281 patients were registered for a liver transplant

� 75 patients died while waiting for a transplant

� T = time to death while waiting for a liver transplant

� C = time at which the patient receives a transplant

� Livers were given on the basis of patient’s health
condition

� Patients who get a transplant tend to be those who are
closer to death⇒ dependent censoring
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� Covariates :
• Age of the patients in years (X1)
• Gender (1 = male, 0 = female) (X2)
• Body mass index (BMI) in kg/m2 (X3)
• UKELD score: UK end-stage liver disease score (X4)

� We could model these data using eg. an accelerated
failure time model

log T = β0 + β1X1 + β2X2 + β3X3 + β4X4 + ε,

and estimate the β’s using one of the classical methods
But : the estimated coefficients will be biased
⇒We need other methods that take dependent

censoring into account
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Scatter plot of the survival time versus the UKELD score :
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Existing approaches to take dependent
censoring into account

Without covariates :

� Bounds on marginal distribution :
Slud and Rubinstein (1983) studied bounds for the
marginal survival function, rather than exact estimators
� Copula approach :

• Zheng and Klein (1995) : modelling of the bivariate
distribution of T and C by means of a known copula
function, and estimation of the marginal distribution of T
nonparametrically under this copula model

• Rivest and Wells (2001) : special case of Archimedean
copulas



Basic
concepts

Cure models
Introduction

Ongoing research

Dependent
censoring
Introduction

Ongoing research

Measurement
errors
Introduction

Ongoing research

With covariates :

� Copula approach : extension of the Zheng and Klein’s
method to the Cox model (Huang and Zhang, 2008)

� Inverse probability of censoring weighted (IPCW)
method : the weights are derived from a Cox model for
the censoring time (Collett, 2015)

� Multiple imputation method : the censored failure times
are imputed under departures from independent
censoring within the Cox model (Jackson et al., 2014)

� Auxiliary information : adjust for dependent censoring
in the estimation of the marginal survival function
(Scharfstein and Robins, 2002, Hsu et al, 2015)

� Accumulated medical cost data : specific methods exist
for this particular type of dependent censoring (Lin et
al, 1997, among others).
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Flexible parametric model for survival
data subject to dependent censoring

(joint with Negera Wakgari Deresa)
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Proposed model

Objective : To propose a flexible parametric model that
allows for dependence between T and C

Model : {
Λθ(T ) = X Tβ + εT
Λθ(C) = W Tη + εC ,

where

� T = log(survival time), C = log(censoring time)

� Λθ is a parametric family of monotone transformations

�

(
εT
εC

)
∼ N2

((
0
0

)
,Σ =

(
σ2

T ρσTσC

ρσTσC σ2
C

))
� X = (1, X̃ T )T and W = (1, W̃ T )T

� (εT , εC) ⊥⊥ (X ,W )
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Note that

Corr
(
Λθ(T ),Λθ(C)|X ,W

)
= ρ ∈ [−1,1]

⇒ The model allows T and C to be dependent
(given X and W ) !

We will show that the ρ-parameter is identified.

We will work with the Yeo and Johnson (2000) family of
transformations :

Λθ(t) =


{(t + 1)θ − 1}/θ t ≥ 0, θ 6= 0
log(t + 1) t ≥ 0, θ = 0
−{(−t + 1)2−θ − 1}/(2− θ) t < 0, θ 6= 2
− log(−t + 1) t < 0, θ = 2
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Why the Yeo-Johnson transformation ?

� It generalizes the well-known Box-Cox transformation to
the whole real line :

- Box-Cox(θ) maps R+ to (−1/θ,∞)

- Yeo-Johnson(θ) maps R to R for 0 ≤ θ ≤ 2
� θ = 1 : Λθ(T ) = T = log(survival time)

1 < θ ≤ 2 : Λθ(T ) is convex and lies above T
0 ≤ θ < 1 : Λθ(T ) is concave and lies below T
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Identifiability and estimation

Theorem (Identifiability of the model)

Suppose that Var(X̃ ) and Var(W̃ ) have full rank.

Then, the proposed model is identifiable.

This means that if for j = 1,2, the pair (Tj ,Cj) satisfies the
proposed model with parameters

αj = (θj , βj , ηj , σTj , σCj , ρj),

and if Yj = min(Tj ,Cj) and ∆j = I(Tj ≤ Cj), then

fY1,∆1|X ,W (·, · | x ,w ;α1) ≡ fY2,∆2|X ,W (·, · | x ,w ;α2)

for almost every (x ,w), implies that α1 = α2, i.e.

θ1 = θ2, β1 = β2, η1 = η2, σT1 = σT2 , σC1 = σC2 , ρ1 = ρ2

The proof is based on Basu and Ghosh (1978).
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Estimation

� The data consist of i.i.d. replications (Yi ,∆i ,Xi ,Wi),
i = 1, . . . ,n of (Y ,∆,X ,W )

� The model parameters are estimated by maximizing
the likelihood function

� The likelihood function is given by

L(α)

=
n∏

i=1

[ 1
σT

{
1− Φ

(Λθ(Yi)−W T
i η − ρ

σC
σT

(Λθ(Yi)− X T
i β)

σC(1− ρ2)1/2

)}
×φ
(Λθ(Yi)− X T

i β

σT

)
Λ′θ(Yi)

]∆i

×
[ 1
σC

{
1− Φ

(Λθ(Yi)− X T
i β − ρ

σT
σC

(Λθ(Yi)−W T
i η)

σT (1− ρ2)1/2

)}
×φ
(Λθ(Yi)−W T

i η

σC

)
Λ′θ(Yi)

]1−∆i
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� Note that the likelihood can not be factorized in a part
only depending on the parameters of T and another
part only depending on the parameters of C

� The only exception is when ρ = 0, in which case the
likelihood reduces to the usual normal likelihood under
independent censoring

� Define

α̂ = (θ̂, β̂, η̂, σ̂T , σ̂C , ρ̂) = argmaxα∈AL(α)

where

A =
{

(θ, β, η, σT , σC , ρ) : 0 ≤ θ ≤ 2, β ∈ Rp, η ∈ Rq,

σT > 0, σC > 0,−1 < ρ < 1
}
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Asymptotic theory

We assume that our model is potentially misspecified.
Let α∗ = (θ∗, β∗, η∗, σ∗T , σ

∗
C , ρ

∗) be the parameter vector that
minimizes the Kullback-Leibler Information Criterion (KLIC),
given by

E
[

log
{ fY ,∆|X ,W (Y ,∆ | X ,W )

fY ,∆|X ,W (Y ,∆ | X ,W ;α)

}]
,

where the expectation is taken with respect to the true
density fY ,∆,X ,W .

Theorem (Consistency)

Under regularity conditions (A1) to (A3) in White (1982),

(θ̂, β̂, η̂, σ̂T , σ̂C , ρ̂)
P−→ (θ∗, β∗, η∗, σ∗T , σ

∗
C , ρ

∗) as n→∞

If the model is correctly specified the KLIC attains its unique
minimum at α∗ = α
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Theorem (Asymptotic normality)

Under regularity conditions (A1) to (A6) in White (1982),

n1/2
(

(θ̂, β̂, η̂, σ̂T , σ̂C , ρ̂)− (θ∗, β∗, η∗, σ∗T , σ
∗
C , ρ

∗)
)

d−→ N(0,V ),

where V = A(α∗)−1B(α∗)A(α∗)−1, with

A(α) =
(

E
{ ∂2

∂αi∂αj
log fY ,∆|X ,W (Y ,∆ | X ,W ;α)

})p+q+4

i,j=1
,

B(α) =
(

E
{ ∂

∂αi
log fY ,∆|X ,W (Y ,∆ | X ,W ;α)

× ∂

∂αj
log fY ,∆|X ,W (Y ,∆ | X ,W ;α)

})p+q+4

i,j=1

If the model is correctly specified, V = A(α)−1, the inverse
of Fisher’s information matrix.
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Simulations

� The model :{
Λθ(T ) = 2 + 1.2X1 + 1.5X2 + εT
Λθ(C) = 2.5 + 0.5X1 + X2 + εC ,

where

• X1 ∼ Bern(0.5) and X2 ∼ U[−1,1]

• θ = 0 or 1.5

� Setting 1 : (εT , εC) ∼ N2(µ,Σ)

with µ = (0,0) and (σT , σC , ρ) = (1, 1.5, 0.75)

� Setting 2 : (εT , εC) ∼ tv (µ,Σ), v = 15

� The censoring rate is approximately 45% under both
settings
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Setting 1 : (εT , εC) ∼ N2(µ,Σ), n = 300

θ 0 1.5
Par. Bias RMSE CR Bias RMSE CR

Dependent censoring model
β0 -0.001 0.144 0.947 -0.019 0.169 0.948
β1 -0.008 0.182 0.944 -0.022 0.188 0.940
β2 -0.004 0.169 0.940 -0.022 0.183 0.931
σ1 0.004 0.097 0.944 -0.007 0.109 0.940
ρ -0.028 0.208 0.956 -0.031 0.215 0.954
θ -0.002 0.031 0.949 -0.019 0.101 0.944

Independent censoring model
β0 0.207 0.249 0.709 0.156 0.234 0.880
β1 0.201 0.268 0.812 0.169 0.255 0.867
β2 0.111 0.212 0.904 0.074 0.214 0.924
σ1 -0.030 0.095 0.906 -0.051 0.115 0.871
θ -0.021 0.038 0.881 -0.080 0.130 0.858
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Setting 2 : (εT , εC) ∼ t15(µ,Σ), n = 300

θ 0 1.5
Par. Bias RMSE CR Bias RMSE CR

Dependent censoring model
β0 0.032 0.159 0.945 0.056 0.190 0.938
β1 0.035 0.207 0.928 0.048 0.218 0.929
β2 0.037 0.187 0.930 0.058 0.206 0.923
σ1 0.012 0.113 0.928 0.033 0.126 0.922
ρ -0.045 0.240 0.938 -0.050 0.223 0.942
θ 0.004 0.034 0.917 0.028 0.103 0.902

Independent censoring model
β0 0.242 0.283 0.631 0.247 0.307 0.735
β1 0.229 0.300 0.781 0.244 0.320 0.770
β2 0.140 0.235 0.881 0.156 0.260 0.871
σ1 -0.025 0.106 0.907 -0.015 0.115 0.913
θ -0.017 0.038 0.861 -0.037 0.107 0.895
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Data Application

� See Collett, 2015

� 281 patients were registered for a liver transplant

� 75 patients died while waiting for a transplant

� T = time to death while waiting for a liver transplant

� C = time at which the patient receives a transplant

� Livers were given on the basis of patient’s health
condition

� Patients who get a transplant tend to be those who are
closer to death⇒ dependent censoring
� Covariates :

• Age of the patients in years
• Gender (1 = male, 0 = female)
• Body mass index (BMI) in kg/m2

• UKELD score: UK end-stage liver disease score
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Parameter estimates :

Dependent model Independent model
var. Est. SE BSE p-value Est. SE BSE p-value
Age -0.165 0.096 0.108 0.084 -0.267 0.109 0.104 0.014
Gender 0.915 0.895 0.957 0.307 0.988 1.318 1.460 0.456
BMI -0.086 0.065 0.063 0.181 -0.121 0.085 0.082 0.155
UKELD -0.610 0.214 0.181 0.005 -0.678 0.237 0.186 0.004
θ 1.764 0.196 0.158 0.000 1.680 0.195 0.156 0.000
ρ 0.730 0.250 0.249 0.004

� The parameter estimates are somewhat different for the
two models

� The UKELD score is negatively related to the survival
time

� ρ̂ = 0.73⇒ strong correlation
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� Estimated survival at Age = 50, UKELD = 60, BMI = 25
and Gender = 0
� Six months survival rate : 79% under the independent

model, 67% under the dependent model
� The 80% survival rate is overestimated by almost two

months
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Possible extensions

� Extension to competing risks, and to regimes with
independent (administrative) and dependent censoring

� Relaxing parametric assumption on transformation
function :{

H(T ) = X Tβ + εT
H(C) = W Tη + εC ,

where
• H is an unknown monotone transformation

• (εT , εC) ∼ N2(0,Σ)

� More flexible regression functions, using kernel or
spline methods

� Replace bivariate normality assumption by assumption
involving Gaussian or elliptical copulas
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Conclusions

� We proposed a flexible parametric model for survival
data subject to dependent censoring

� The proposed model is identifiable

� Our approach allows to estimate the association
between T and C

� A simulation study shows the good performance of the
proposed model
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Part IV : Measurement errors
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Introduction to measurement errors
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Introduction

What is measurement error ? Some examples :

� inaccurate measurement devices (eg. scale,
thermometer)

� imprecise recording (eg. self-reporting in surveys)

� temporal variation (eg. blood pressure)

Distinction should be made between

� measurement errors (continuous variables)

� misclassification (non-continuous variables)

We focus on measurement errors.

Our focus will be on regression models in which covariates
are subject to measurement error.



Basic
concepts

Cure models
Introduction

Ongoing research

Dependent
censoring
Introduction

Ongoing research

Measurement
errors
Introduction

Ongoing research

Taking measurement error into account is

� essential to do valid estimation and inference in these
models

� not necessary for prediction

Possible causes of measurement error :

� inaccuracies due to a measuring device

� a biased attitude during data collection

� miscategorization

� high expenses of measuring process

� incomplete information because of missing
observations

� ...



Basic
concepts

Cure models
Introduction

Ongoing research

Dependent
censoring
Introduction

Ongoing research

Measurement
errors
Introduction

Ongoing research

Consequences when measurement error is not taken into
account :

� biased model estimators : attenuation towards zero in
simple linear models

� features of the data are often less obvious and power of
tests is lower

Reviews on measurement error problems :

� Carroll, Ruppert, Stefanski and Crainiceanu (2006)

� Schennach (2016)

� Yan (2014) (in survival analysis)
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Example : simple linear regression

Consider
Y = β0 + β1X + ε,

where β0 = 1, β1 = 1, X ∼ U[0,1] and ε ∼ N(0,0.252).
Instead of observing X , we observe

W = X + U,

where U ∼ N(0,0.52) and X ⊥⊥ U.
For an arbitrary sample of size n = 50, we obtain

β̂0 = 0.98 and β̂1 = 1.04

when regressing Y on X , and

β̂0 = 1.26 and β̂1 = 0.53

when regressing Y on W !

⇒ Slope is underestimated

⇒ Effect of X on Y decreases because of measurement
error on X
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X versus Y :
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Measurement error models

Let X = true, unobservable covariate
U = error
W = observed covariate

� Classicial measurement error model :

W = X + U, X ⊥⊥ U

Hence, Var(W ) = Var(X )+Var(U) >Var(X )

Example : blood pressure : X = long-term value, W =
observed value

� Berkson model :

X = W + U, W ⊥⊥ U

Hence, Var(X ) >Var(W )

Example : rounding errors
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We will work with the classical measurement error model.

Assuming that X ⊥⊥ U does not suffice to uniquely identify
the distribution of X .

Example :

� Suppose W = W1 + W2 + W3 and that (W1,W2,W3) ⊥⊥
� If we only know that W = X + U and that X ⊥⊥ U, then

many possibilities exist :

• X = W1,U = W2 + W3

• X = W1 + W2,U = W3

• X = W2,U = W1 + W3

• many many more

⇒We need to impose more assumptions to distinguish X
from U
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Three options to identify the model :
� Option 1 : Additional data are available, which can be

of the following form :
• validation data (containing X for some of the

observations)
• repeated measurements of W
• panel data (longitudinal data)
• instrumental variables

� Option 2 : U has a completely known distribution
Eg. U ∼ N(0, σ2) with σ2 known

� Option 3 : U has a partially known distribution, and
some other aspects of the model are known

Note that theoretical identifiability in a measurement error
context does not always result in practical identifiability.
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Let us look in more detail at option 3 :

� Make heavy independence assumptions (Reiersøl
1950 for linear regression, and Schennach and Hu
2013 for certain nonlinear models)
� Nonparametric deconvolution :

• Matias (2002)
• Butucea and Matias (2005), Butucea et al (2008)
• Meister (2006, 2007)
• Schwarz and Van Bellegem (2010)
• Delaigle and Hall (2016)

However these papers suffer from one or more of the
following problems :

• focus on estimation of distribution of X
• many tuning parameters, for which no clear guidelines

are given
• no practical implementation, focus on minimax rates
• identifiability issues (theoretical and practical)
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Existing approaches to take measurement
error into account

� Method of moments (Fuller, 1987)
� Regression calibration (Carroll & Stefanski, 1990)
� Score function based approaches (Nakamura, 1990)
� Bayesian methodologies (Gustafson, 2004)
� Simulation-extrapolation (SIMEX) (Cook & Stefanski,

1994)
� Multiple imputation (Cole et al, 2006)
� ...

See Carroll et al (2006), Buonacorsi (2010) and Schennach
(2016) for more details on these correction approaches

But, all methods require the error distribution to be known,
unless validation or auxiliary data are available !
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Let us now focus on Simex.

Simex method :

� Simulation-Extrapolation (Simex) algorithm

� Simulation-based method for correcting the bias due to
measurement error

� Consistent estimators when the true extrapolation
function is used

References :

� Cook and Stefanski, 1994

� Stefanski and Cook, 1995

� Carroll, Küchenhoff, Lombard and Stefanski, 1996

� Carroll, Ruppert, Stefanski and Crainiceanu, 2006

� Many more

The distribution of U needs to be known to apply Simex,
and is assumed to be N(0, σ2) with σ2 known.
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Consider a regression model with regression coefficients β.

Simulation step

For λ = λ1, . . . , λK (= increasing amounts of error, eg.
0,0.5,1,1.5,2) :

� For b = 1, . . . ,B = number of datasets to be generated:

• Add error to the mismeasured covariates :

Wb,i (λ) = Wi +
√
λσZb,i

where Zb,i ∼iid N(0,1), for b = 1, . . . ,B and
λ = λ1, . . . , λK .
The variance of these contaminated data is

Var(Wb,i (λ)|Xi ) = (1 + λ)σ2

• Estimate the parameters β of the regression model
under consideration using a naive estimation
procedure, i.e. a method that does not take into account
the measurement error⇒ β̂b(λ).

� Compute β̂(λ) = 1
B
∑B

b=1 β̂b(λ).
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Extrapolation step

� Model the β̂(λ) as a function of λ, using for example a
linear, quadratic, or cubic regression.

� Extrapolate back to −1, since at this point,

Var(Wb,i(−1)) = 0

This leads to the following Simex estimator of β :

β̂Simex = β̂(−1).
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Figure: Visual representation of the SIMEX approach.
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Cox model with measurement error using
Simex

Consider a Cox proportional hazards model with
measurement error in the covariates :

h(t |x) = h0(t) exp(xTβ), t ≥ 0,

where x is a vector of covariates (without intercept)
β is a vector or regression coefficients
h(t |x) is the hazard rate at time t given x
h0(t) is an unspecified baseline hazard

Prentice (1982) showed that not correcting for measurement
error in the Cox model leads to biased estimators of β.

Yan (2014) gives a review of correction methods for the Cox
model, including the Simex method.
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Consider the following Cox model with two covariates :

� 3 models for X1 :
X1 ∼ 2 Beta(1,1)-1

2 Beta(0.7,0.5)-1
N(-0,1) truncated at [−2,2] (not. N(0,1,−2,2))

� U1 ∼ N(0, σ2)

� X2 ∼ Bernoulli(0.5), U2 = 0 (no measurement error)

� β1 = 1, β2 = −0.5

Instead of observing T we observe

Y = min(T ,C) and ∆ = I(T ≤ C),

where C is the random censoring time, assumed to be
independent of T given X = (X1,X2).
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Assume the following model for T and C :

� T |X ∼ Exp
(
µ = 0.5 exp(−X Tβ)

)
(so h0(t) = 2)

� C ⊥⊥ X and C ∼ Exp(µ = 3)

The censoring rate is P(C < T ) = 0.43.

We compare different estimation methods :

� the ‘naive’ method, that does not take measurement
error into account

� Simex using the true (but unknown) σ

� Simex using two misspecified values of σ (0.75σ and
1.25σ)

A quadratic extrapolation function is used in the second step
of the Simex algorithm.
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Table: Simulation results for n = 300
Naive Simex Simex Simex

(no correction) (true σ) (0.75σ) (1.25σ)
fX σ β1 β2 β1 β2 β1 β2 β1 β2

2 Beta(1,1)-1 .144 Bias -.054 -.007 .012 -.012 -.017 -.010 .050 -.015
SD .136 .164 .150 .165 .144 .165 .156 .166

MSE .021 .027 .023 .027 .021 .027 .027 .028
.289 Bias -.217 .001 -.036 -.012 -.114 -.007 .059 -.020

SD .139 .168 .182 .172 .163 .170 .199 .175
MSE .066 .028 .034 .030 .040 .029 .043 .031

.433 Bias -.387 .026 -.147 .010 -.246 .016 -.038 .003
SD .112 .162 .168 .173 .147 .169 .190 .179

MSE .162 .027 .050 .030 .082 .029 .038 .032
2 Beta(.7,.5)-1 .166 Bias -.057 -.004 .017 -.010 -.017 -.007 .059 -.014

SD .131 .164 .147 .167 .140 .165 .155 .169
MSE .021 .027 .022 .028 .020 .027 .028 .029

.332 Bias -.234 .008 -.045 -.008 -.128 -.001 .050 -.017
SD .124 .161 .165 .168 .148 .164 .185 .172

MSE .070 .026 .029 .028 .038 .027 .037 .030
.499 Bias -.399 .028 -.156 .004 -.258 .014 -.050 -.006

SD .101 .157 .155 .169 .133 .163 .176 .175
MSE .169 .025 .048 .029 .084 .027 .033 .031

N(0,1,-2,2) .440 Bias -.238 .023 -.040 -.001 -.127 .009 .060 -.013
SD .088 .173 .123 .187 .108 .180 .139 .195

MSE .064 .030 .017 .035 .028 .032 .023 .038
.880 Bias -.557 .056 -.320 .025 -.413 .037 -.227 .012

SD .071 .160 .1209 .184 .103 .173 .137 .194
MSE .316 .029 .117 .034 .181 .031 .071 .038

1.32 Bias -.739 .081 -.564 .061 -.629 .068 -.505 .054
SD .054 .175 .097 .194 .082 .185 .110 .202

MSE .549 .037 .327 .041 .402 .039 .267 .044
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The table shows that

� β2 is not affected a lot by the measurement error in X1

nor by the correction
� The situation is very different for β1:

• When the error is not taken into account, β̂1 is biased,
and this bias increases with the value of σ

• Simex always decreases this bias, but does not make it
disappear, because

• Simex assumes that U ∼ N(0, σ2)

• Simex with a quadratic extrapolant tends to yield
conservative corrections (see Carroll et al, 2006)

• This decrease in bias comes at the cost of a higher
variance, but the MSE is usually smaller with Simex
than with the Naive method

• In general :

Bias(β̂1|1.25σ) < Bias(β̂1|σ) < Bias(β̂1|0.75σ)

(due to conservative behavior of Simex method)
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Flexible parametric approach to classical
measurement error variance estimation
without auxiliary data

(joint with Aurélie Bertrand and Catherine Legrand)
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Assume that

� W = X + U with X ⊥⊥ U

� U is normal and E(U) = 0, but Var(U) is unknown

� no validation or auxiliary data are available

Our goal :

� Identification and estimation of Var(U) (and of fX )

� Estimation of regression models with measurement
error in some of the covariates

We like to develop a stable and feasible practical method,
that makes minimal model assumptions

Note that we do not assume that Var(U) is known, which is
an important relaxation of what is commonly assumed in the
literature.
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Methodology for estimating error variance
We assume that X has compact support, so it can be
written as

X = aS + b,

with a > 0 and b ∈ R unknown
S having density fS defined on [0,1].

Recall that we observe W = X + U, with X ⊥⊥ U and
U ∼ N(0, σ2).

Hence, the unknown model parameters are a,b, σ2 and fS.

Note that the density of W is

fW (w) =
1

aσ

∫
fS
(x − b

a

)
φ
(w − x

σ

)
dx (1)

Theorem
There exist unique a,b, σ2, and a unique density fS such
that (1) holds true. Hence, the model is identifiable.
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� The proof follows from Schwarz and Van Bellegem
(2010), who prove the identifiability for any PX

belonging to

{P ∈ P | ∃A ∈ B(R) : |A| > 0 and P(A) = 0},

where B(R) = set of Borel sets in R
P = set of all probability distributions on R
|A| = Lebesgue measure of A.

� Other error densities that allow to identify the model :
• Cauchy
• stable, ...

(see Schwarz and Van Bellegem, 2010).
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To approximate the density fS of S, we will make use of
Bernstein polynomials. Why ?

• leads to rich and flexible parametric family of densities

• any continuous density can be approximated arbitrarily
well by Bernstein polynomials (see below)

• requires only one regularization parameter

• compared to nonparametric deconvolution methods, it
converges faster and is less sensitive to tuning
parameters
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A Bernstein polynomial of degree m is

Bm(s) =
m∑

k=0

αk ,mbk ,m(s), s ∈ [0,1],

where αk ,m ∈ R, and

bk ,m(s) =

(
m
k

)
sk (1− s)m−k , k = 0, . . . ,m,

are Bernstein basis polynomials.
Bernstein (1912) shows that any continuous function f (s)

defined on [0,1] can be uniformly approximated by such a
polynomial :

lim
m→∞

sup
0≤s≤1

∣∣∣ m∑
k=0

f
( k

m

)
bk ,m(s)− f (s)

∣∣∣ = 0.
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Note that if we take f ≡ fS,

m∑
k=0

fS

(
k
m

)
bk ,m(s)

=
m∑

k=0

θk ,m
Γ(m + 2)

Γ(k + 1)Γ(m − k + 1)
sk (1− s)m−k︸ ︷︷ ︸,

= Betak+1,m−k+1(s)

where

θk ,m = fS
( k

m

)(m
k

)
Γ(k + 1)Γ(m − k + 1)

Γ(m + 2)
.

This representation shows that fS is approximated by a
mixture of Beta(k + 1,m − k + 1) densities (k = 0, . . . ,m).
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Figure: Representation of the Beta densities appearing in the
Bernstein polynomials of degree m = 0, 1, 2 and 3.
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Recall that

fW (w) =
1

aσ

∫
fS
(x − b

a

)
φ
(w − x

σ

)
dx

which can now be approximated by

f̃W ,m(w ;σ, a,b, θm)

=
1

aσ

m∑
k=0

θk ,m

∫
Betak+1,m−k+1

(x − b
a

)
φ
(w − x

σ

)
dx ,

which is a flexible m + 3-dimensional parametric family of
densities.

Note that

lim
m→∞

sup
w

∣∣∣̃fW ,m(w ;σ, a,b, θm)− fW (w)
∣∣∣ = 0,

as long as fS is continuous.
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When we have a sample W1, . . . ,Wn
iid∼ W , the log-likelihood

function of the set of parameters (σ, a,b, θm) is then

L(σ, a,b, θm) =
n∑

i=1

log f̃W ,m(Wi ;σ, a,b, θm).

This function can be maximized numerically with respect to
(σ, a,b, θm) in order to obtain

(σ̂m, âm, b̂m, θ̂m),

for a given value of m, the degree of the Bernstein
polynomial.
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Note that a model with m = m1 is nested in a model with
m = m2 for m1 < m2 (see Wang and Ghosh, 2012).
Hence, the quality of the approximation improves when m
increases.

On the other hand, a large value of m implies a large
number of parameters θk ,m to be estimated, which could
impair the quality of the estimated model.

Hence, we suggest choosing m using a model selection
criterion.
Simulations suggest that BIC performs better than AIC
thanks to the choice of more parsimonious models :

BIC(m) = (m + 3) log(n)− 2L(σ̂m, âm, b̂m, θ̂m), m ≥ 0.
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Note that for a given value of m, (σ̂m, âm, b̂m, θ̂m) maximizes
the likelihood of a potentially misspecified model

⇒ Its asymptotic properties can be derived based on the
results in White (1982) on misspecified parametric
models.

Let (σ∗m,a∗m,b∗m, θ∗m) be the parameter vector that minimizes
the Kullback-Leibler Information Criterion :

E

[
log

{
fW (W )

f̃W ,m(W ;σ, a,b, θm)

}]
.

� Consistency : Under some regularity conditions,

(σ̂m, âm, b̂m, θ̂m)
P→ (σ∗m,a

∗
m,b

∗
m, θ

∗
m).
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� Asymptotic normality : Under some regularity
conditions,

n1/2
(

(σ̂m, âm, b̂m, θ̂m)− (σ∗m,a
∗
m,b

∗
m, θ

∗
m)
)

d→ N(0,C),

where
C = A(γ∗)−1B(γ∗)A(γ∗)−1,

with

A(γ) =
(

E
{ ∂2

∂γi∂γj
log f̃W ,m(W ; γ)

})
i,j
,

B(γ) =
(

E
{ ∂

∂γi
log f̃W ,m(W ; γ) · ∂

∂γj
log f̃W ,m(W ; γ)

})
i,j
,

γ = (σm,am,bm, θm), and γ∗ = (σ∗m,a∗m,b∗m, θ∗m).

Note that C = A(γ)−1 = inverse Fisher matrix if the
model is correctly specified.
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Simulations

We are mainly interested in the estimation of σ, and will
therefore not report simulation results for the estimation of
a,b and fS.

Consider the following models :

� 8 different densities for X :

• 2 Beta(α, β)− 1 with
(α, β) = (1,1), (1,2), (0.7,0.5), (3,2)

• Normal(0,1) truncated at (tL, tU) = (−2,2), (−1.5,1.5)

• Exponential(µ, tU)− 1 of mean µ and truncated at tU ,
with (µ, tU) = (0.5,4), (10,20)

� NSR = σ
σX

= 0.25,0.50,0.75

For each model, σ was estimated using m = 0, . . . ,6 for
each of 500 replicated datasets.
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Figure: Representation of the densities fX considered in the
simulation.
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Figure: Representation of the densities fX considered in the
simulation.



Basic
concepts

Cure models
Introduction

Ongoing research

Dependent
censoring
Introduction

Ongoing research

Measurement
errors
Introduction

Ongoing research

Table: Simulation results for n = 300 (RB: relative bias; SD:
standard deviation; MSE: mean squared error)

Estimation of σ Distribution (in %) of the selected m
fX σ Bias RB SD MSE 0 1 2 3 4 5 6

2 Beta(1, 1)-1 .144 -.010 -.069 .064 .004 90.0 2.4 6.2 0.8 0.0 0.2 0.4
.289 -.011 -.037 .076 .006 92.4 3.6 3.0 0.6 0.2 0.0 0.2
.433 -.003 -.007 .092 .009 93.2 3.0 1.0 1.2 1.2 0.2 0.2

2 Beta(1, 2) -1 .118 -.008 -.069 .053 .003 0.2 90.8 2.0 4.6 1.8 0.6 0.0
.236 -.006 -.024 .072 .005 7.8 85.2 2.2 3.2 0.4 0.6 0.6
.354 .014 .040 .101 .010 44.8 50.0 1.6 0.8 1.2 1.0 0.6

2 Beta(.7, .5)-1 .166 -.037 -.221 .063 .005 10.4 28.4 55.6 4.8 0.6 0.0 0.2
.332 -.067 -.202 .077 .010 44.2 49.2 4.2 2.2 0.0 0.0 0.2
.499 -.052 -.104 .102 .013 74.2 22.8 1.0 0.8 1.0 0.2 0.0

2 Beta(3, 2)-1 .100 .073 .727 .083 .012 35.4 49.2 1.0 10.8 2.0 1.2 0.4
.200 .065 .326 .072 .009 65.2 29.2 1.6 1.2 1.4 1.4 0.0
.300 .059 .196 .078 .010 84.2 12.0 0.8 0.6 1.2 0.4 0.8

N(0,1,-2,2) .440 .209 .475 .137 .063 93.6 1.6 1.8 0.6 1.0 1.0 0.4
.880 .116 .132 .177 .045 94.2 3.2 0.4 0.8 0.6 0.0 0.8
1.32 .032 .024 .229 .053 93.0 2.6 0.4 1.0 1.4 0.6 1.0

N(0,1,-1.5,1.5) .371 .088 .238 .127 .024 92.4 1.4 2.4 1.6 1.2 0.2 0.8
.743 .053 .071 .154 .027 96.0 2.6 0.2 0.2 0.4 0.2 0.4
1.11 .006 .005 .189 .036 97.6 2.0 0.2 0.0 0.2 0.0 0.0

Exp(.5, 4)-1 .124 -.008 -.066 .058 .003 0.4 0.2 1.2 30.8 41.8 19.4 6.2
.247 -.026 -.104 .037 .002 0.2 0.4 8.6 52.2 27.8 10.0 0.8
.371 -.029 -.077 .064 .005 3.2 2.0 27.6 46.6 18.4 1.4 0.8

Exp(10, 20)-1 1.31 .001 .001 .947 .897 0.8 70.8 25.0 1.0 1.4 0.6 0.4
2.63 -.049 -.019 1.02 1.04 3.4 84.4 8.2 2.0 0.6 1.0 0.4
3.94 .121 .031 1.14 1.32 25.8 64.6 5.2 1.6 1.2 0.4 1.2
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Note that the true value of m is 0 for Beta(1,1)

1 for Beta(1,2)

3 for Beta(3,2)

The other densities are not a mixture of Bernstein polynomials.

The table shows that

� The BIC criterion recovers well the value of m for Beta(1,1)
and Beta(1,2), but not for Beta(3,2).

� The selected m tends to decrease with the SNR.

� Smallest relative biases are found for 2 Beta(1,1)-1,
2 Beta(1,2)-1 and both exponential distributions.

� 2 Beta(3,2)-1 and N(0,1,-2,2) yield the worst results, but bias
decreases when σ increases.

� Although the model is theoretically identifiable, there
appears some practical identifiability problems especially for
large values of m, which disappear when a and b are set to
their true values.
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Illustration : Cox model estimated with Simex

Our final objective is to be able to estimate regression
models, in which covariates are subject to measurement
error with unknown variance.

General strategy :

� Estimate σ2 with the proposed method

� Apply any of the existing methods for estimating
regression coefficients when measurement error is
present, with σ2 replaced by σ̂2

All methods require the error distribution to be known,
unless validation or auxiliary data are available.

We will focus here on Simex.
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We will illustrate the Simex methodology (with σ2 replaced
by σ̂2) on a Cox model with measurement error :

h(t |X1,X2) = h0(t) exp(β1X1 + β2X2), t ≥ 0,

where
� X1 ∼ 2 Beta(1,1)-1, X1 ∼ 2 Beta(0.7,0.5)-1 or

X1 ∼ N(0,1) truncated at [−2,2]

� U1 ∼ N(0, σ2)

� X2 ∼ Bernoulli(0.5), U2 = 0 (no measurement error)
� β1 = 1, β2 = −0.5
� h0(t) = 2

T is subject to random right censoring, i.e. instead of
observing T we observe

Y = min(T ,C) and ∆ = I(T ≤ C),

where C ⊥⊥ T given X = (X1,X2).

We take C ⊥⊥ X and C ∼ Exp(µ = 3).
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Table: Simulation results for n = 300
Naive Simex Simex

(estimated σ) (true σ)
fX σ β1 β2 β1 β2 β1 β2

2 Beta(1,1)-1 .144 Bias -.054 -.007 .013 -.013 .012 -.012
SD .136 .164 .163 .165 .150 .165

MSE .021 .027 .027 .027 .023 .027
.289 Bias -.217 .001 -.038 -.012 -.036 -.012

SD .139 .168 .197 .173 .182 .172
MSE .066 .028 .040 .030 .034 .030

.433 Bias -.387 .026 -.146 .011 -.147 .010
SD .112 .162 .186 .173 .168 .173

MSE .162 .027 .056 .030 .050 .030
2 Beta(.7,.5)-1 .166 Bias -.057 -.004 -.007 -.008 .017 -.010

SD .131 .164 .160 .166 .147 .167
MSE .021 .027 .026 .028 .022 .028

.332 Bias -.234 .008 -.109 -.003 -.045 -.008
SD .124 .161 .166 .165 .165 .168

MSE .070 .026 .040 .027 .029 .028
.499 Bias -.399 .028 -.196 .009 -.156 .004

SD .101 .157 .160 .167 .155 .169
MSE .169 .025 .064 .028 .048 .029

N(0,1,-2,2) .220 Bias -.068 -.008 .302 -.060 .007 -.019
SD .102 .170 .236 .204 .115 .176

MSE .015 .029 .146 .045 .013 .031
.440 Bias -.238 .023 .157 -.024 -.040 -.001

SD .088 .173 .186 .202 .123 .187
MSE .064 .030 .060 .042 .017 .035

.660 Bias -.420 .041 -.079 .001 -.174 .011
SD .081 .160 .163 .188 .129 .179

MSE .183 .027 .033 .035 .047 .032
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Data analysis

We consider data on 1341 patients suffering from
‘monoclonal gammapothy of undetermined significance’
(MGUS), a precursor lesion for multiple myeloma

Kaplan-Meier curve of the survival time :

Censoring proportion = 30%
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For each patient the following covariates are recorded :

� hemoglobin

� log(creatinine)

� monoclonal spike

� age

� gender

Hemoglobin, creatinine and monoclonal spike are subject to
measurement error, age and gender are supposed to be
error free.

We will fit a Cox model to these data using the Simex
approach
⇒ first we need to estimate the measurement error

variances



Basic
concepts

Cure models
Introduction

Ongoing research

Dependent
censoring
Introduction

Ongoing research

Measurement
errors
Introduction

Ongoing research

Hemoglobin level m = 1 m = 2 m=3 m = 4 m = 5
BIC·10−3 5.7986 5.8053 5.7770 5.7834 5.7904
σ̂ 1.2351 1.4911 1.3616 1.2798 1.3385
Creatinine log-level m = 9 m = 10 m=11 m = 12 m = 13
BIC·10−3 0.7345 0.7284 0.7265 0.7271 0.7294
σ̂ 0.1836 0.1871 0.1907 0.1944 0.1975
Monoclonal spike m = 7 m = 8 m=9 m = 10 m = 11
BIC·10−3 2.2785 2.2810 2.2749 2.2755 2.2792
σ̂ 0.1743 0.1731 0.1780 0.1685 0.1706
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Hemo- Log-
Age Gender globin creatinine Spike

No correction Estim. .055 -.389 -.121 .367 .037
SE .003 .070 .018 .079 .060

SIMEX Estim. .053 -.449 -.183 .349 .030
SE .003 .081 .027 .132 .068
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Conclusions

� New method to estimate the measurement error
variance, that is

• a stable and feasible practical method
• consistent and asymptotically normal

� Estimation of regression models with measurement
error in the covariates with unknown variance
↪→ Illustrated with Cox proportional hazards model



Basic
concepts

Cure models
Introduction

Ongoing research

Dependent
censoring
Introduction

Ongoing research

Measurement
errors
Introduction

Ongoing research

The End
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