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So far so good, but. . .

So far: general framework for proving weak convergence

Gn =
√

n (Pn − P) G, n → ∞

in `∞(F ) for suitable families of functions F ⊂ L2(P)

How to find the asymptotic distribution of estimators of “parameters” arising
as statistical functionals φ?

ϑ̂n = φ(Pn),

ϑ = φ(P)

=⇒ Functional delta method

Often, the limit distribution is unknown and complicated: in practice?
=⇒ Bootstrap

Main sources for this lecture: van der Vaart and Wellner (1996), Kosorok (2008)
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Tools to work with empirical processes

Functional delta method

Bootstrap
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Ordinary delta method
Random vectors Xn in Rd . Suppose θ ∈ Rd and 0 < rn → ∞ and

Zn =: rn(Xn − θ) d
−→ Z , n → ∞

Delta method. Let φ : Rd → Rp be differentiable at θ. Then

rn
{
φ(Xn) − φ(θ)

} d
−→ φ′(θ)Z

where φ′(θ) ∈ Rp×d is the Jacobian of φ at θ.

Proof: Write

rn
{
φ(Xn) − φ(θ)

}
= rn

{
φ(θ + r−1

n Zn) − φ(θ)
}

= gn(Zn)

By differentiability of φ, for all sequences zn → z ∈ Rd ,

lim
n→∞

gn(zn) = g(z) = φ′(θ)z

Apply the extended continuous mapping theorem. �

4 / 23



Delta method in normed spaces?

Empirical process Gnf =
√

n(Pnf − Pf) indexed by P-Donsker F ∈ L2(P):

Gn  G, in `∞(F )

“Smooth” transformation
φ : `∞(F )→ E

where E is some other normed real vector space
Often E is Rp or `∞(T) for some set T

Functional delta method? Asymptotic distribution of statistical functionals
√

n
{
φ(Pn) − φ(P)

}
 φ′P(G), in E

with “derivative” φ′P : `∞(F )→ E, linear and bounded
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Differentiable mappings between normed spaces
Map φ : D→ E between normed real vector spaces

Definition: Hadamard differentiability.
φ : D → E is Hadamard differentiable at θ if there exists bounded
linear φ′θ : D→ E such that, in E,

lim
t↓0

1
t
{
φ(θ + tht ) − φ(θ)

}
= φ′θ(h)

whenever limt↓0 ht = h in D.

I Stronger than Gateaux differentiability (fixed ht ≡ h)
I Weaker than Fréchet differentiability (bounded ht )
I In Rd , all three definitions are the same as the usual one
I Similar definition if φ has domain Dφ ⊂ D
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Slight generalization in view of applications

Definition: H-dif tangentially to a set.
φ : Dφ → E is Hadamard differentiable at θ ∈ Dφ tangentially to D0 ⊂

D if there exists bounded linear φ′θ : D0 → E such that, whenever
{ht }t>0 ⊂ D satisfies
I θ + tht ∈ Dφ for all sufficiently small t > 0
I limt↓0 ht = h ∈ D0

then
lim
t↓0

1
t
{
φ(θ + tht ) − φ(θ)

}
= φ′θ(h)

Chain rule for differentiation applies as usual: facilitates proving H-dif
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Functional delta method

I Normed linear spaces D and E
I Dφ ⊂ D

I φ : Dφ → E

I Tn : Ω→ Dφ

I 0 < rn → ∞ and θ ∈ Dφ

Theorem: Functional delta method. If

1. If rn(Tn − θ) Z in D with Z taking values only in D0

2. φ is Hadamard differentiable tangentially to D0

then, in E,
rn

{
φ(Tn) − φ(θ)

}
 φ′θ(Z), n → ∞
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Asymptotic normality of statistical functionals

Suppose F ⊂ L2(P) is P-Donsker.

Setting D = `∞(F ) and Tn = Pn and θ = P, we find, in E,
√

n
{
φ(Pn) − φ(P)

}
 φ′P(G), n → ∞

provided
I Pn takes values in Dφ ⊂ `

∞(F )

I G takes values in D0 ⊂ `
∞(F )

I φ : Dφ → E is Hadamard-differentiable at P tangentially to D0

The E-valued weak limit φ′P(G) is Gaussian as well
For every continuous linear functional ρ : E→ R, the random variable ρ ◦ φ′P(G) is Gaussian
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Example: sample quantiles

Iid random variables X1,X2, . . . ∼ F on R, empirical distribution function Fn.

Population and sample quantiles: for 0 < p < 1,

Q(p) = inf
{
x ∈ R | F(x) > p

}
= φ(F)

Qn(p) = inf
{
x ∈ R | Fn(x) > p

}
= φ(Fn)

Asymptotic normality of
√

n
{
Qn(p) − Q(p)

}
by functional delta method:
I D = `∞(R) and E = R

I Dφ = {all distribution functions on R}
I Tn = Fn and θ = F and rn =

√
n

I Limit process G(x) = B(F(x)), x ∈ R, with B a Brownian bridge
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“Vervaat’s lemma”
If F has derivative f at Q(p), then φ is H-dif at F tangentially to

D0 =
{
h ∈ `∞(R) | h is continuous at Q(p)

}
with derivative map

φ′F (h) = −
h(Q(p))

f(Q(p))
, h ∈ D0

By the functional delta method,

√
n
{
Qn(p) − Q(p)

} d
−→ −

B(p)

f(Q(p))
∼ N

(
0,

p(1 − p)

(f(Q(p)))2

)

Extension: empirical quantile process
{
Qn(p)

}
p∈[a,b]
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Example: copulas

The copula C of a d-variate random vector X = (X1, . . . ,Xd) with joint cdf F
and continuous marginals F1, . . . ,Fd is the joint cdf of

(U1, . . . ,Ud) = (F1(X1), . . . ,Fd(Xd))

A copula is a cdf on [0, 1]d with uniform [0, 1] marginals. Explicit formula:

C(u1, . . . , ud) = F
(
F−1 (u1), . . . ,F−d (ud)

)
with F−j the quantile function, defined carefully as

F−j (uj) =

inf
{
x ∈ R | Fj(x) > uj

}
, 0 < uj 6 1

sup
{
x ∈ R | Fj(x) = 0

}
, uj = 0

Context: Modelling dependence in a margin-free way
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Empirical copula process
iid sample Xi = (Xi1, . . . ,Xid) from F . Empirical copula:

Cn(u1, . . . , ud) = Fn

(
F
−
n,1(u1), . . . ,F−n,d(ud)

)
with empirical cdfs

Fn(x) =
1
n

n∑
i=1

1

{
Xi1 6 x1, . . . ,Xid 6 xd

}
Fn,j(xj) =

1
n

n∑
i=1

1

{
Xij 6 xj

}
and generalized inverses as on previous slide. Rank-based estimator

Weak convergence in `∞([0, 1]d) of the empirical copula process?
√

n (Cn − C) =
√

n
{
φ(Fn) − φ(F)

}
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Differentiability of the copula mapping
I D = E = `([0, 1]d)
I Dφ =

{
cdf F on [0, 1]d with margins Fj(0) = 0

}
I φ : Dφ → E : F 7→ F(F−1 , . . . ,F

−
d )

Bücher and Volgushev (2013). Assume the d partial derivatives ∂jC
exist and are continuous on {u ∈ [0, 1]d | 0 < uj < 1}. Then φ is
Hadamard differentiable at C tangentially to

D0 =
{
α ∈ C([0, 1]d)

∣∣∣ α(1, . . . , 1) = 0,

α(x1, . . . , xd) = 0 if min
j

xj = 0
}

with derivative φ′C : D0 → `∞([0, 1]d) given by

(
φ′C(α)

)
(u) = α(u) −

p∑
j=1

∂jC(u)α(1, . . . , 1, uj , 1, . . . , 1)
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Weak convergence of the empirical copula process

For C ∈ Dφ satisfying the assumption, we obtain weak convergence
√

n (Cn − C) β, n → ∞

in `∞([0, 1]d) with weak limit

β(u) = GC(u) −
d∑

j=1

∂Cj(u)GC(1, . . . , 1, uj , 1, . . . , 1), u ∈ [0, 1]d

with GC a C-Brownian bridge indexed by functions 1[0,u]

Weak convergence of empirical copula process under the same or similar
conditions already before obtained by other authors
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Tools to work with empirical processes

Functional delta method

Bootstrap
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Using asymptotic distributions

Estimator ϑ̂n = φ(Pn) of ϑ = φ(P). Asymptotic distribution
√

n
(
ϑ̂n − ϑ

)
 φ′P(G), n → ∞

Usage:
I asymptotic confidence intervals
I critical values for hypothesis tests

Problem: limit distribution depends on unknown P via φ′P and G

Possible solutions:
I Replace P in limit distribution by Pn

I Consistent procedure under fairly general conditions
I Estimated limit distribution may be difficult to handle

Imagine a Kolmogorov–Smirnov test for the empirical copula process

I Bootstrap
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Resampling with replacement

Empirical measure when resampling from the data with replacement:

P̂n =
1
n

n∑
i=1

Mni δXi

I Mni : number of times Xi was selected out of n trials
I (Mn1, . . . ,Mnn) multinomial (n; 1/n, . . . , 1/n) independent of X1, . . . ,Xn

I δx is degenerate probability measure at x

Bootstrap: estimate the distribution of
√

n
{
φ(Pn) − φ(P)

}
by the one of

√
n
{
φ(P̂n) − φ(Pn)

}
To be shown: with large probability, the conditional distribution of the above
quantity given the data X1, . . . ,Xn is close to the limit distribution on slide 18
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Showing consistency of the bootstrap
Two steps:

1. Show consistency of the bootstrapped empirical process:
with large probability, the conditional distribution of

Ĝn =
√

n
(
P̂n − Pn

)
=

1
√

n

n∑
i=1

(Mni − 1)(δXi − Pn)

given the data X1, . . . ,Xn is close to the one of G

2. Apply (a suitable extension of) the delta method

Method extends to more general weights Wni than Mni − 1
I multiplier bootstrap
I wild bootstrap
I . . .
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Multiplier central limit theorem
Consistency in probability of the bootstrap
If F ⊂ L2(P) has finite envelope, then F is P-Donsker if and only if
Ĝn is asymptotically measurable and

sup
h∈BL1

∣∣∣EM[h(Ĝn)] − E[h(G)]
∣∣∣ P
→ 0, n → ∞

I EM means conditional expectation over (Mn1, . . . ,Mnn) given X1, . . . ,Xn

I BL1 is the set of h : `∞(F )→ [−1, 1] such that∣∣∣h(z) − h(y)
∣∣∣ 6 ‖z − y‖∞, y, z ∈ `∞(F )

“Bounded Lipschitz distance” suph∈BL1
| . . . | metrizes weak convergence

I Proof based on

I Poissonization of (Mn1, . . . ,Mnn)
I (conditional) multiplier central limit theorem
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Summary
This course:
I Weak convergence of empirical processes indexed by function classes
I Tools to leverage the power of the asymptotic theory
I Examples

What’s next:
I Convergence rates different from

√
n (van de Geer, 2000)

I Concentration inequalities (Giné and Guillou, 2001)
I Empirical processes indexed by estimated functions (van der Vaart and

Wellner, 2007)
I Application to M and Z-estimators
I Almost sure versions, strong approximations
I Time series data
I . . .

Thank you!
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