Decision Making and Inference Under Model Misspecification

Jose Blanchet.

Stanford University (Management Science and Engineering), and Institute for Computational and Mathematical Engineering).

Goal:

Goals: a) Introduce optimal transport methods popular applications and properties, then
b) use these results for robust performance analysis and finally c) also show how optimal transport applied to statistical estimation.

Agenda

• Day 1: Introduction to Optimal Transport (Primals and Duals)

Agenda

- Day 1: Introduction to Optimal Transport (Primals and Duals)
- Day 2: Distributionally robust performance analysis and optimization.

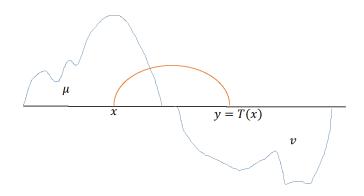
Agenda

- Day 1: Introduction to Optimal Transport (Primals and Duals)
- Day 2: Distributionally robust performance analysis and optimization.
- Day 3: Statistical properties of estimators.

Introduction to Optimal Transport

Monge-Kantorovich Problem & Duality (see e.g. C. Villani's 2008 textbook)

• What's the cheapest way to transport a pile of sand to cover a sinkhole?



• What's the cheapest way to transport a pile of sand to cover a sinkhole?

$$\min_{T(\cdot):T(X)\sim v} E_{\mu} \left\{ c\left(X,T\left(X\right)\right) \right\},$$

• What's the cheapest way to transport a pile of sand to cover a sinkhole?

$$\min_{T(\cdot):T(X)\sim v}E_{\mu}\left\{ c\left(X,T\left(X\right)
ight)
ight\} ,$$

• where $c(x, y) \ge 0$ is the cost of transporting x to y.

• What's the cheapest way to transport a pile of sand to cover a sinkhole?

$$\min_{T(\cdot):T(X)\sim\nu}E_{\mu}\left\{ c\left(X,T\left(X\right)\right)\right\} ,$$

- where $c(x, y) \ge 0$ is the cost of transporting x to y.
- $T(X) \sim v$ means T(X) follows distribution $v(\cdot)$.

• What's the cheapest way to transport a pile of sand to cover a sinkhole?

$$\min_{T(\cdot):T(X)\sim v} E_{\mu} \left\{ c\left(X,T\left(X\right)\right)\right\},\,$$

- where $c(x, y) \ge 0$ is the cost of transporting x to y.
- $T(X) \sim v$ means T(X) follows distribution $v(\cdot)$.
- Problem is highly non-linear, not much progress for about 160 yrs!

• Let $\Pi(\mu, \nu)$ be the class of joint distributions π of random variables (X, Y) such that

 $\pi_X = \text{marginal of } X = \mu, \ \pi_Y = \text{marginal of } Y = \nu.$

• Let $\Pi(\mu, \nu)$ be the class of joint distributions π of random variables (X, Y) such that

$$\pi_X = \text{marginal of } X = \mu, \ \pi_Y = \text{marginal of } Y = \nu.$$

Solve

$$\min\{E_{\pi}\left[c\left(X,Y\right)\right]:\pi\in\Pi\left(\mu,\nu\right)\}$$

• Let $\Pi(\mu, \nu)$ be the class of joint distributions π of random variables (X, Y) such that

$$\pi_X = \text{marginal of } X = \mu, \ \pi_Y = \text{marginal of } Y = \nu.$$

Solve

$$\min\{E_{\pi}\left[c\left(X,Y\right)\right]:\pi\in\Pi\left(\mu,v\right)\}$$

Linear programming (infinite dimensional):

$$\begin{split} D_{c}\left(\mu,v\right) & : & = \min_{\pi(dx,dy)\geq 0} \int_{\mathcal{X}\times\mathcal{Y}} c\left(x,y\right)\pi\left(dx,dy\right) \\ & \int_{\mathcal{Y}} \pi\left(dx,dy\right) = \mu\left(dx\right), \int_{\mathcal{X}} \pi\left(dx,dy\right) = v\left(dy\right). \end{split}$$

←□▶ ←□▶ ←□▶ ←□▶ □ ♥♀○

• Let $\Pi(\mu, \nu)$ be the class of joint distributions π of random variables (X, Y) such that

$$\pi_X = \text{marginal of } X = \mu, \ \pi_Y = \text{marginal of } Y = \nu.$$

Solve

$$\min\{E_{\pi}\left[c\left(X,Y\right)\right]:\pi\in\Pi\left(\mu,v\right)\}$$

Linear programming (infinite dimensional):

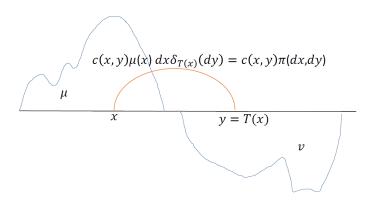
$$\begin{split} D_{c}\left(\mu,v\right) & : & = \min_{\pi(dx,dy)\geq 0} \int_{\mathcal{X}\times\mathcal{Y}} c\left(x,y\right)\pi\left(dx,dy\right) \\ & \int_{\mathcal{Y}} \pi\left(dx,dy\right) = \mu\left(dx\right), \int_{\mathcal{X}} \pi\left(dx,dy\right) = v\left(dy\right). \end{split}$$

• If c(x, y) = d(x, y) (d-metric) then $D_c(\mu, \nu)$ is a metric <- We'll check this later (this is Wasserstein distance).

Illustration of Optimal Transport Costs

Monge's solution would take the form

$$\pi^{*}\left(\mathrm{d}x,\mathrm{d}y\right)=\delta_{\left\{ T\left(x
ight)
ight\} }\left(\mathrm{d}y
ight)\mu\left(\mathrm{d}x
ight).$$



Warm up exercise to practice primal interpretation...

Warm up exercise: Check that $D_c(\cdot)$ is a metric if c(x,y) = d(x,y)where $d(\cdot)$ is a metric. i) $D_d(\mu, \nu) = D_d(\nu, \mu)$

ii) $D_d(\mu, \nu) \geq 0$ and $D_d(\mu, \nu) = 0$ if and only if $\mu = \nu$. iii) $D_d(\mu, w) \leq D_d(\mu, v) + D_d(v, w)$.

• Keep in mind primal:

$$D_{c}(\mu, v) := \min_{\pi(dx, dy) \geq 0} \int_{\mathcal{X} \times \mathcal{Y}} d(x, y) \pi(dx, dy)$$
$$\int_{\mathcal{Y}} \pi(dx, dy) = \mu(dx), \int_{\mathcal{X}} \pi(dx, dy) = v(dy).$$

• Keep in mind primal:

$$D_{c}(\mu, v) := \min_{\pi(dx, dy) \geq 0} \int_{\mathcal{X} \times \mathcal{Y}} d(x, y) \pi(dx, dy)$$
$$\int_{\mathcal{Y}} \pi(dx, dy) = \mu(dx), \int_{\mathcal{X}} \pi(dx, dy) = v(dy).$$

• Primal always has a solution (if c is lower semicontinuous) -> easy to see if $\mathcal Y$ and $\mathcal X$ are compact.

Keep in mind primal:

$$D_{c}(\mu, v) := \min_{\pi(dx, dy) \geq 0} \int_{\mathcal{X} \times \mathcal{Y}} d(x, y) \pi(dx, dy)$$
$$\int_{\mathcal{Y}} \pi(dx, dy) = \mu(dx), \int_{\mathcal{X}} \pi(dx, dy) = v(dy).$$

- Primal always has a solution (if c is lower semicontinuous) -> easy to see if $\mathcal Y$ and $\mathcal X$ are compact.
- If $D_d(\mu, \nu) = 0$, then $E_{\pi^*}(d(X, Y)) = 0$, then $X = Y \pi^*$ a.s. so $\mu(A) = \pi(X \in A) = \pi(Y \in A) = \nu(A)$.

◆□▶ ◆□▶ ◆□▶ ◆■▶ ■ りへで

Now verify triangle inequality

$$D_d(\mu, w) \leq D_d(\mu, v) + D_d(v, w)$$
.

Now verify triangle inequality

$$D_d(\mu, w) \leq D_d(\mu, v) + D_d(v, w)$$
.

• Pick X, Y, Z so that $X \sim \mu$, $Y \sim v$ and $Z \sim w$. Sample $Y \sim v$ and then X|Y = y from the optimal coupling solving $D_d(\mu, v)$. Also, sample Z|Y = y using optimal coupling for computing $D_d(v, w)$.

Now verify triangle inequality

$$D_d(\mu, w) \leq D_d(\mu, v) + D_d(v, w)$$
.

- Pick X, Y, Z so that $X \sim \mu$, $Y \sim v$ and $Z \sim w$. Sample $Y \sim v$ and then X|Y = y from the optimal coupling solving $D_d(\mu, v)$. Also, sample Z|Y = y using optimal coupling for computing $D_d(v, w)$.
- Previous construction gives a coupling for X and Z, which is not necessarily optimal for computing $D_d(\mu, w)$.

Now verify triangle inequality

$$D_d(\mu, w) \leq D_d(\mu, v) + D_d(v, w)$$
.

- Pick X, Y, Z so that $X \sim \mu$, $Y \sim v$ and $Z \sim w$. Sample $Y \sim v$ and then X|Y = y from the optimal coupling solving $D_d(\mu, v)$. Also, sample Z|Y = y using optimal coupling for computing $D_d(v, w)$.
- Previous construction gives a coupling for X and Z, which is not necessarily optimal for computing $D_d(\mu, w)$.
- On the other hand, $d(X, Z) \leq d(X, Y) + d(Y, Z)$ because $d(\cdot)$ is a metric.

11 / 115

Now verify triangle inequality

$$D_d(\mu, w) \leq D_d(\mu, v) + D_d(v, w)$$
.

- Pick X, Y, Z so that $X \sim \mu$, $Y \sim v$ and $Z \sim w$. Sample $Y \sim v$ and then X|Y = y from the optimal coupling solving $D_d(\mu, v)$. Also, sample Z|Y = y using optimal coupling for computing $D_d(v, w)$.
- Previous construction gives a coupling for X and Z, which is not necessarily optimal for computing $D_d(\mu, w)$.
- On the other hand, $d(X, Z) \leq d(X, Y) + d(Y, Z)$ because $d(\cdot)$ is a metric.
- Thus $D_d(\mu, w) \le E(d(X, Z)) \le D_d(\mu, v) + D_d(v, w)$.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

Towards the Dual Problem

It is always natural to study the dual of a linear programming problem...

Primal:

$$\min_{\pi(dx,dy)\geq 0} \int_{\mathcal{X}\times\mathcal{Y}} d(x,y) \pi(dx,dy)
\int_{\mathcal{Y}} \pi(dx,dy) = \mu(dx), \int_{\mathcal{X}} \pi(dx,dy) = v(dy).$$

Primal:

$$\begin{aligned} & \min_{\pi(dx,dy) \geq 0} \int_{\mathcal{X} \times \mathcal{Y}} d\left(x,y\right) \pi\left(dx,dy\right) \\ & \int_{\mathcal{Y}} \pi\left(dx,dy\right) = \mu\left(dx\right), \int_{\mathcal{X}} \pi\left(dx,dy\right) = v\left(dy\right). \end{aligned}$$

• Dual:

$$\sup_{\alpha,\beta} \int_{\mathcal{X}} \alpha(x) \mu(dx) + \int_{\mathcal{Y}} \beta(y) v(dy)$$
$$\alpha(x) + \beta(y) \le c(x,y) \quad \forall (x,y) \in \mathcal{X} \times \mathcal{Y}.$$

Primal:

$$\begin{aligned} & \min_{\pi(dx,dy) \geq 0} \int_{\mathcal{X} \times \mathcal{Y}} d\left(x,y\right) \pi\left(dx,dy\right) \\ & \int_{\mathcal{Y}} \pi\left(dx,dy\right) = \mu\left(dx\right), \int_{\mathcal{X}} \pi\left(dx,dy\right) = v\left(dy\right). \end{aligned}$$

• Dual:

$$\sup_{\alpha,\beta} \int_{\mathcal{X}} \alpha(x) \mu(dx) + \int_{\mathcal{Y}} \beta(y) v(dy)$$
$$\alpha(x) + \beta(y) \le c(x,y) \quad \forall (x,y) \in \mathcal{X} \times \mathcal{Y}.$$

ullet Here lpha and eta can be taken continuous

• Martin wants to remove of a pile of sand, $\mu(\cdot)$.

- Martin wants to remove of a pile of sand, $\mu(\cdot)$.
- Henry wants to cover a sinkhole, $v(\cdot)$.

- Martin wants to remove of a pile of sand, $\mu(\cdot)$.
- Henry wants to cover a sinkhole, $v(\cdot)$.
- Cost for Martin and Henry to transport the sand to cover the sinkhole is

$$D_{c}(\mu, \nu) = \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) \pi^{*}(dx, dy).$$

- Martin wants to remove of a pile of sand, $\mu(\cdot)$.
- Henry wants to cover a sinkhole, $v(\cdot)$.
- Cost for Martin and Henry to transport the sand to cover the sinkhole is

$$D_{c}(\mu, \nu) = \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) \pi^{*}(dx, dy).$$

• Now comes Victoria, who has a business...

- Martin wants to remove of a pile of sand, $\mu(\cdot)$.
- Henry wants to cover a sinkhole, $v(\cdot)$.
- Cost for Martin and Henry to transport the sand to cover the sinkhole is

$$D_{c}(\mu, \nu) = \int_{\mathcal{X} \times \mathcal{Y}} c(x, y) \pi^{*}(dx, dy).$$

- Now comes Victoria, who has a business...
- Vicky promises to transport on behalf of Martin and Henry the whole amount.

• Vicky charges John $\alpha(x)$ per-unit of mass at x (similarly to Peter, $\beta(y)$).

- Vicky charges John $\alpha(x)$ per-unit of mass at x (similarly to Peter, $\beta(y)$).
- For Peter and John to agree we must have

$$\alpha(x) + \beta(y) \leq c(x, y)$$
.

Kantorovich Relaxation: Primal Interpretation

- Vicky charges John $\alpha(x)$ per-unit of mass at x (similarly to Peter, $\beta(y)$).
- For Peter and John to agree we must have

$$\alpha(x) + \beta(y) \leq c(x, y)$$
.

• Vicky wishes to maximize her profit

$$\int \alpha(x) \mu(dx) + \int \beta(y) v(dy).$$

Kantorovich Relaxation: Primal Interpretation

- Vicky charges John $\alpha(x)$ per-unit of mass at x (similarly to Peter, $\beta(y)$).
- For Peter and John to agree we must have

$$\alpha(x) + \beta(y) \leq c(x, y)$$
.

• Vicky wishes to maximize her profit

$$\int \alpha(x) \mu(dx) + \int \beta(y) v(dy).$$

Kantorovich duality says primal and dual optimal values coincide and

$$\alpha^{*}\left(x\right)+\beta^{*}\left(y\right)=c\left(x,y\right)$$
 - π^{*} a.s. <- complementary slackness

Kantorovich Relaxation: Primal Interpretation

- Vicky charges John $\alpha(x)$ per-unit of mass at x (similarly to Peter, $\beta(y)$).
- For Peter and John to agree we must have

$$\alpha(x) + \beta(y) \le c(x, y)$$
.

• Vicky wishes to maximize her profit

$$\int \alpha(x) \mu(dx) + \int \beta(y) v(dy).$$

Kantorovich duality says primal and dual optimal values coincide and

$$lpha^{*}\left(x
ight)+eta^{*}\left(y
ight)=c\left(x,y
ight)$$
 - π^{*} a.s. <- complementary slackness

• Existence of dual optimizers: $c(x, y) \le a(x) + b(y)$ so $E_u a(X) < \infty$, $E_u b(Y) < \infty$.

←□ → ←□ → ← □ → ← □ → へ○

Proof Technique: Sketch of Strong Duality

ullet Suppose ${\mathcal X}$ and ${\mathcal Y}$ compact

$$\inf_{\pi \geq 0} \sup_{\alpha,\beta} \left\{ \int_{\mathcal{X} \times \mathcal{Y}} c(x,y) \, \pi(dx,dy) - \int_{\mathcal{X} \times \mathcal{Y}} \alpha(x) \, \pi(dx,dy) + \int_{\mathcal{X}} \alpha(x) \, \mu(dx) - \int_{\mathcal{X} \times \mathcal{Y}} \beta(y) \, \pi(dx,dy) + \int_{\mathcal{Y}} \beta(y) \, v(dy) \right\}$$

Proof Technique: Sketch of Strong Duality

ullet Suppose ${\mathcal X}$ and ${\mathcal Y}$ compact

$$\inf_{\pi \geq 0} \sup_{\alpha,\beta} \left\{ \int_{\mathcal{X} \times \mathcal{Y}} c(x,y) \, \pi(dx,dy) - \int_{\mathcal{X} \times \mathcal{Y}} \alpha(x) \, \pi(dx,dy) + \int_{\mathcal{X}} \alpha(x) \, \mu(dx) - \int_{\mathcal{X} \times \mathcal{Y}} \beta(y) \, \pi(dx,dy) + \int_{\mathcal{Y}} \beta(y) \, v(dy) \right\}$$

 Swap sup and inf using Sion's min-max theorem by a compactness argument and conclude.

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Proof Technique: Sketch of Strong Duality

ullet Suppose ${\mathcal X}$ and ${\mathcal Y}$ compact

$$\begin{split} &\inf_{\pi\geq0}\sup_{\alpha,\beta}\left\{\int_{\mathcal{X}\times\mathcal{Y}}c\left(x,y\right)\pi\left(dx,dy\right)\right.\\ &-\int_{\mathcal{X}\times\mathcal{Y}}\alpha\left(x\right)\pi\left(dx,dy\right)+\int_{\mathcal{X}}\alpha\left(x\right)\mu\left(dx\right)\\ &-\int_{\mathcal{X}\times\mathcal{Y}}\beta\left(y\right)\pi\left(dx,dy\right)+\int_{\mathcal{Y}}\beta\left(y\right)v\left(dy\right)\right\} \end{split}$$

- Swap sup and inf using Sion's min-max theorem by a compactness argument and conclude.
- Some amount of work to extend to general Polish spaces.

Application of Optimal Transport in Economics

Economic Interpretations & Some Closed Form Solutions (see e.g. A. Galichon's 2016 textbook & McCann 2013 notes).

• Worker with skill x & company with technology y yield $\Psi(x,y)$ surplus.

- Worker with skill x & company with technology y yield $\Psi(x,y)$ surplus.
- The population of workers is given by $\mu(x)$.

- Worker with skill x & company with technology y yield $\Psi\left(x,y\right)$ surplus.
- The population of workers is given by $\mu(x)$.
- The population of companies is given by v(y).

- Worker with skill x & company with technology y yield $\Psi(x,y)$ surplus.
- The population of workers is given by $\mu(x)$.
- The population of companies is given by v(y).
- The salary of worker x is $\alpha(x)$ & cost of technology y is $\beta(y)$

$$\alpha(x) + \beta(y) \ge \Psi(x, y)$$
.

- Worker with skill x & company with technology y yield $\Psi(x,y)$ surplus.
- The population of workers is given by $\mu(x)$.
- The population of companies is given by v(y).
- The salary of worker x is $\alpha(x)$ & cost of technology y is $\beta(y)$

$$\alpha(x) + \beta(y) \ge \Psi(x, y)$$
.

Companies want to minimize total production cost

$$\int \alpha(x) \mu(x) dx + \int \beta(y) v(y) dy$$

• Letting a central planner organize the Labor market.

- Letting a central planner organize the Labor market.
- The planner wishes to maximize total surplus

$$\int \Psi\left(x,y\right)\pi\left(dx,dy\right)$$

- Letting a central planner organize the Labor market.
- The planner wishes to maximize total surplus

$$\int \Psi\left(x,y\right)\pi\left(dx,dy\right)$$

ullet Over assignments $\pi\left(\cdot\right)$ which satisfy market clearing

$$\int_{\mathcal{Y}} \pi(dx, dy) = \mu(dx), \ \int_{\mathcal{X}} \pi(dx, dy) = v(dy).$$

• Suppose that $\Psi(x, y) = xy$, $\mu(x) = I(x \in [0, 1])$, $\nu(y) = e^{-y}I(y > 0)$.

- Suppose that $\Psi(x, y) = xy$, $\mu(x) = I(x \in [0, 1])$, $\nu(y) = e^{-y}I(y > 0)$.
- Solve primal by sampling: Let $\{X_i^n\}_{i=1}^n$ and $\{Y_i^n\}_{i=1}^n$ both i.i.d. from μ and ν , respectively.

$$F_{\mu_n}(x) = \frac{1}{n} \sum_{i=1}^n I(X_i^n \le x), \ F_{\nu_n}(y) = \frac{1}{n} \sum_{j=1}^n I(Y_j^n \le y)$$

- Suppose that $\Psi(x, y) = xy$, $\mu(x) = I(x \in [0, 1])$, $\nu(y) = e^{-y}I(y > 0)$.
- Solve primal by sampling: Let $\{X_i^n\}_{i=1}^n$ and $\{Y_i^n\}_{i=1}^n$ both i.i.d. from μ and ν , respectively.

$$F_{\mu_n}\left(x\right) = \frac{1}{n} \sum_{i=1}^n I\left(X_i^n \leq x\right), \ F_{\nu_n}\left(y\right) = \frac{1}{n} \sum_{j=1}^n I\left(Y_j^n \leq y\right)$$

Consider

$$\begin{aligned} & \max_{\pi\left(x_{i}^{n},x_{j}^{n}\right) \geq 0} \sum_{i,j} \Psi\left(x_{i}^{n},y_{j}^{n}\right) \pi\left(x_{i}^{n},y_{j}^{n}\right) \\ & \sum_{j} \pi\left(x_{i}^{n},y_{j}^{n}\right) = \frac{1}{n} \, \forall x_{i}, \quad \sum_{i} \pi\left(x_{i}^{n},y_{j}^{n}\right) = \frac{1}{n} \, \forall y_{j}. \end{aligned}$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めるの

- Suppose that $\Psi(x, y) = xy$, $\mu(x) = I(x \in [0, 1])$, $\nu(y) = e^{-y}I(y > 0)$.
- Solve primal by sampling: Let $\{X_i^n\}_{i=1}^n$ and $\{Y_i^n\}_{i=1}^n$ both i.i.d. from μ and ν , respectively.

$$F_{\mu_n}\left(x\right) = \frac{1}{n}\sum_{i=1}^n I\left(X_i^n \leq x\right), \ F_{\nu_n}\left(y\right) = \frac{1}{n}\sum_{j=1}^n I\left(Y_j^n \leq y\right)$$

Consider

$$\begin{aligned} & \max_{\pi\left(x_{i}^{n},x_{j}^{n}\right) \geq 0} \sum_{i,j} \Psi\left(x_{i}^{n},y_{j}^{n}\right) \pi\left(x_{i}^{n},y_{j}^{n}\right) \\ & \sum_{i} \pi\left(x_{i}^{n},y_{j}^{n}\right) = \frac{1}{n} \ \forall x_{i}, \quad \sum_{i} \pi\left(x_{i}^{n},y_{j}^{n}\right) = \frac{1}{n} \ \forall y_{j}. \end{aligned}$$

• Clearly, simply sort and match is the solution!

• Think of $Y_j^n = -\log\left(1 - U_j^n\right) = F_v^{-1}\left(U_j^n\right)$ for U_j^n s i.i.d. uniform(0,1).

- Think of $Y_j^n = -\log\left(1 U_j^n\right) = F_v^{-1}\left(U_j^n\right)$ for U_j^n s i.i.d. uniform(0,1).
- The j-th order statistic $X_{(j)}^n$ is matched to $Y_{(j)}^n$.

- Think of $Y_j^n = -\log\left(1 U_j^n\right) = F_v^{-1}\left(U_j^n\right)$ for U_j^n s i.i.d. uniform(0,1).
- The j-th order statistic $X_{(j)}^n$ is matched to $Y_{(j)}^n$.
- As $n \to \infty$, $X^n_{(nt)} \to t$, so $Y^n_{(nt)} \to -\log{(1-t)}$.

- Think of $Y_j^n = -\log\left(1 U_j^n\right) = F_v^{-1}\left(U_j^n\right)$ for U_j^n s i.i.d. uniform(0,1).
- ullet The j-th order statistic $X_{(j)}^n$ is matched to $Y_{(j)}^n$.
- As $n \to \infty$, $X^n_{(nt)} \to t$, so $Y^n_{(nt)} \to -\log{(1-t)}$.
- Thus, the optimal coupling as $n \to \infty$ is X = U and $Y = -\log(1 U)$ (comonotonic coupling).

- Think of $Y_j^n = -\log\left(1 U_j^n\right) = F_v^{-1}\left(U_j^n\right)$ for U_j^n s i.i.d. uniform(0,1).
- ullet The j-th order statistic $X_{(j)}^n$ is matched to $Y_{(j)}^n$.
- As $n \to \infty$, $X^n_{(nt)} \to t$, so $Y^n_{(nt)} \to -\log{(1-t)}$.
- Thus, the optimal coupling as $n \to \infty$ is X = U and $Y = -\log(1 U)$ (comonotonic coupling).
- ullet In general, the optimal coupling is $X=F_{\mu}^{-1}\left(U
 ight)$ and $Y=F_{\nu}^{-1}\left(U
 ight)$.

• Comonotonic coupling is the solution if $\partial_{x,y}^2 \Psi(x,y) \ge 0$ -supermodularity:

$$\Psi\left(x\vee x',y\vee y'\right)+\Psi\left(x\wedge x',y\wedge y'\right)\geq\Psi\left(x,y\right)+\Psi\left(x',y'\right)$$

• Comonotonic coupling is the solution if $\partial_{x,y}^2 \Psi(x,y) \ge 0$ -supermodularity:

$$\Psi\left(x \lor x', y \lor y'\right) + \Psi\left(x \land x', y \land y'\right) \ge \Psi\left(x, y\right) + \Psi\left(x', y'\right)$$

• Or, for costs $c(x,y) = -\Psi(x,y)$, if $\partial_{x,y}^2 c(x,y) \le 0$ (submodularity).

• Comonotonic coupling is the solution if $\partial_{x,y}^2 \Psi(x,y) \ge 0$ - supermodularity:

$$\Psi\left(x \lor x', y \lor y'\right) + \Psi\left(x \land x', y \land y'\right) \ge \Psi\left(x, y\right) + \Psi\left(x', y'\right)$$

- Or, for costs $c(x,y) = -\Psi(x,y)$, if $\partial_{x,y}^2 c(x,y) \le 0$ (submodularity).
- Corollary: Suppose $c\left(x,y\right)=|x-y|$ then $X=F_{\mu}^{-1}\left(U\right)$ and $Y=F_{\nu}^{-1}\left(U\right)$ thus

$$D_{c}\left(F_{\mu}, F_{\nu}\right) = \int_{0}^{1} \left|F_{\mu}^{-1}\left(u\right) - F_{\nu}^{-1}\left(u\right)\right| du$$
$$= \int_{-\infty}^{\infty} \left|F_{\mu}\left(x\right) - F_{\nu}\left(x\right)\right| dx.$$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 900

• Comonotonic coupling is the solution if $\partial_{x,v}^{2}\Psi\left(x,y\right)\geq0$ supermodularity:

$$\Psi\left(x \lor x', y \lor y'\right) + \Psi\left(x \land x', y \land y'\right) \ge \Psi\left(x, y\right) + \Psi\left(x', y'\right)$$

- Or, for costs $c(x,y) = -\Psi(x,y)$, if $\partial_{x,y}^2 c(x,y) \le 0$ (submodularity).
- Corollary: Suppose $c\left(x,y\right)=\left|x-y\right|$ then $X=F_{u}^{-1}\left(U\right)$ and $Y = F_{..}^{-1}(U)$ thus

$$D_{c}(F_{\mu}, F_{\nu}) = \int_{0}^{1} \left| F_{\mu}^{-1}(u) - F_{\nu}^{-1}(u) \right| du$$
$$= \int_{-\infty}^{\infty} \left| F_{\mu}(x) - F_{\nu}(x) \right| dx.$$

Similar identities are common for Wasserstein distances...

22 / 115

• In equilibrium, by the envelope theorem

$$\dot{\beta}^{*}(y) = \frac{d}{dy} \sup_{x} \left[\Psi(x, y) - \alpha^{*}(x) \right] = \frac{\partial}{\partial y} \Psi(x_{y}, y) = x_{y}$$

$$\dot{\alpha}^{*}(x) = \frac{\partial}{\partial x} \Psi(x, y_{x}) = y_{x} = F_{v}^{-1} \left(F_{\mu}(x) \right).$$

• In equilibrium, by the envelope theorem

$$\dot{\beta}^{*}(y) = \frac{d}{dy} \sup_{x} \left[\Psi(x, y) - \alpha^{*}(x) \right] = \frac{\partial}{\partial y} \Psi(x_{y}, y) = x_{y}$$

$$\dot{\alpha}^{*}(x) = \frac{\partial}{\partial x} \Psi(x, y_{x}) = y_{x} = F_{v}^{-1} \left(F_{\mu}(x) \right).$$

ullet We also know that $y=-\log{(1-x)},$ or $x=1-\exp{(-y)}$

$$\beta^{*}\left(y\right) = y + \exp\left(-y\right) - 1 + \beta^{*}\left(0\right).$$

$$\alpha^{*}\left(x\right) + \beta^{*}\left(-\log\left(1 - x\right)\right) = xy.$$

(□) (□) (□) (□) (□) (□)

• In equilibrium, by the envelope theorem

$$\dot{\beta}^{*}(y) = \frac{d}{dy} \sup_{x} \left[\Psi(x, y) - \alpha^{*}(x) \right] = \frac{\partial}{\partial y} \Psi(x_{y}, y) = x_{y}$$

$$\dot{\alpha}^{*}(x) = \frac{\partial}{\partial x} \Psi(x, y_{x}) = y_{x} = F_{v}^{-1} \left(F_{\mu}(x) \right).$$

ullet We also know that $y=-\log{(1-x)},$ or $x=1-\exp{(-y)}$

$$\beta^{*}\left(y\right) = y + \exp\left(-y\right) - 1 + \beta^{*}\left(0\right).$$

$$\alpha^{*}\left(x\right) + \beta^{*}\left(-\log\left(1 - x\right)\right) = xy.$$

• What if $\Psi(x,y) \to \Psi(x,y) + f(x)$? (i.e. productivity changes).

◆ロト ◆部ト ◆差ト ◆差ト 差 めなべ

23 / 115

• In equilibrium, by the envelope theorem

$$\dot{\beta}^{*}(y) = \frac{d}{dy} \sup_{x} \left[\Psi(x, y) - \alpha^{*}(x) \right] = \frac{\partial}{\partial y} \Psi(x_{y}, y) = x_{y}$$

$$\dot{\alpha}^{*}(x) = \frac{\partial}{\partial x} \Psi(x, y_{x}) = y_{x} = F_{v}^{-1} \left(F_{\mu}(x) \right).$$

ullet We also know that $y=-\log{(1-x)}$, or $x=1-\exp{(-y)}$

$$\beta^{*}\left(y\right) = y + \exp\left(-y\right) - 1 + \beta^{*}\left(0\right).$$

$$\alpha^{*}\left(x\right) + \beta^{*}\left(-\log\left(1 - x\right)\right) = xy.$$

- What if $\Psi(x,y) \to \Psi(x,y) + f(x)$? (i.e. productivity changes).
- Answer: salaries increase if $f(\cdot)$ is increasing.

4□ > 4□ > 4 = > 4 = > = 90

Additional properties of Optimal Transport Solutions: Kantorovich-Rubinstein Duality and Wasserstein GAN.

• Consider the case c(x, y) = d(x, y).

- Consider the case c(x, y) = d(x, y).
- Recall dual

$$\begin{aligned} & \max E_{\mu}\alpha\left(X\right) - E_{\nu}\beta\left(Y\right) \\ & s.t. \ \alpha\left(x\right) - \beta\left(y\right) \leq d\left(x,y\right) \ \forall \ x,y \in \mathcal{S} \ . \end{aligned}$$

- Consider the case c(x, y) = d(x, y).
- Recall dual

$$\begin{aligned} & \max E_{\mu}\alpha\left(X\right) - E_{\nu}\beta\left(Y\right) \\ & s.t. \ \alpha\left(x\right) - \beta\left(y\right) \leq d\left(x,y\right) \ \forall \ x,y \in \mathcal{S} \ . \end{aligned}$$

• Note that given β , we should pick

$$\alpha(x) = \beta^{d}(x) := \inf_{y} \{ \beta(y) + d(x, y) \},$$

similarly once $\alpha\left(\cdot\right)$ is chosen, we could improve by picking

$$\beta^{dd}(y) = \sup_{x} \{\beta^{d}(x) - d(x, y)\}.$$

Transforms are Lipschitz

• Moreover, observe that $\beta^{d}\left(\cdot\right)$ is 1-Lipschitz

$$\begin{split} \beta^{d}\left(x\right) &= \inf_{y}\{\beta\left(y\right) + d\left(x,y\right)\} < \text{- recall def} \\ \beta^{d}\left(x\right) - \beta^{d}\left(x'\right) &= \beta\left(y_{x}\right) + d\left(x,y_{x}\right) \\ &-\beta\left(y_{x'}\right) - d\left(x,y_{x'}\right) \\ &\leq d\left(x,y_{x'}\right) - d\left(x,y_{x'}\right) \leq d\left(x,x'\right). \end{split}$$

Transforms are Lipschitz

• Moreover, observe that $\beta^d(\cdot)$ is 1-Lipschitz

$$\begin{split} \beta^{d}\left(x\right) &= \inf_{y}\{\beta\left(y\right) + d\left(x,y\right)\} < \text{- recall def} \\ \beta^{d}\left(x\right) - \beta^{d}\left(x'\right) &= \beta\left(y_{x}\right) + d\left(x,y_{x}\right) \\ &-\beta\left(y_{x'}\right) - d\left(x,y_{x'}\right) \\ &\leq d\left(x,y_{x'}\right) - d\left(x,y_{x'}\right) \leq d\left(x,x'\right). \end{split}$$

• Same argument is true for $\beta^{dd}(y)$.

The Transform of a Lipschitz Function is the Function Itself

Moreover.

$$\beta^{d}(x) := \inf_{y} \left\{ \beta(y) + d(x, y) \right\} \le \beta(x)$$

and if β is 1-Lipschitz (meaning $|\beta(x) - \beta(y)| \le d(x, y)$) then

$$\beta^{d}(x) - \beta(x) = \inf_{y} \{d(x, y) + \beta(y) - \beta(x)\}$$

 $\geq \inf_{y} \{d(x, y) - d(x, y)\} = 0.$

The Transform of a Lipschitz Function is the Function Itself

Moreover.

$$\beta^{d}(x) := \inf_{y} \left\{ \beta(y) + d(x, y) \right\} \le \beta(x)$$

and if β is 1-Lipschitz (meaning $|\beta\left(x\right)-\beta\left(y\right)|\leq d\left(x,y\right)$) then

$$\beta^{d}(x) - \beta(x) = \inf_{y} \{d(x, y) + \beta(y) - \beta(x)\}$$

 $\geq \inf_{y} \{d(x, y) - d(x, y)\} = 0.$

ullet Consequently, if eta is 1-Lipschitz $eta=eta^d...$ So, the dual can be simplified.

◆□▶ ◆□▶ ◆豊▶ ◆豊▶ ・豊 ・釣९○

Back to Wasserstein Distances

• Original Dual:

$$\begin{aligned} & \max E_{\mu}\alpha\left(X\right) - E_{\nu}\beta\left(Y\right) \\ & s.t. \ \alpha\left(x\right) - \beta\left(y\right) \leq d\left(x,y\right) \ \forall \ x,y \in \mathcal{S} \ . \end{aligned}$$

Back to Wasserstein Distances

Original Dual:

$$\begin{aligned} & \max E_{\mu}\alpha\left(X\right) - E_{\nu}\beta\left(Y\right) \\ & s.t. \ \alpha\left(x\right) - \beta\left(y\right) \leq d\left(x,y\right) \ \forall \ x,y \in \mathcal{S} \ . \end{aligned}$$

Simplified Dual (called Kantorovich duality result):

$$\max E_{\mu}\alpha(X) - E_{\nu}\alpha(Y)$$

s.t. α is 1-Lipschitz.

Back to Wasserstein Distances

Original Dual:

$$\begin{aligned} & \max E_{\mu}\alpha\left(X\right) - E_{\nu}\beta\left(Y\right) \\ & s.t. \ \alpha\left(x\right) - \beta\left(y\right) \leq d\left(x,y\right) \ \forall \ x,y \in \mathcal{S} \ . \end{aligned}$$

Simplified Dual (called Kantorovich duality result):

$$\max E_{\mu}\alpha\left(X\right) - E_{\nu}\alpha\left(Y\right)$$
s.t. α is 1-Lipschitz.

 This is the basis for so-called Wasserstein GAN (Generative Adversarial Networks) – popular in artificial intelligence.

 Have you even thought about how to generate a "face" at random? (https://github.com/hindupuravinash/the-gan-zoo).

Blanchet (Stanford) 29 / 115

What's the formulation

$$\min_{\theta < \text{NN parameter}} D_d \left(\textit{v}_{\theta}, \mu_\textit{n} \right) \text{,}$$

where μ_n represents the empirical measure of images.

What's the formulation

$$\min_{\theta < \text{NN parameter}} D_d \left(\textit{v}_{\theta}, \mu_\textit{n} \right) \text{,}$$

where μ_n represents the empirical measure of images.

• $v_{\theta}(\cdot)$ is a probability measure generated by a Neural Network (NN), from initial random noise

What's the formulation

$$\min_{\theta < \text{NN parameter}} D_d \left(\textit{v}_{\theta}, \mu_\textit{n} \right) \text{,}$$

where μ_n represents the empirical measure of images.

- $v_{\theta}\left(\cdot\right)$ is a probability measure generated by a Neural Network (NN), from initial random noise
- $oldsymbol{ heta}$ represents the parameter of the network.

What's the formulation

$$\min_{\theta < \text{NN parameter}} D_d \left(v_\theta, \mu_n \right) \text{,}$$

where μ_n represents the empirical measure of images.

- $v_{\theta}(\cdot)$ is a probability measure generated by a Neural Network (NN), from initial random noise
- $oldsymbol{ heta}$ represents the parameter of the network.
- By duality

$$\min_{\theta < \mathsf{NN}} \sup_{\mathsf{parameter}} \left\{ E_{\mathsf{v}_{\theta}} \left(\alpha \left(X \right) \right) - E_{\mu_{_{n}}} \left(\alpha \left(Y \right) \right) \right\}.$$

What's the formulation

$$\min_{\theta < \text{NN parameter}} D_d \left(\textit{v}_{\theta}, \mu_\textit{n} \right) \text{,}$$

where μ_n represents the empirical measure of images.

- $v_{\theta}\left(\cdot\right)$ is a probability measure generated by a Neural Network (NN), from initial random noise
- $oldsymbol{ heta}$ represents the parameter of the network.
- By duality

$$\min_{\theta < \mathsf{NN}} \sup_{\mathsf{parameter}} \left\{ E_{\mathsf{v}_{\theta}} \left(\alpha \left(X \right) \right) - E_{\mu_{_{n}}} \left(\alpha \left(Y \right) \right) \right\}.$$

• Use another Neural Network to parameterize α (i.e. a 1-Lip function).

What's the formulation

$$\min_{\theta < {\sf NN \; parameter}} D_d \left(v_{\theta}, \mu_{\it n} \right)$$
 ,

where μ_n represents the empirical measure of images.

- $v_{\theta}\left(\cdot\right)$ is a probability measure generated by a Neural Network (NN), from initial random noise
- $oldsymbol{ heta}$ represents the parameter of the network.
- By duality

$$\min_{\theta < \mathsf{NN}} \sup_{\mathsf{parameter}} \left\{ E_{\mathsf{v}_{\theta}} \left(\alpha \left(X \right) \right) - E_{\mu_{_{n}}} \left(\alpha \left(Y \right) \right) \right\}.$$

- Use another Neural Network to parameterize α (i.e. a 1-Lip function).
- Apply automatic differentiation to compute gradients & run stochastic gradient descent.

• The case $c(x,y) = ||x-y||_2^2/2$ is important because of its intuitive appeal and its theoretical properties.

- The case $c(x, y) = ||x y||_2^2 / 2$ is important because of its intuitive appeal and its theoretical properties.
- We consider

$$D_{c}\left(\mu,\nu
ight) = \min_{\pi}\{2^{-1}E_{\pi}\left\|X-Y
ight\|_{2}^{2}: \pi_{X} = \mu \text{ and } \pi_{Y} = \nu\}.$$

- The case $c(x,y) = ||x-y||_2^2/2$ is important because of its intuitive appeal and its theoretical properties.
- We consider

$$D_{c}(\mu, \nu) = \min_{\pi} \{2^{-1}E_{\pi} \|X - Y\|_{2}^{2} : \pi_{X} = \mu \text{ and } \pi_{Y} = \nu\}.$$

• We assume that $E \|X\|_2^2 + E \|Y\|_2^2 < \infty$.

- The case $c(x, y) = ||x y||_2^2 / 2$ is important because of its intuitive appeal and its theoretical properties.
- We consider

$$D_{c}(\mu, \nu) = \min_{\pi} \{2^{-1}E_{\pi} \|X - Y\|_{2}^{2} : \pi_{X} = \mu \text{ and } \pi_{Y} = \nu\}.$$

- We assume that $E \|X\|_2^2 + E \|Y\|_2^2 < \infty$.
- So, the problem is equivalent to

$$\max_{\pi} \{ E_{\pi} \left(X^T Y \right) : \pi_X = \mu \text{ and } \pi_Y = \nu \}.$$

- The case $c(x, y) = ||x y||_2^2 / 2$ is important because of its intuitive appeal and its theoretical properties.
- We consider

$$D_{c}(\mu, \nu) = \min_{\pi} \{2^{-1}E_{\pi} \|X - Y\|_{2}^{2} : \pi_{X} = \mu \text{ and } \pi_{Y} = \nu\}.$$

- We assume that $E \|X\|_2^2 + E \|Y\|_2^2 < \infty$.
- So, the problem is equivalent to

$$\max_{\pi} \{ E_{\pi} \left(X^T Y \right) : \pi_X = \mu \text{ and } \pi_Y = \nu \}.$$

The dual is

$$\min\{E_{\mu}\alpha\left(X\right)+E_{\nu}\beta\left(Y\right):\alpha\left(x\right)+\beta\left(y\right)\geq x^{T}y\text{ for }x,y\in S\}.$$

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

The dual is

$$\min\{E_{\mu}\alpha\left(X\right)+E_{\nu}\beta\left(Y\right):\alpha\left(x\right)+\beta\left(y\right)\geq x^{T}y\text{ for }x,y\in S\}.$$

The dual is

$$\min\{E_{\mu}\alpha\left(X\right)+E_{\nu}\beta\left(Y\right):\alpha\left(x\right)+\beta\left(y\right)\geq x^{T}y\text{ for }x,y\in S\}.$$

• Note now that given $\alpha(x)$ we improve the objective function choosing

$$\alpha^*(y) = \sup_{x} [x^T y - \alpha(x)],$$

which is convex.

The dual is

$$\min\{E_{\mu}\alpha\left(X\right)+E_{\nu}\beta\left(Y\right):\alpha\left(x\right)+\beta\left(y\right)\geq x^{T}y\text{ for }x,y\in S\}.$$

• Note now that given $\alpha(x)$ we improve the objective function choosing

$$\alpha^*(y) = \sup_{x} [x^T y - \alpha(x)],$$

which is convex.

• So, in the end the dual is simplified to

$$\min\{E_{\mu}\alpha(X) + E_{\nu}\alpha^{*}(Y) : \alpha \text{ convex}\}.$$

 Now, our goal is to characterize the optimal solution of the primal and dual problems.

- Now, our goal is to characterize the optimal solution of the primal and dual problems.
- ullet Suppose that μ has a density with respect to the Lebesgue measure.

- Now, our goal is to characterize the optimal solution of the primal and dual problems.
- ullet Suppose that μ has a density with respect to the Lebesgue measure.
- By complementary slackness

$$\alpha\left(x\right)+\alpha^{*}\left(y\right)=x^{T}y$$
 - π^{*} a.s.

- Now, our goal is to characterize the optimal solution of the primal and dual problems.
- ullet Suppose that μ has a density with respect to the Lebesgue measure.
- By complementary slackness

$$\alpha(x) + \alpha^*(y) = x^T y - \pi^*$$
 a.s.

• But given x, equality holds if and only if $y \in \partial a(x) < -$ subdifferential (by convex analysis).

- Now, our goal is to characterize the optimal solution of the primal and dual problems.
- ullet Suppose that μ has a density with respect to the Lebesgue measure.
- By complementary slackness

$$\alpha(x) + \alpha^*(y) = x^T y - \pi^*$$
 a.s.

- But given x, equality holds if and only if $y \in \partial a(x) < -$ subdifferential (by convex analysis).
- Similarly, given y, if and only if $x \in \partial \alpha^*(y)$.

- Now, our goal is to characterize the optimal solution of the primal and dual problems.
- ullet Suppose that μ has a density with respect to the Lebesgue measure.
- By complementary slackness

$$\alpha(x) + \alpha^*(y) = x^T y - \pi^*$$
 a.s.

- But given x, equality holds if and only if $y \in \partial a(x) < -$ subdifferential (by convex analysis).
- Similarly, given y, if and only if $x \in \partial \alpha^*(y)$.
- But by Rademacher's theorem $\alpha\left(\cdot\right)$ is differentiable almost everywhere. So, given $X\sim\mu,\ Y=\nabla\alpha\left(X\right)$.

• Consequently, this establishes Brennier's Theorem: If $c(x, y) = ||x - y||_2^2 / 2$ then the optimal coupling

$$(X,Y)=(X,
abla lpha (X))$$
 ,

where $\alpha\left(\cdot\right)$ is convex.

• Consequently, this establishes Brennier's Theorem: If $c(x, y) = ||x - y||_2^2 / 2$ then the optimal coupling

$$(X, Y) = (X, \nabla \alpha(X)),$$

where $\alpha(\cdot)$ is convex.

• The optimal $\nabla \alpha \left(\cdot \right)$ is unique almost surely: Suppose $\nabla \bar{\alpha}$ is another solution to the dual.

• Consequently, this establishes Brennier's Theorem: If $c(x, y) = \|x - y\|_2^2 / 2$ then the optimal coupling

$$(X,Y)=(X,
abla lpha (X))$$
 ,

where $\alpha(\cdot)$ is convex.

- The optimal $\nabla \alpha \left(\cdot \right)$ is unique almost surely: Suppose $\nabla \bar{\alpha}$ is another solution to the dual.
- Then consider the couplings $(X,\nabla\alpha\left(X\right))$ and $(X,\nabla\bar{\alpha}\left(X\right))$ we have that for almost every x

$$\alpha(x) + \alpha^* (\nabla \bar{\alpha}(x)) = x^T \nabla \bar{\alpha}(x)$$
 (by complementary slackness).

• Consequently, this establishes Brennier's Theorem: If $c(x, y) = ||x - y||_2^2 / 2$ then the optimal coupling

$$(X, Y) = (X, \nabla \alpha(X)),$$

where $\alpha(\cdot)$ is convex.

- The optimal $\nabla \alpha \left(\cdot \right)$ is unique almost surely: Suppose $\nabla \bar{\alpha}$ is another solution to the dual.
- Then consider the couplings $(X, \nabla \alpha(X))$ and $(X, \nabla \bar{\alpha}(X))$ we have that for almost every x

$$\alpha(x) + \alpha^* (\nabla \bar{\alpha}(x)) = x^T \nabla \bar{\alpha}(x)$$
 (by complementary slackness).

• Therefore $\nabla \bar{\alpha}\left(x\right) \in \partial \alpha\left(x\right)$ and by Rademacher $\nabla \bar{\alpha} = \nabla \alpha$ almost surely.

Blanchet (Stanford) 34 / 115

• Example: Suppose that $X \sim N(0, I)$ and $Y \sim N(0, \Sigma)$ we want to transport X into Y optimally using the cost $c(x, y) = ||x - y||_2^2 / 2$.

- Example: Suppose that $X \sim N(0, I)$ and $Y \sim N(0, \Sigma)$ we want to transport X into Y optimally using the cost $c(x, y) = ||x y||_2^2 / 2$.
- We postulate that $\nabla \alpha(x) = Ax$ where A is positive definite.

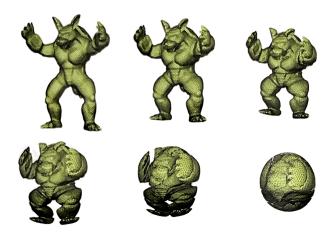
- Example: Suppose that $X \sim N(0, I)$ and $Y \sim N(0, \Sigma)$ we want to transport X into Y optimally using the cost $c(x, y) = ||x y||_2^2 / 2$.
- We postulate that $\nabla \alpha(x) = Ax$ where A is positive definite.
- So, we must have that $A \cdot A = \Sigma$, the solution is that A is the polar factorization of Σ .

- Example: Suppose that $X \sim N(0, I)$ and $Y \sim N(0, \Sigma)$ we want to transport X into Y optimally using the cost $c(x, y) = ||x y||_2^2 / 2$.
- We postulate that $\nabla \alpha(x) = Ax$ where A is positive definite.
- So, we must have that $A \cdot A = \Sigma$, the solution is that A is the polar factorization of Σ .
- From here it is easy to derive what the general optimal transport map is between two Gaussians (try this as an exercise).

35 / 115

Illustration of Optimal Transport in Image Analysis

• Santambrogio (2010)'s illustration



The discussion is based on

B. & Murthy (2016)

https://arxiv.org/abs/1604.01446.

https://pubsonline.informs.org/doi/abs/10.1287/moor.2018.0936?journalCod

• We are often interested in

$$E_{P_{true}}\left(f\left(X\right)\right)$$

for a complex model P_{true} .

We are often interested in

$$E_{P_{true}}\left(f\left(X\right)\right)$$

for a complex model P_{true} .

Moreover, we wish to optimize, namely

$$\min_{\theta} E_{P_{true}}\left(h\left(X,\theta\right)\right).$$

• We are often interested in

$$E_{P_{true}}\left(f\left(X\right)\right)$$

for a complex model P_{true} .

Moreover, we wish to optimize, namely

$$\min_{\theta} E_{P_{true}} \left(h \left(X, \theta \right) \right).$$

ullet Model P_{true} might be unknown or too difficult to work with.

We are often interested in

$$E_{P_{true}}\left(f\left(X\right)\right)$$

for a complex model P_{true} .

Moreover, we wish to optimize, namely

$$\min_{\theta} E_{P_{true}} \left(h \left(X, \theta \right) \right).$$

- Model P_{true} might be unknown or too difficult to work with.
- So, we introduce a proxy P_0 which provides a good trade-off between tractability and model fidelity (e.g. Brownian motion for random walk approximations).

• For $f(\cdot)$ upper semicontinuous with $E_{P_0}|f(X)| < \infty$

$$\sup E_{P}\left(f\left(Y\right)\right)$$

$$D_{c}\left(P, P_{0}\right) \leq \delta ,$$

X takes values on a Polish space and $c\left(\cdot\right)$ is lower semi-continuous.

• For $f(\cdot)$ upper semicontinuous with $E_{P_0}|f(X)| < \infty$

$$\sup E_{P}\left(f\left(Y\right)\right)$$

$$D_{c}\left(P, P_{0}\right) \leq \delta ,$$

X takes values on a Polish space and $c\left(\cdot\right)$ is lower semi-continuous.

Also an infinite dimensional linear program

$$\sup \int_{\mathcal{X} \times \mathcal{Y}} f(y) \pi(dx, dy)$$
s.t.
$$\int_{\mathcal{X} \times \mathcal{Y}} c(x, y) \pi(dx, dy) \leq \delta$$

$$\int_{\mathcal{Y}} \pi(dx, dy) = P_0(dx).$$

Blanchet (Stanford)

Formal duality:

Dual =
$$\inf_{\lambda \geq 0, \alpha} \left\{ \lambda \delta + \int \alpha(x) P_0(dx) \right\}$$

 $\lambda c(x, y) + \alpha(x) \geq f(y)$.

Formal duality:

Dual =
$$\inf_{\lambda \geq 0, \alpha} \left\{ \lambda \delta + \int \alpha(x) P_0(dx) \right\}$$

 $\lambda c(x, y) + \alpha(x) \geq f(y)$.

B. & Murthy (2016) - No duality gap:

$$Dual = \inf_{\lambda \geq 0} \left[\lambda \delta + E_0 \left(\sup_{y} \left\{ f(y) - \lambda c(X, y) \right\} \right) \right].$$

Formal duality:

Dual =
$$\inf_{\lambda \geq 0, \alpha} \left\{ \lambda \delta + \int \alpha(x) P_0(dx) \right\}$$

 $\lambda c(x, y) + \alpha(x) \geq f(y)$.

• B. & Murthy (2016) - No duality gap:

$$Dual = \inf_{\lambda \ge 0} \left[\lambda \delta + E_0 \left(\sup_{y} \left\{ f(y) - \lambda c(X, y) \right\} \right) \right].$$

We refer to this as RoPA Duality in this talk.

Blanchet (Stanford)

Formal duality:

Dual =
$$\inf_{\lambda \geq 0, \alpha} \left\{ \lambda \delta + \int \alpha(x) P_0(dx) \right\}$$

 $\lambda c(x, y) + \alpha(x) \geq f(y)$.

• B. & Murthy (2016) - No duality gap:

$$Dual = \inf_{\lambda \geq 0} \left[\lambda \delta + E_0 \left(\sup_{y} \left\{ f(y) - \lambda c(X, y) \right\} \right) \right].$$

- We refer to this as RoPA Duality in this talk.
- Let us consider an important case first: $f(y) = I(y \in A) \& c(x, x) = 0$.

• So, if $f(y) = I(y \in A)$ and $c_A(X) = \inf\{y \in A : c(x,y)\}$, then $Dual = \inf_{\lambda > 0} \left[\lambda \delta + E_0(1 - \lambda c_A(X))^+\right] = P_0(c_A(X) \le 1/\lambda_*).$

ullet So, if $f\left(y
ight)=I\left(y\in A
ight)$ and $c_{A}\left(X
ight)=\inf\{y\in A:c\left(x,y
ight)\}$, then

$$\textit{Dual} = \inf_{\lambda \geq 0} \left[\lambda \delta + \textit{E}_{0} \left(1 - \lambda \textit{c}_{\textit{A}} \left(X \right) \right)^{+} \right] = \textit{P}_{0} \left(\textit{c}_{\textit{A}} \left(X \right) \leq 1 / \lambda_{*} \right).$$

• If $c_{A}\left(X\right)$ is continuous under P_{0} & $E_{0}\left(c_{A}\left(X\right)\right)\geq\delta$, then

$$\delta = E_0 \left[c_A \left(X \right) I \left(c_A \left(X \right) \le 1/\lambda_* \right) \right].$$

Blanchet (Stanford)

• R(t) = the reserve (perhaps multiple lines) at time t.

- R(t) = the reserve (perhaps multiple lines) at time t.
- Bankruptcy probability (in finite time horizon T)

$$u_T = P_{true}(R(t) \in B \text{ for some } t \in [0, T]).$$

- R(t) = the reserve (perhaps multiple lines) at time t.
- Bankruptcy probability (in finite time horizon T)

$$u_T = P_{true} (R(t) \in B \text{ for some } t \in [0, T]).$$

• B is a set which models bankruptcy.

- R(t) = the reserve (perhaps multiple lines) at time t.
- Bankruptcy probability (in finite time horizon T)

$$u_T = P_{true} (R(t) \in B \text{ for some } t \in [0, T]).$$

- B is a set which models bankruptcy.
- **Problem:** Model (P_{true}) may be complex, intractable or simply unknown...

• Our solution: Estimate u_T by solving

$$\sup_{D_{c}\left(P_{0},P\right)\leq\delta}P_{true}\left(R\left(t\right)\in\mathcal{B}\text{ for some }t\in\left[0,T\right]\right),$$

• Our solution: Estimate u_T by solving

$$\sup_{D_{c}\left(P_{0},P\right)\leq\delta}P_{true}\left(R\left(t\right)\in\mathcal{B}\text{ for some }t\in\left[0,T\right]\right)\text{,}$$

where P_0 is a *suitable* model.

• P_0 = proxy for P_{true} .

• Our solution: Estimate u_T by solving

$$\sup_{D_{c}\left(P_{0},P\right)\leq\delta}P_{true}\left(R\left(t\right)\in B\text{ for some }t\in\left[0,T\right]\right),$$

- P_0 = proxy for P_{true} .
- P₀ right trade-off between fidelity and tractability.

• Our solution: Estimate u_T by solving

$$\sup_{D_{c}\left(P_{0},P\right)\leq\delta}P_{true}\left(R\left(t\right)\in B\text{ for some }t\in\left[0,T\right]\right),$$

- P_0 = proxy for P_{true} .
- P₀ right trade-off between fidelity and tractability.
- ullet δ is the distributional uncertainty size.

• Our solution: Estimate u_T by solving

$$\sup_{D_{c}\left(P_{0},P\right)\leq\delta}P_{true}\left(R\left(t\right)\in\mathcal{B}\text{ for some }t\in\left[0,T\right]\right),$$

- P_0 = proxy for P_{true} .
- \bullet P_0 right trade-off between fidelity and tractability.
- ullet δ is the distributional uncertainty size.
- $D_c(\cdot)$ is the distributional uncertainty region.

• Would like $D_c(\cdot)$ to have wide flexibility (even non-parametric).

- Would like $D_c(\cdot)$ to have wide flexibility (even non-parametric).
- Want optimization to be tractable.

- Would like $D_c(\cdot)$ to have wide flexibility (even non-parametric).
- Want optimization to be tractable.
- Want to preserve advantages of using P_0 .

Blanchet (Stanford)

- Would like $D_c(\cdot)$ to have wide flexibility (even non-parametric).
- Want optimization to be tractable.
- Want to preserve advantages of using P_0 .
- Want a way to estimate δ .

 Standard choices based on divergence (such as Kullback-Leibler) -Hansen & Sargent (2016)

$$D(v||\mu) = E_v \left(\log \left(\frac{dv}{d\mu} \right) \right).$$

 Standard choices based on divergence (such as Kullback-Leibler) -Hansen & Sargent (2016)

$$D(v||\mu) = E_v \left(\log \left(\frac{dv}{d\mu} \right) \right).$$

• Robust Optimization: Ben-Tal, El Ghaoui, Nemirovski (2009).

 Standard choices based on divergence (such as Kullback-Leibler) -Hansen & Sargent (2016)

$$D(v||\mu) = E_v \left(\log \left(\frac{dv}{d\mu} \right) \right).$$

- Robust Optimization: Ben-Tal, El Ghaoui, Nemirovski (2009).
- Big problem: Absolute continuity may typically be violated...

 Standard choices based on divergence (such as Kullback-Leibler) -Hansen & Sargent (2016)

$$D(v||\mu) = E_v \left(\log \left(\frac{dv}{d\mu} \right) \right).$$

- Robust Optimization: Ben-Tal, El Ghaoui, Nemirovski (2009).
- Big problem: Absolute continuity may typically be violated...
- ullet Think of using Brownian motion as a proxy model for $R\left(t
 ight) ...$

Blanchet (Stanford)

 Standard choices based on divergence (such as Kullback-Leibler) -Hansen & Sargent (2016)

$$D(v||\mu) = E_v \left(\log \left(\frac{dv}{d\mu} \right) \right).$$

- Robust Optimization: Ben-Tal, El Ghaoui, Nemirovski (2009).
- Big problem: Absolute continuity may typically be violated...
- ullet Think of using Brownian motion as a proxy model for $R\left(t
 ight) ...$
- Optimal transport is a natural option!

Blanchet (Stanford)

Application 1: Back to Classical Risk Problem

Suppose that

$$\begin{array}{lcl} c\left(x,y\right) & = & d_{J}\left(x\left(\cdot\right),y\left(\cdot\right)\right) = \mathsf{Skorokhod}\ J_{1}\ \mathsf{metric}. \\ & = & \inf_{\phi\left(\cdot\right)\ \mathsf{bijection}}\big\{\sup_{t\in[0,1]}\left|x\left(t\right)-y\left(\phi\left(t\right)\right)\right|, \sup_{t\in[0,1]}\left|\phi\left(t\right)-t\right|\big\}. \end{array}$$

Application 1: Back to Classical Risk Problem

Suppose that

$$\begin{array}{lcl} c\left(x,y\right) & = & d_{J}\left(x\left(\cdot\right),y\left(\cdot\right)\right) = \mathsf{Skorokhod}\ J_{1}\ \mathsf{metric}. \\ & = & \inf_{\phi\left(\cdot\right)\ \mathsf{bijection}}\big\{\sup_{t\in[0,1]}\left|x\left(t\right)-y\left(\phi\left(t\right)\right)\right|,\sup_{t\in[0,1]}\left|\phi\left(t\right)-t\right|\big\}. \end{array}$$

• If R(t) = b - Z(t), then ruin during time interval [0,1] is

$$B_{b}=\left\{ R\left(\cdot\right):0\geq\inf_{t\in\left[0,1\right]}R\left(t\right)\right\} =\left\{ Z\left(\cdot\right):b\leq\sup_{t\in\left[0,1\right]}Z\left(t\right)\right\} .$$

Application 1: Back to Classical Risk Problem

Suppose that

$$\begin{array}{lcl} c\left(x,y\right) & = & d_{J}\left(x\left(\cdot\right),y\left(\cdot\right)\right) = \mathsf{Skorokhod}\ J_{1}\ \mathsf{metric}. \\ & = & \inf_{\phi\left(\cdot\right)\ \mathsf{bijection}}\big\{\sup_{t\in[0,1]}\left|x\left(t\right)-y\left(\phi\left(t\right)\right)\right|,\sup_{t\in[0,1]}\left|\phi\left(t\right)-t\right|\big\}. \end{array}$$

ullet If $R\left(t
ight)=b-Z\left(t
ight)$, then ruin during time interval $\left[0,1
ight]$ is

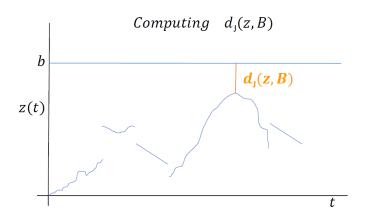
$$B_{b}=\left\{ R\left(\cdot\right):0\geq\inf_{t\in\left[0,1\right]}R\left(t\right)\right\} =\left\{ Z\left(\cdot\right):b\leq\sup_{t\in\left[0,1\right]}Z\left(t\right)\right\} .$$

• Let $P_0(\cdot)$ be the Wiener measure want to compute

$$\sup_{D_c(P_0,P)\leq\delta}P\left(Z\in B_b\right).$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めらぐ

Application 1: Computing Distance to Bankruptcy



$$ullet$$
 So: $\left\{c_{B_{b}}\left(Z
ight)\leq1/\lambda_{st}
ight\}=\left\{\sup_{t\in\left[0,1
ight]}Z\left(t
ight)\geq b-1/\lambda^{st}
ight\}$, and

$$\sup_{D_{c}\left(P_{0},P\right)\leq\delta}P\left(Z\in\mathcal{B}_{b}\right)=P_{0}\left(\sup_{t\in\left[0,1\right]}Z\left(t\right)\geq b-1/\lambda^{*}\right).$$

Blanchet (Stanford) 47 / 115

Application 1: Computing Uncertainty Size

• Note any coupling π so that $\pi_X = P_0$ and $\pi_Y = P$ satisfies

$$D_{c}(P_{0}, P) \leq E_{\pi}[c(X, Y)] \approx \delta.$$

Application 1: Computing Uncertainty Size

• Note any coupling π so that $\pi_X = P_0$ and $\pi_Y = P$ satisfies

$$D_{c}\left(P_{0},P\right)\leq E_{\pi}\left[c\left(X,Y\right)\right]pprox\delta.$$

• So use any coupling between evidence and P_0 or expert knowledge.

Application 1: Computing Uncertainty Size

• Note any coupling π so that $\pi_X = P_0$ and $\pi_Y = P$ satisfies

$$D_{c}(P_{0}, P) \leq E_{\pi}[c(X, Y)] \approx \delta.$$

- So use any coupling between evidence and P_0 or expert knowledge.
- ullet We discuss choosing δ non-parametrically momentarily.

Application 1: Illustration of Coupling

ullet Given arrivals and claim sizes let $Z\left(t
ight)=m_{2}^{-1/2}\sum_{k=1}^{N(t)}\left(X_{k}-m_{1}
ight)$

Algorithm 1 To embed the process $(Z(t):t \ge 0)$ in Brownian motion $(B(t):t \ge 0)$ Given: Brownian motion B(t), moment m_1 and independent realizations of claim sizes X_1, X_2, \ldots

Initialize $\tau_0 := 0$ and $\Psi_0 := 0$. For $j \ge 1$, recursively define,

$$\tau_{j+1} := \inf\bigg\{s \geq \tau_j : \sup_{\tau_j \leq r \leq s} B_r - B_s = X_{j+1}\bigg\}, \text{ and } \Psi_j := \Psi_{j-1} + X_j.$$

Define the auxiliary processes

$$\tilde{S}(t) := \sum_{j>0} \sup_{\tau_j \leq s \leq t} B(s) \mathbf{1} \left(\tau_j \leq t < \tau_{j+1} \right) \text{ and } \tilde{N}(t) := \sum_{j \geq 0} \Psi_j \mathbf{1} (\tau_j \leq t < \tau_{j+1}).$$

Let $A(t) := \tilde{N}(t) + \tilde{S}(t)$, and identify the time change $\sigma(t) := \inf\{s : A(s) = m_1 t\}$. Next, take the time changed version $Z(t) := \tilde{S}(\sigma(t))$.

Replace Z(t) by -Z(t) and B(t) by -B(t).

Application 1: Illustration of Coupling

ullet Given arrivals and claim sizes let $Z\left(t
ight)=m_{2}^{-1/2}\sum_{k=1}^{N(t)}\left(X_{k}-m_{1}
ight)$

Algorithm 1 To embed the process $(Z(t):t \ge 0)$ in Brownian motion $(B(t):t \ge 0)$ Given: Brownian motion B(t), moment m_1 and independent realizations of claim sizes $X_1, X_2, ...$

Initialize $\tau_0 := 0$ and $\Psi_0 := 0$. For $j \ge 1$, recursively define,

$$\tau_{j+1} := \inf\bigg\{s \geq \tau_j : \sup_{\tau_j \leq r \leq s} B_r - B_s = X_{j+1}\bigg\}, \text{ and } \Psi_j := \Psi_{j-1} + X_j.$$

Define the auxiliary processes

$$\tilde{S}(t) := \sum_{j>0} \sup_{\tau_j \leq s \leq t} B(s) \mathbf{1}\left(\tau_j \leq t < \tau_{j+1}\right) \text{ and } \tilde{N}(t) := \sum_{j \geq 0} \Psi_j \mathbf{1}(\tau_j \leq t < \tau_{j+1}).$$

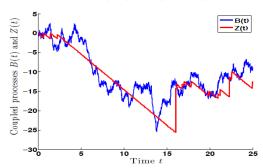
Let $A(t) := \tilde{N}(t) + \tilde{S}(t)$, and identify the time change $\sigma(t) := \inf\{s : A(s) = m_1 t\}$. Next, take the time changed version $Z(t) := \tilde{S}(\sigma(t))$.

Replace Z(t) by -Z(t) and B(t) by -B(t).

• See also Fomivoch, Gonzalez-Cazares, Ivanovs (2021).

Application 1: Coupling in Action

FIGURE 4. A coupled path output by Algorithm 1



Application 1: Numerical Example

- Assume Poisson arrivals.
- Pareto claim sizes with index **2.2** $(P(V > t) = 1/(1+t)^{2.2})$.
- Cost $c(x, y) = d_J(x, y)^2 < -$ note power of 2.
- Used Algorithm 1 to calibrate (estimating means and variances from data).

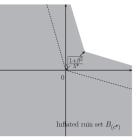
$$\begin{array}{cccc} b & \frac{P_0(\mathrm{Ruin})}{P_{true}(\mathrm{Ruin})} & \frac{P_{robust}^*(\mathrm{Ruin})}{P_{true}(\mathrm{Ruin})} \\ 100 & 1.07 \times 10^{-1} & 12.28 \\ 150 & 2.52 \times 10^{-4} & 10.65 \\ 200 & 5.35 \times 10^{-8} & 10.80 \\ 250 & 1.15 \times 10^{-12} & 10.98 \\ \end{array}$$

• See also Birghila, Aigner, Engelke (2021)

4 □ → 4 同 → 4 三 → 4 三 → 9 Q (~)

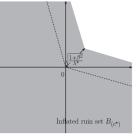
• https://arxiv.org/abs/1604.01446 contains more applications.

- https://arxiv.org/abs/1604.01446 contains more applications.
- Control: $\min_{\theta} \sup_{P:D(P,P_0) \leq \delta} E[L(\theta,Z)] < \text{ robust optimal reinsurance.}$



(b)Computation of worst-case ruin using the baseline measure

- https://arxiv.org/abs/1604.01446 contains more applications.
- Control: $\min_{\theta} \sup_{P:D(P,P_0) \leq \delta} E[L(\theta,Z)] < \text{ robust optimal reinsurance.}$

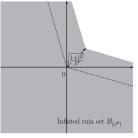


(b)Computation of worst-case ruin using the baseline measure

• Multidimensional risk processes (explicit evaluation of $c_B(x)$ for d_J metric).

52 / 115

- https://arxiv.org/abs/1604.01446 contains more applications.
- Control: $\min_{\theta} \sup_{P:D(P,P_0) \leq \delta} E[L(\theta,Z)] < \text{ robust optimal reinsurance.}$

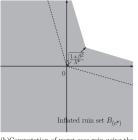


(b)Computation of worst-case ruin using the baseline measure

- Multidimensional risk processes (explicit evaluation of $c_B(x)$ for d_J metric).
- Key insight: Geometry of target set often remains largely the same!

Blanchet (Stanford) 52 / 115

- https://arxiv.org/abs/1604.01446 contains more applications.
- Control: $\min_{\theta} \sup_{P:D(P,P_0) \leq \delta} E[L(\theta,Z)] < \text{ robust optimal reinsurance.}$



(b)Computation of worst-case ruin using the baseline measure

- Multidimensional risk processes (explicit evaluation of $c_B(x)$ for d_J metric).
- Key insight: Geometry of target set often remains largely the same!

Background: (Very) Simplified version of Demand Side Platforms (DSPs)

Goal of DSP: Maximize revenue on behalf of advertisers

• Until recently, most exchanges operated using second price auctions.

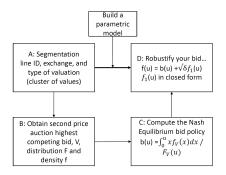
- Until recently, most exchanges operated using second price auctions.
- The optimal bidding policy in second price auctions is to bid truthfully.

- Until recently, most exchanges operated using second price auctions.
- The optimal bidding policy in second price auctions is to bid truthfully.
- Now, first price auction exchanges have become popular.

- Until recently, most exchanges operated using second price auctions.
- The optimal bidding policy in second price auctions is to bid truthfully.
- Now, first price auction exchanges have become popular.
- How to transfer information from second-price exchanges into first-price exchanges?

Transfer Information and Mitigation of Model Error

Summary of blue print $A \rightarrow B \rightarrow C \rightarrow D$



Notations

- $U_i = (\text{dlls/1000})$ value of the item in auction *i* if we win. We write $U_i = u_i$ when value is given.
- $b_i = (dlls/1000)$ is what we bid in the *i*-th auction (cost in 1st price auction).
- $V_i = (dlls/1000)$ is the highest competing bid in the *i*-th auction.
- f_{V_i} = the probability density function of V_i .
- F_{V_i} = the cumulative distribution function of V_i .

A Simplified Model:

$$\max_{\{b_1,...,b_n\}} \frac{1}{n} \sum_{i=1}^n (u_i - b_i) P(V_i \le b_i | U_i = u_i),$$

where n is the number of auctions in a given time period, for instance, a day.

A Simplified Model:

$$\max_{\{b_1,...,b_n\}} \frac{1}{n} \sum_{i=1}^n (u_i - b_i) P(V_i \le b_i | U_i = u_i),$$

where n is the number of auctions in a given time period, for instance, a day.

 Assume auctions are split according to segments, such as line and exchange, to induce homogeneity.

A Simplified Model:

$$\max_{\{b_1,...,b_n\}} \frac{1}{n} \sum_{i=1}^n (u_i - b_i) P(V_i \le b_i | U_i = u_i),$$

where n is the number of auctions in a given time period, for instance, a day.

- Assume auctions are split according to segments, such as line and exchange, to induce homogeneity.
- Homogeneity: For each $i \neq j$

$$P(V_i \leq b|U_i = u) = P(V_j \leq b|U_j = u).$$

A Simplified Model:

$$\max_{\{b_1,...,b_n\}} \frac{1}{n} \sum_{i=1}^n (u_i - b_i) P(V_i \le b_i | U_i = u_i),$$

where n is the number of auctions in a given time period, for instance, a day.

- Assume auctions are split according to segments, such as line and exchange, to induce homogeneity.
- Homogeneity: For each $i \neq j$

$$P(V_i \le b | U_i = u) = P(V_j \le b | U_j = u)$$
.

• Under homogeneity it suffices to solve

$$\max_{b} (u - b) P(V \le b | U = u).$$

A Simplified Model:

$$\max_{\{b_1,...,b_n\}} \frac{1}{n} \sum_{i=1}^n (u_i - b_i) P(V_i \le b_i | U_i = u_i),$$

where n is the number of auctions in a given time period, for instance, a day.

- Assume auctions are split according to segments, such as line and exchange, to induce homogeneity.
- Homogeneity: For each $i \neq j$

$$P(V_i \le b | U_i = u) = P(V_j \le b | U_j = u)$$
.

• Under homogeneity it suffices to solve

$$\max_{b} (u - b) P(V \le b | U = u).$$

Also assume conditional independence.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなぐ

• Setting the derivative with respect to b equal to zero yields

$$b = u - F_{V|U=u}(b) / f_{V|U=u}(b)$$
.

Setting the derivative with respect to b equal to zero yields

$$b = u - F_{V|U=u}(b) / f_{V|U=u}(b)$$
.

• Challenge: The quantity

$$F_{V|U=u}\left(\cdot\right)$$
 and $f_{V|U=u}\left(\cdot\right)$

are virtually impossible to estimate in a first price auction setting.

• Setting the derivative with respect to b equal to zero yields

$$b = u - F_{V|U=u}(b) / f_{V|U=u}(b).$$

• Challenge: The quantity

$$F_{V|U=u}\left(\cdot\right)$$
 and $f_{V|U=u}\left(\cdot\right)$

are virtually impossible to estimate in a first price auction setting.

• Virtually ONLY solution: Assume that V and U are conditionally independent given some other observable factor Θ .

• Setting the derivative with respect to b equal to zero yields

$$b = u - F_{V|U=u}(b) / f_{V|U=u}(b).$$

• Challenge: The quantity

$$F_{V|U=u}\left(\cdot\right)$$
 and $f_{V|U=u}\left(\cdot\right)$

are virtually impossible to estimate in a first price auction setting.

- Virtually ONLY solution: Assume that V and U are conditionally independent given some other observable factor Θ .
- For example: Θ is a value type (i.e. $\Theta = k \Leftrightarrow U \in \mathcal{A}_k$) = segmentation across values (there are only a few segments).

Setting the derivative with respect to b equal to zero yields

$$b = u - F_{V|U=u}(b) / f_{V|U=u}(b).$$

• Challenge: The quantity

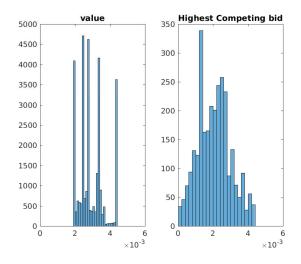
$$F_{V|U=u}\left(\cdot\right)$$
 and $f_{V|U=u}\left(\cdot\right)$

are virtually impossible to estimate in a first price auction setting.

- Virtually ONLY solution: Assume that V and U are conditionally independent given some other observable factor Θ .
- For example: Θ is a value type (i.e. $\Theta = k \Leftrightarrow U \in \mathcal{A}_k$) = segmentation across values (there are only a few segments).
- We go back to this in part II)...

4□ > 4□ > 4 = > 4 = > = 90

Inducing Homogeneity and Conditional Independence



• Even if two exchanges run under second price auctions, their competitive landscapes may be different.

- Even if two exchanges run under second price auctions, their competitive landscapes may be different.
- ullet So, if $ar{V}$ is taken from exchange X, we need to recognize the possibility of model error.

- Even if two exchanges run under second price auctions, their competitive landscapes may be different.
- So, if \bar{V} is taken from exchange X, we need to recognize the possibility of model error.
- ullet We do this by introducing a metric to compare CDFs, say F and G

$$D(F,G) = \int_{-\infty}^{\infty} |F(x) - G(x)| dx.$$

- Even if two exchanges run under second price auctions, their competitive landscapes may be different.
- So, if \bar{V} is taken from exchange X, we need to recognize the possibility of model error.
- ullet We do this by introducing a metric to compare CDFs, say F and G

$$D(F,G) = \int_{-\infty}^{\infty} |F(x) - G(x)| dx.$$

It turns out that

 $D(F,G) = \min\{E(|X-Y|) \text{ over all joint distributions}$ such that X has CDF F and Y has CDF G.

◆ロ → ◆回 → ◆ き → ◆ き → り へ ○

We now want

$$\max_{b} \min_{D(F,F_V) \leq \delta} (u - b) F(b).$$

We now want

$$\max_{b} \min_{D(F,F_V) \leq \delta} (u-b) F(b).$$

• If we write $\bar{F}\left(x\right)=1-F\left(x\right)=P\left(V>x\right)$, then the inner minimization is equivalent to

$$\max_{D(F,F_V) \leq \delta} \bar{F}\left(b\right) = \max_{D(F,F_V) \leq \delta} P_F\left(V > b\right) = P_F\left(V > b - \lambda_b\right).$$

We now want

$$\max_{b} \min_{D(F,F_V) \leq \delta} (u-b) F(b).$$

• If we write $\bar{F}\left(x\right)=1-F\left(x\right)=P\left(V>x\right)$, then the inner minimization is equivalent to

$$\max_{D(F,F_{V})\leq\delta}\bar{F}\left(b\right)=\max_{D(F,F_{V})\leq\delta}P_{F}\left(V>b\right)=P_{F}\left(V>b-\lambda_{b}\right).$$

• Let $\lambda = \lambda_b \ge 0$ be a Lagrange multiplier, the "worst case distribution" is

$$V^* = V \cdot I(V > b) + b \cdot I(b - \lambda < V \le b) + V \cdot I(V \le b - \lambda).$$

We now want

$$\max_{b} \min_{D(F,F_V) \leq \delta} (u - b) F(b).$$

• If we write $\bar{F}\left(x\right)=1-F\left(x\right)=P\left(V>x\right)$, then the inner minimization is equivalent to

$$\max_{D(F,F_{V})\leq\delta}\bar{F}\left(b\right)=\max_{D(F,F_{V})\leq\delta}P_{F}\left(V>b\right)=P_{F}\left(V>b-\lambda_{b}\right).$$

• Let $\lambda = \lambda_b \ge 0$ be a Lagrange multiplier, the "worst case distribution" is

$$V^* = V \cdot I(V > b) + b \cdot I(b - \lambda < V \le b) + V \cdot I(V \le b - \lambda).$$

• Intuitively: re-arrange V as cheaply as possible to produce V^* so that $V^* > b$ happens (λ computed to satisfy cost constraint).

Blanchet (Stanford) 61 / 115

• Conclusion: We are trying to find the (Nash Equilibrium) policy $b^*(u) = f(u)$ so

$$\max_{b} \min_{D(F,F_{\bar{V}}) \leq \delta} (u-b) F_{\bar{V}} (f^{-1}(b))$$

$$= \max_{b} (u-b) F_{\bar{V}} (f^{-1}(b) - \lambda_{f^{-1}(b)}).$$

• Conclusion: We are trying to find the (Nash Equilibrium) policy $b^*(u) = f(u)$ so

$$\begin{split} & \max_{b} \min_{D(F,F_{\tilde{V}}) \leq \delta} \left(u - b \right) F_{\tilde{V}} \left(f^{-1} \left(b \right) \right) \\ & = & \max_{b} \left(u - b \right) F_{\tilde{V}} \left(f^{-1} \left(b \right) - \lambda_{f^{-1}(b)} \right). \end{split}$$

• Optimizing over $b(\cdot)$ we obtain

$$b\left(u\right) = \frac{\int_{0}^{u} x f_{\bar{V}}\left(x - \lambda_{x}\right) \left(1 - \dot{\lambda}\left(x\right)\right) dx}{F_{\bar{V}}\left(u - \lambda_{u}\right)},$$

with

$$\int_{u-\lambda_{u}}^{u}\left(u-v\right)f_{\bar{V}}\left(v\right)dv=\delta.$$

- ◀ ㅁ ▶ ◀ 🗗 ▶ ◀ 볼 ▶ ◀ 볼 ▶ ♥ Q @

Approximate Distributionally Robust Equilibrium Bidding Policies

• While the previous equations can be solved numerically, they may be a bit cumbersome to implement.

Approximate Distributionally Robust Equilibrium Bidding Policies

- While the previous equations can be solved numerically, they may be a bit cumbersome to implement.
- So, we provide an asymptotic expansion as $\delta \to 0$.

Approximate Distributionally Robust Equilibrium Bidding **Policies**

- While the previous equations can be solved numerically, they may be a bit cumbersome to implement.
- So, we provide an asymptotic expansion as $\delta \to 0$.
- This leads to a bidding strategy of the form

$$b_{\delta}(u) = b_{0}(u) + \delta^{1/2}b_{1}(u) + O(\delta),$$

where

$$b_{0}\left(u\right)=E\left(\bar{V}|\bar{V}\leq u\right)=\int_{0}^{u}xf_{\bar{V}}\left(x\right)dx/F_{\bar{V}}\left(x\right)$$

and

$$b_{1}\left(u\right)=\frac{\sqrt{2}}{F_{\bar{V}}\left(u\right)}\left(\int_{0}^{u}\sqrt{f_{\bar{V}}\left(x\right)}dx-\frac{f_{\bar{V}}\left(u\right)}{F_{\bar{V}}\left(u\right)}\int_{0}^{u}F_{\bar{V}}\left(x\right)dx\right).$$

Example

• Example 3: Back to logistic model

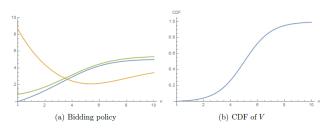
Example

- Example 3: Back to logistic model
- $P(\bar{V} \le x) = (1 + \exp(-xc)) / (1 + \exp(a xc))$ for $a \in R$, c > 0.

Example

- Example 3: Back to logistic model
- $P(\bar{V} \le x) = (1 + \exp(-xc)) / (1 + \exp(a xc))$ for $a \in R$, c > 0.
- a = 5, c = 1 and $\delta = .01$ (figures in \$/1000)

We show the bidding policy and CDF for $a = 5, c = 1, \delta = 0.01$ in the following plot.



Our Goal

So, now we want to add a player optimizing a decision and play the game:

$$\min_{\theta} \max_{D(P,P_n) \leq \delta} E\left(I\left(X,\theta\right)\right).$$

Based on: Robust Wasserstein Profile Inference (B., Murthy & Kang '16) https://arxiv.org/abs/1610.05627

https://www.cambridge.org/core/journals/journal-of-applied-probability /article/abs/robust-wasserstein-profile-inference-and-applications-to-machine-learning

Distributionally Robust Optimization in Machine Learning

• Consider estimating $\beta_* \in R^m$ in linear regression

$$Y_i = \beta X_i + e_i$$
,

where $\{(Y_i, X_i)\}_{i=1}^n$ are data points.

Distributionally Robust Optimization in Machine Learning

• Consider estimating $\beta_* \in R^m$ in linear regression

$$Y_i = \beta X_i + e_i$$

where $\{(Y_i, X_i)\}_{i=1}^n$ are data points.

 \bullet Optimal Least Squares approach consists in estimating β_* via

$$\min_{\beta} E_{P_n} \left[\left(Y - \beta^T X \right)^2 \right] = \min_{\beta} \frac{1}{n} \sum_{i=1}^n \left(Y_i - \beta^T X_i \right)^2$$

Distributionally Robust Optimization in Machine Learning

• Consider estimating $\beta_* \in R^m$ in linear regression

$$Y_i = \beta X_i + e_i$$
,

where $\{(Y_i, X_i)\}_{i=1}^n$ are data points.

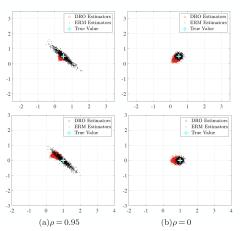
 \bullet Optimal Least Squares approach consists in estimating β_* via

$$\min_{\beta} E_{P_n} \left[\left(Y - \beta^T X \right)^2 \right] = \min_{\beta} \frac{1}{n} \sum_{i=1}^n \left(Y_i - \beta^T X_i \right)^2$$

 Apply the distributionally robust estimator based on optimal transport.

Applying Distributionally Robust Optimization in Linear Regression

Estimation of θ_* with DRO (\circ) and without DRO (\circ)



Connection to Sqrt-Lasso

Theorem (B., Kang, Murthy (2016)) Suppose that

$$c\left(\left(x,y\right),\left(x',y'\right)\right) = \begin{cases} \|x-x'\|_q^2 & \text{if } y=y'\\ \infty & \text{if } y\neq y' \end{cases}.$$

Then, if 1/p + 1/q = 1

$$\max_{P:D_c(P,P_n)\leq \delta} E_P^{1/2}\left(\left(Y-\beta^TX\right)^2\right) = E_{P_n}^{1/2}\left[\left(Y-\beta^TX\right)^2\right] + \sqrt{\delta} \left\|\beta\right\|_p.$$

Remark 1: This is sqrt-Lasso (Belloni et al. (2011)).

Classical classification model:

$$P(Y = 1|X) = \frac{\exp(\beta^T X)}{1 + \exp(\beta^T X)} = \frac{1}{\exp(-\beta^T X) + 1}$$
 $P(Y = -1|X) = \frac{1}{1 + \exp(\beta^T X)}$

Classical classification model:

$$egin{array}{lcl} P\left(Y=1|X
ight) &=& rac{\exp\left(eta^TX
ight)}{1+\exp\left(eta^TX
ight)} = rac{1}{\exp\left(-eta^TX
ight)+1} \ P\left(Y=-1|X
ight) &=& rac{1}{1+\exp\left(eta^TX
ight)} \end{array}$$

• The likelihood of (y, x) is:

$$-\log\left(1+\exp\left(-y\beta^Tx\right)\right)$$

• Therefore, given $\{(y_i, x_i)\}_{i=1}^n$ maximum likelihood is equivalent to

$$\max_{\beta} - \sum_{i=1}^{n} \log \left(1 + \exp \left(-y_{i} \beta^{T} x_{i} \right) \right).$$

• Therefore, given $\{(y_i, x_i)\}_{i=1}^n$ maximum likelihood is equivalent to

$$\max_{\beta} - \sum_{i=1}^{n} \log \left(1 + \exp \left(-y_{i} \beta^{T} x_{i} \right) \right).$$

Also equivalent to

$$\min_{\beta} E_{P_n} \left[\log \left(1 + \exp \left(-Y \beta^T X \right) \right) \right]$$

$$= \min_{\beta} \frac{1}{n} \sum_{i=1}^{n} \log \left(1 + \exp \left(-y_i \beta^T x_i \right) \right).$$

Regularized Logistic Regression

Theorem (B., Kang, Murthy (2016)) Suppose that

$$c\left(\left(x,y\right),\left(x',y'\right)\right) = \left\{ \begin{array}{cc} \left\|x-x'\right\|_{q} & \text{if} \quad y=y'\\ \infty & \text{if} \quad y \neq y' \end{array} \right..$$

Then,

$$\begin{aligned} \sup_{P: \ \mathcal{D}_c(P,P_n) \leq \delta} E_P \left[\log(1 + e^{-Y\beta^T X}) \right] \\ = E_{P_n} \left[\log(1 + e^{-Y\beta^T X}) \right] + \delta \left\| \beta \right\|_p. \end{aligned}$$

Remark 1: First studied via an approximation in Esfahani and Kuhn (2015).

◆ロト ◆部 ト ◆ 差 ト ◆ 差 ・ 釣 へ ○

Connection to Support Vector Machines

Theorem (B., Kang, Murthy (2016)) Suppose that

$$c\left(\left(x,y\right),\left(x',y'\right)\right) = \left\{ \begin{array}{cc} \left\|x-x'\right\|_{q} & \text{if} \quad y=y'\\ \infty & \text{if} \quad y\neq y' \end{array} \right..$$

Then,

$$\sup_{P: \ \mathcal{D}_{c}(P,P_{n}) \leq \delta} E_{P}\left[\left(1 - Y\beta^{T}X\right)^{+}\right]$$

$$= E_{P_{n}}\left[\left(1 - Y\beta^{T}X\right)^{+}\right] + \delta \left\|\beta\right\|_{p}.$$

72 / 115

• Distributionally Robust Optimization using Optimal Transport recovers many other estimators...

- Distributionally Robust Optimization using Optimal Transport recovers many other estimators...
- Group Lasso: B., & Kang (2016): https://arxiv.org/abs/1705.04241

- Distributionally Robust Optimization using Optimal Transport recovers many other estimators...
- Group Lasso: B., & Kang (2016): https://arxiv.org/abs/1705.04241
- Generalized adaptive ridge: B., Kang, Murthy, Zhang (2017): https://arxiv.org/abs/1705.07152

- Distributionally Robust Optimization using Optimal Transport recovers many other estimators...
- Group Lasso: B., & Kang (2016):
 https://arxiv.org/abs/1705.04241
- Generalized adaptive ridge: B., Kang, Murthy, Zhang (2017): https://arxiv.org/abs/1705.07152
- Semisupervised learning: B., and Kang (2016): https://arxiv.org/abs/1702.08848

73 / 115

- Distributionally Robust Optimization using Optimal Transport recovers many other estimators...
- Group Lasso: B., & Kang (2016): https://arxiv.org/abs/1705.04241
- Generalized adaptive ridge: B., Kang, Murthy, Zhang (2017): https://arxiv.org/abs/1705.07152
- Semisupervised learning: B., and Kang (2016): https://arxiv.org/abs/1702.08848
- See the excellent tutorials by Kuhn et al (2019) and Rahimian & Mehrotra (2019).

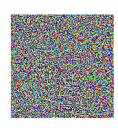
- Distributionally Robust Optimization using Optimal Transport recovers many other estimators...
- Group Lasso: B., & Kang (2016): https://arxiv.org/abs/1705.04241
- Generalized adaptive ridge: B., Kang, Murthy, Zhang (2017): https://arxiv.org/abs/1705.07152
- Semisupervised learning: B., and Kang (2016): https://arxiv.org/abs/1702.08848
- See the excellent tutorials by Kuhn et al (2019) and Rahimian & Mehrotra (2019).
- Other areas in which optimal transport arises in machine learning

Deep Neural Networks: Adversarial Attacks

 $+.007 \times$

 Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, and Fergus (2014).

x
"panda"
57.7% confidence



 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode" 8.2% confidence

 $x + \epsilon sign(\nabla_x J(\theta, x, y))$ "gibbon"
99.3 % confidence

Deep Neural Networks: Adversarial Attacks

• Sharif, Bhagavatula, Bauer, and Reiter (2016)

Blanchet (Stanford) 75 / 115

Deep Neural Networks: Adversarial Attacks

Picture from the BBC

Chinese man caught by facial recognition at pop concert

Chinese police have used facial recognition technology to locate and arrest a man who was among a crowd of 60,000 concert goers.

• Let us work out a simple example...

- Let us work out a simple example...
- Recall RoPA Duality: Pick $c((x, y), (x', y')) = ||(x, y) (x', y')||_q^2$

$$\max_{P:D_{c}(P,P_{n})\leq\delta} E_{P}\left(\left((X,Y)\cdot(\beta,1)\right)^{2}\right)$$

$$= \min_{\lambda\geq0} \left\{\lambda\delta + E_{P_{n}} \sup_{(x',y')} \left[\left((x',y')\cdot(\beta,1)\right)^{2} - \lambda \left\|(X,Y) - (x',y')\right\|_{C}^{2}\right\}\right\}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ りへ○

- Let us work out a simple example...
- Recall RoPA Duality: Pick $c((x, y), (x', y')) = ||(x, y) (x', y')||_q^2$

$$\max_{P:D_{c}(P,P_{n})\leq\delta} E_{P}\left(\left((X,Y)\cdot(\beta,1)\right)^{2}\right)$$

$$= \min_{\lambda\geq0} \left\{\lambda\delta + E_{P_{n}} \sup_{(x',y')} \left[\left((x',y')\cdot(\beta,1)\right)^{2} - \lambda \left\|(X,Y) - (x',y')\right\|_{C}^{2}\right\}\right\}$$

• Let's focus on the inside E_{P_n} ...

◆ロト ◆卸 ト ◆差 ト ◆差 ト ・ 差 ・ からで

• Let
$$\Delta = (X, Y) - (x', y')$$

$$\sup_{\substack{(x', y') \\ \Delta}} \left[\left((x', y') \cdot (\beta, 1) \right)^2 - \lambda \left\| (X, Y) - (x', y') \right\|_q^2 \right]$$

$$= \sup_{\Delta} \left[\left((X, Y) \cdot (\beta, 1) - \Delta \cdot (\beta, 1) \right)^2 - \lambda \left\| \Delta \right\|_q^2 \right]$$

$$= \sup_{\|\Delta\|_q} \left[\left(\left| (X, Y) \cdot (\beta, 1) \right| + \|\Delta\|_q \left\| (\beta, 1) \right\|_p \right)^2 - \lambda \left\| \Delta \right\|_q^2 \right]$$

• Let
$$\Delta = (X, Y) - (x', y')$$

$$\sup_{\substack{(x', y') \\ \Delta}} \left[\left((x', y') \cdot (\beta, 1) \right)^2 - \lambda \left\| (X, Y) - (x', y') \right\|_q^2 \right]$$

$$= \sup_{\Delta} \left[\left((X, Y) \cdot (\beta, 1) - \Delta \cdot (\beta, 1) \right)^2 - \lambda \left\| \Delta \right\|_q^2 \right]$$

$$= \sup_{\|\Delta\|_q} \left[\left(\left| (X, Y) \cdot (\beta, 1) \right| + \left\| \Delta \right\|_q \left\| (\beta, 1) \right\|_p \right)^2 - \lambda \left\| \Delta \right\|_q^2 \right]$$

• Last equality uses $z \to z^2$ is symmetric around origin and $|a \cdot b| \le ||a||_p ||b||_q$.

◆□▶ ◆御▶ ◆巻▶ ◆巻▶ - 巻 - 夕久♡

How Regularization and Dual Norms Arise?

• Let
$$\Delta = (X, Y) - (x', y')$$

$$\sup_{\substack{(x', y') \\ \Delta}} \left[\left((x', y') \cdot (\beta, 1) \right)^2 - \lambda \left\| (X, Y) - (x', y') \right\|_q^2 \right]$$

$$= \sup_{\Delta} \left[\left((X, Y) \cdot (\beta, 1) - \Delta \cdot (\beta, 1) \right)^2 - \lambda \left\| \Delta \right\|_q^2 \right]$$

$$= \sup_{\|\Delta\|_q} \left[\left(\left| (X, Y) \cdot (\beta, 1) \right| + \left\| \Delta \right\|_q \left\| (\beta, 1) \right\|_p \right)^2 - \lambda \left\| \Delta \right\|_q^2 \right]$$

- Last equality uses $z \to z^2$ is symmetric around origin and $|a \cdot b| \le ||a||_p ||b||_q$.
- Note problem is now one-dimensional (easily computable).

◆□▶ ◆□▶ ◆■▶ ◆■▶ ● 釣९♂

A Fully Worked Out Example: Support Vector Machines

• Use RoPA: with

$$c\left(\left(x,y\right),\left(x',y'\right)\right) = \left\|x - x'\right\|_{q} I\left(y = y'\right) + \infty I\left(y \neq y'\right)$$

$$\sup_{P \in \mathcal{D}_{c}(P,P_{n}) \leq \delta} E_{P}\left[\left(1 - Y\beta^{T}X\right)^{+}\right]$$

$$= \min_{\lambda \geq 0} \left[\lambda \delta + E_{P_{n}} \left\{\max_{x} \left(\left(1 - Y\beta^{T}x\right)^{+} - \lambda \left\|x - X\right\|_{q}\right)\right\}\right]$$

$$= \min_{\lambda \geq 0} \left[\lambda \delta + E_{P_{n}} \left\{\max_{x} \left(\left(1 - Y\beta^{T}X - Y\beta^{T}\Delta\right)^{+} - \lambda \left\|\Delta\right\|_{q}\right)\right\}\right]$$

$$= \min_{\lambda \geq 0} \left[\lambda \delta + E_{P_{n}} \left\{\max_{\Delta} \left(\left(1 - Y\beta^{T}X + \left\|\beta\right\|_{p} \left\|\Delta\right\|_{q}\right)^{+} - \lambda \left\|\Delta\right\|_{q}\right)\right\}$$

$$= \min_{\lambda \geq \left\|\beta\right\|_{p}} \left[\lambda \delta + E_{P_{n}} \left\{\max_{\left\|\Delta\right\|_{q}} \left(\left(1 - Y\beta^{T}X + \left\|\beta\right\|_{p} \left\|\Delta\right\|_{q}\right)^{+} - \lambda \left\|\Delta\right\|_{q}\right)\right\}$$

$$= \min_{\lambda \geq \left\|\beta\right\|_{p}} \left[\lambda \delta + E_{P_{n}} \left(1 - Y\beta^{T}X\right)^{+}\right] = \lambda \left\|\beta\right\|_{p} + E_{P_{n}} \left(1 - Y\beta^{T}X\right)$$

Blanchet (Stanford) 79 / 11

Explaining the Adversarial Attacks of Neural Networks

So, in general

$$c\left(\left(x,y\right),\left(x',y'\right)\right) = \left\|x - x'\right\|_{q} I\left(y = y'\right) + \infty I\left(y \neq y'\right)$$

$$\sup_{P: \ \mathcal{D}_{c}(P,P_{n}) \leq \delta} E_{P}[I\left(\theta,Y,X\right)]$$

$$= \min_{\lambda \geq 0} \left[\lambda \delta + E_{P_{n}} \left\{ \max_{x} \left(I\left(\theta,Y,x\right) - \lambda \left\|x - X\right\|_{q}\right)\right\} \right]$$

$$= \min_{\lambda \geq 0} \left[\lambda \delta + E_{P_{n}} \left\{ \max_{\Delta} \left(I\left(\theta,Y,X + \Delta\right) - \lambda \left\|\Delta\right\|_{q}\right)\right\} \right]$$

$$= \min_{\lambda \geq 0} \left[\lambda \delta + E_{P_{n}} \left\{ \max_{\Delta} \left(I\left(\theta,Y,X + \Delta/\lambda\right) - \left\|\Delta\right\|_{q}\right)\right\} \right].$$

80 / 115

Explaining the Adversarial Attacks of Neural Networks

 So, in general $c((x, y), (x', y')) = ||x - x'||_a I(y = y') + \infty I(y \neq y')$ $\sup_{P: \mathcal{D}_{c}(P,P_{n}) \leq \delta} E_{P}[I(\theta, Y, X)]$ $= \min_{\lambda > 0} \left[\lambda \delta + E_{P_n} \left\{ \max_{x} \left(I(\theta, Y, x) - \lambda \|x - X\|_q \right) \right\} \right]$

$$= \min_{\lambda \geq 0} \left[\lambda \delta + E_{P_n} \left\{ \max_{\Delta} \left(I(\theta, Y, X + \Delta) - \lambda \|\Delta\|_q \right) \right\} \right]$$

$$= \min_{\lambda \geq 0} \left[\lambda \delta + E_{P_n} \left\{ \max_{\Delta} \left(I(\theta, Y, X + \Delta/\lambda) - \|\Delta\|_q \right) \right\} \right].$$

• If $\delta \approx 0$, then λ is large, so inner maximization

$$\begin{aligned} & \max_{\Delta} \left(I\left(\theta, Y, X + \Delta/\lambda\right) - \left\|\Delta\right\|_{q} \right) \\ & \approx & I\left(\theta, Y, X\right) + \left\|I_{x}\left(\theta, Y, X\right)\right\|_{p} \left\|\Delta\right\|_{q} / \lambda - \left\|\Delta\right\|_{q} \end{aligned}$$

Summary

ullet The worst case perturbation is given by Δ such that

$$I_{X}(\theta, Y, X) \cdot \Delta / \lambda = \|I_{X}(\theta, Y, X)\|_{p} \|\Delta\|_{q} / \lambda,$$

if $q = \infty$, then $\Delta = c \cdot sign(I_X(\theta, Y, X))$.

Summary

ullet The worst case perturbation is given by Δ such that

$$I_{X}(\theta, Y, X) \cdot \Delta/\lambda = \|I_{X}(\theta, Y, X)\|_{p} \|\Delta\|_{q}/\lambda,$$

if $q = \infty$, then $\Delta = c \cdot sign(I_X(\theta, Y, X))$.

• So, $\delta \approx 0$ means perturbing by

$$\epsilon \cdot sign(I_{x}(\theta, Y, X))$$

for $\epsilon > 0$.

Summary

ullet The worst case perturbation is given by Δ such that

$$I_{X}(\theta, Y, X) \cdot \Delta / \lambda = \|I_{X}(\theta, Y, X)\|_{p} \|\Delta\|_{q} / \lambda,$$

if $q = \infty$, then $\Delta = c \cdot sign(I_X(\theta, Y, X))$.

• So, $\delta \approx 0$ means perturbing by

$$\epsilon \cdot sign(I_{x}(\theta, Y, X))$$

for $\epsilon > 0$.

• This explains the nature of the panda example given earlier.

Naturally, it makes sense then to train networks using

$$\begin{split} & \min_{\theta} \max_{D(P,P_n) \leq \delta} E_P\left(I\left(\theta,Y,X\right)\right) \\ &= & \min_{\theta} \{\lambda\delta + E_{P_n} \max_{x} [I\left(\theta,Y,x\right) - \lambda \left\|x - X\right\|_q]. \end{split}$$

Naturally, it makes sense then to train networks using

$$\begin{split} & \min_{\theta} \max_{D(P,P_n) \leq \delta} E_P\left(I\left(\theta,Y,X\right)\right) \\ &= & \min_{\theta} \{\lambda \delta + E_{P_n} \max_{x} [I\left(\theta,Y,x\right) - \lambda \left\|x - X\right\|_q]. \end{split}$$

This will automatically protect against attacks.

Naturally, it makes sense then to train networks using

$$\begin{split} & \min_{\theta} \max_{D(P,P_n) \leq \delta} E_P\left(I\left(\theta,Y,X\right)\right) \\ &= & \min_{\theta} \{\lambda \delta + E_{P_n} \max_{x} [I\left(\theta,Y,x\right) - \lambda \left\|x - X\right\|_q]. \end{split}$$

- This will automatically protect against attacks.
- This is an active area of research currently.

Naturally, it makes sense then to train networks using

$$\begin{aligned} & \min_{\theta} \max_{D(P,P_n) \leq \delta} E_P\left(I\left(\theta,Y,X\right)\right) \\ &= & \min_{\theta} \{\lambda \delta + E_{P_n} \max_{x} [I\left(\theta,Y,x\right) - \lambda \left\|x - X\right\|_q]. \end{aligned}$$

- This will automatically protect against attacks.
- This is an active area of research currently.
- But there may be many possible attacks.

• https://arxiv.org/abs/1705.07152: Data-driven chose of $c(\cdot)$.

- https://arxiv.org/abs/1705.07152: Data-driven chose of $c(\cdot)$.
- Suppose that $\|x x'\|_A^2 = (x x') A(x x)$ with A positive definite (Mahalanobis distance).

- https://arxiv.org/abs/1705.07152: Data-driven chose of $c(\cdot)$.
- Suppose that $\|x x'\|_A^2 = (x x') A(x x)$ with A positive definite (Mahalanobis distance).
- Then,

$$\max_{P:D_{c}(P,P_{n})\leq\delta} E_{P}^{1/2} \left(\left(Y - \beta^{T} X \right)^{2} \right)$$

$$= \min_{\beta} E_{P_{n}}^{1/2} \left[\left(Y - \beta^{T} X \right)^{2} \right] + \sqrt{\delta} \left\| \beta \right\|_{A^{-1}}.$$

- https://arxiv.org/abs/1705.07152: Data-driven chose of $c(\cdot)$.
- Suppose that $\|x x'\|_A^2 = (x x') A(x x)$ with A positive definite (Mahalanobis distance).
- Then,

$$\max_{P:D_c(P,P_n)\leq\delta} E_P^{1/2} \left(\left(Y - \beta^T X \right)^2 \right)$$

$$= \min_{\beta} E_{P_n}^{1/2} \left[\left(Y - \beta^T X \right)^2 \right] + \sqrt{\delta} \|\beta\|_{A^{-1}}.$$

• Intuition: Think of A diagonal, encoding inverse variability of X_i s...

Blanchet (Stanford) 83 / 115

- https://arxiv.org/abs/1705.07152: Data-driven chose of $c(\cdot)$.
- Suppose that $\|x x'\|_A^2 = (x x') A(x x)$ with A positive definite (Mahalanobis distance).
- Then,

$$\begin{aligned} & \max_{P:D_c(P,P_n) \leq \delta} E_P^{1/2} \left(\left(Y - \beta^T X \right)^2 \right) \\ &= & \min_{\beta} E_{P_n}^{1/2} \left[\left(Y - \beta^T X \right)^2 \right] + \sqrt{\delta} \left\| \beta \right\|_{A^{-1}}. \end{aligned}$$

- Intuition: Think of A diagonal, encoding inverse variability of X_i s...
- High variability —> cheap transportation —> high impact in risk estimation.

• https://arxiv.org/abs/1705.07152: Data-driven chose of $c(\cdot)$.

- https://arxiv.org/abs/1705.07152: Data-driven chose of $c(\cdot)$.
- Suppose that $\|x x'\|_{\Lambda}^2 = (x x') \Lambda(x x)$ with Λ positive definite (Mahalanobis distance).

- https://arxiv.org/abs/1705.07152: Data-driven chose of $c(\cdot)$.
- Suppose that $\|x x'\|_{\Lambda}^2 = (x x') \Lambda(x x)$ with Λ positive definite (Mahalanobis distance).
- Then,

$$\max_{P:D_c(P,P_n)\leq\delta} E_P^{1/2} \left(\left(Y - \beta^T X \right)^2 \right)$$

$$= \min_{\beta} E_{P_n}^{1/2} \left[\left(Y - \beta^T X \right)^2 \right] + \sqrt{\delta} \|\beta\|_{\Lambda^{-1}}.$$

- https://arxiv.org/abs/1705.07152: Data-driven chose of $c(\cdot)$.
- Suppose that $\|x x'\|_{\Lambda}^2 = (x x') \Lambda(x x)$ with Λ positive definite (Mahalanobis distance).
- Then,

$$\begin{aligned} & \max_{P:D_c(P,P_n) \leq \delta} E_P^{1/2} \left(\left(Y - \beta^T X \right)^2 \right) \\ &= & \min_{\beta} E_{P_n}^{1/2} \left[\left(Y - \beta^T X \right)^2 \right] + \sqrt{\delta} \left\| \beta \right\|_{\Lambda^{-1}}. \end{aligned}$$

ullet Intuition: Think of Λ diagonal, encoding inverse variability of X_i s...

- https://arxiv.org/abs/1705.07152: Data-driven chose of $c(\cdot)$.
- Suppose that $\|x x'\|_{\Lambda}^2 = (x x') \Lambda(x x)$ with Λ positive definite (Mahalanobis distance).
- Then,

$$\begin{split} & \max_{P:D_c(P,P_n) \leq \delta} E_P^{1/2} \left(\left(Y - \beta^T X \right)^2 \right) \\ &= & \min_{\beta} E_{P_n}^{1/2} \left[\left(Y - \beta^T X \right)^2 \right] + \sqrt{\delta} \left\| \beta \right\|_{\Lambda^{-1}}. \end{split}$$

- Intuition: Think of Λ diagonal, encoding inverse variability of X_i s...
- High variability —> cheap transportation —> high impact in risk estimation.

Connections to Statistical Analysis

https://arxiv.org/abs/1610.05627 Robust Wasserstein Profile Inference B., Murthy & Kang '16

https://arxiv.org/abs/1906.01614

Confidence Regions in Wasserstein Distributionally Robust Estimation
B., Murthy & Si '19
Optimal size of uncertainty + Asymptotic Normality

• How to choose uncertainty size in a data-driven way?

- How to choose uncertainty size in a data-driven way?
- Once again, consider Lasso as example:

$$\min_{\beta} \max_{P:D_{c}(P,P_{n}) \leq \delta} E_{P}^{1/2} \left(\left(Y - \beta^{T} X \right)^{2} \right)$$

$$= \min_{\beta} E_{P_{n}}^{1/2} \left[\left(Y - \beta^{T} X \right)^{2} \right] + \sqrt{\delta} \left\| \beta \right\|_{p}.$$

- How to choose uncertainty size in a data-driven way?
- Once again, consider Lasso as example:

$$\begin{split} & \min_{\beta} \max_{P:D_{c}(P,P_{n}) \leq \delta} E_{P}^{1/2} \left(\left(Y - \beta^{T} X \right)^{2} \right) \\ = & \min_{\beta} E_{P_{n}}^{1/2} \left[\left(Y - \beta^{T} X \right)^{2} \right] + \sqrt{\delta} \left\| \beta \right\|_{p}. \end{split}$$

ullet Use left hand side to define a statistical principle to choose δ .

- How to choose uncertainty size in a data-driven way?
- Once again, consider Lasso as example:

$$\begin{split} & \min_{\beta} \max_{P: D_{c}(P, P_{n}) \leq \delta} E_{P}^{1/2} \left(\left(Y - \beta^{T} X \right)^{2} \right) \\ = & \min_{\beta} E_{P_{n}}^{1/2} \left[\left(Y - \beta^{T} X \right)^{2} \right] + \sqrt{\delta} \left\| \beta \right\|_{p}. \end{split}$$

- ullet Use left hand side to define a statistical principle to choose δ .
- ullet Important: Optimizing δ is equivalent to optimizing regularization.

• One way to select δ : estimate $D(P_{true}, P_n)$?

- One way to select δ : estimate $D(P_{true}, P_n)$?
- This was advocated and seems natural at first sight... but there is a big problem.

- One way to select δ : estimate $D(P_{true}, P_n)$?
- This was advocated and seems natural at first sight... but there is a big problem.
- Consider the case $c\left(x,x'\right)=\|x-x'\|_{\infty}$ by Kantorovich-Rubinstein duality

$$D(P_{true}, P_n) = \sup_{\alpha \in Lip(1)} E_{P_{true}} \alpha(X) - E_{P_n} \alpha(X)$$
$$= \sup_{\alpha \in Lip(1)} \int \alpha(x) (dP_{true} - dP_n).$$

- One way to select δ : estimate $D(P_{true}, P_n)$?
- This was advocated and seems natural at first sight... but there is a big problem.
- Consider the case $c\left(x,x'\right)=\|x-x'\|_{\infty}$ by Kantorovich-Rubinstein duality

$$\begin{array}{ll} D\left(P_{true},P_{n}\right) & = & \displaystyle\sup_{\alpha \; \in \; \mathsf{Lip}(1)} E_{P_{true}}\alpha\left(X\right) - E_{P_{n}}\alpha\left(X\right) \\ & = & \displaystyle\sup_{\alpha \; \in \; \mathsf{Lip}(1)} \int \alpha\left(x\right)\left(dP_{true} - dP_{n}\right). \end{array}$$

• Unfortunately, it turns out that typically $D\left(P_{true}, P_n\right) = O\left(n^{-1/d}\right)$ (Dudley '68) for d > 2.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

• So, even if statistics for $D\left(P_{true}, P_n\right) = O\left(n^{-1/d}\right)$ are known, this approach would suggest choosing $\delta = c n^{-1/d}$.

- So, even if statistics for $D\left(P_{true}, P_n\right) = O\left(n^{-1/d}\right)$ are known, this approach would suggest choosing $\delta = c n^{-1/d}$.
- But this would imply solving (say for the logistic regression)

$$\min_{\beta} \left\{ E_{P_n} \left[\log(1 + e^{-Y\beta^T X}) \right] + c n^{-1/d} \left\| \beta \right\|_1 \right\}.$$

- So, even if statistics for $D\left(P_{true}, P_n\right) = O\left(n^{-1/d}\right)$ are known, this approach would suggest choosing $\delta = c n^{-1/d}$.
- But this would imply solving (say for the logistic regression)

$$\min_{\beta} \left\{ E_{P_n} \left[\log(1 + e^{-Y\beta^T X}) \right] + c n^{-1/d} \left\| \beta \right\|_1 \right\}.$$

ullet But we know that letting $\delta=0$ we typically obtain asymptotically normal estimators

$$\beta_n \approx \beta_{true} + n^{-1/2} N(0, \sigma^2)$$
.

- So, even if statistics for $D\left(P_{true}, P_n\right) = O\left(n^{-1/d}\right)$ are known, this approach would suggest choosing $\delta = c n^{-1/d}$.
- But this would imply solving (say for the logistic regression)

$$\min_{\beta} \left\{ E_{P_n} \left[\log(1 + e^{-Y\beta^T X}) \right] + c n^{-1/d} \left\| \beta \right\|_1 \right\}.$$

ullet But we know that letting $\delta=0$ we typically obtain asymptotically normal estimators

$$\beta_n \approx \beta_{true} + n^{-1/2} N(0, \sigma^2)$$
.

• So, using $\delta = cn^{-1/d}$ induces an error much bigger than $n^{-1/2}$ when d > 2.

• Cross validation is typically the method of choice!

- Cross validation is typically the method of choice!
- There is really nothing wrong with cross validation (especially if prediction is the goal).

- Cross validation is typically the method of choice!
- There is really nothing wrong with cross validation (especially if prediction is the goal).
- Except that it could be quite data intensive + computationally heavy.

- Cross validation is typically the method of choice!
- There is really nothing wrong with cross validation (especially if prediction is the goal).
- Except that it could be quite data intensive + computationally heavy.
- For k-fold cross validation to be consistent you need $k/n \to 1$ and $n-k \to \infty$ (Shao '93).

- Cross validation is typically the method of choice!
- There is really nothing wrong with cross validation (especially if prediction is the goal).
- Except that it could be quite data intensive + computationally heavy.
- For k-fold cross validation to be consistent you need $k/n \to 1$ and $n-k \to \infty$ (Shao '93).
- So, for model selection you need k increasing.

• Keep in mind linear regression problem

$$Y_i = \beta_*^T X_i + \epsilon_i.$$

• Keep in mind linear regression problem

$$Y_i = \beta_*^T X_i + \epsilon_i.$$

• The plausible model variations of P_n are given by the set

$$\mathcal{U}_{\delta}\left(n\right)=\left\{ P:D_{c}\left(P,P_{n}\right)\leq\delta\right\} .$$

• Keep in mind linear regression problem

$$Y_i = \beta_*^T X_i + \epsilon_i.$$

• The plausible model variations of P_n are given by the set

$$\mathcal{U}_{\delta}\left(n\right) = \left\{P : D_{c}\left(P, P_{n}\right) \leq \delta\right\}.$$

• Given $P \in \mathcal{U}_{\delta}(n)$, define $\bar{\beta}(P) = \arg\min E_P \left[\left(Y - \beta^T X \right)^2 \right]$.

• Keep in mind linear regression problem

$$Y_i = \beta_*^T X_i + \epsilon_i.$$

• The plausible model variations of P_n are given by the set

$$\mathcal{U}_{\delta}(n) = \{P : D_{c}(P, P_{n}) \leq \delta\}.$$

- Given $P \in \mathcal{U}_{\delta}(n)$, define $\bar{\beta}(P) = \arg\min E_P \left| \left(Y \beta^T X \right)^2 \right|$.
- It is natural to say that

$$\Lambda_{\delta}\left(\mathbf{n}\right)=\left\{ ar{eta}\left(P
ight):P\in\mathcal{U}_{\delta}\left(\mathbf{n}
ight)
ight\}$$

are plausible estimates of β_* .

◆□ → ◆□ → ◆ □ → ◆ □ → ○ へ○

Optimal Choice of Uncertainty Size

ullet Given a confidence level 1-lpha we advocate choosing δ via

 $\min \delta$

s.t.
$$P(\beta_* \in \Lambda_\delta(n)) \geq 1 - \alpha$$
.

Optimal Choice of Uncertainty Size

ullet Given a confidence level 1-lpha we advocate choosing δ via

$$\min \delta$$

s.t.
$$P\left(\beta_{*} \in \Lambda_{\delta}\left(n\right)\right) \geq 1-\alpha$$
 .

• Equivalently: Find smallest confidence region $\Lambda_{\delta}(n)$ at level $1-\alpha$.

Optimal Choice of Uncertainty Size

ullet Given a confidence level 1-lpha we advocate choosing δ via

$$\min\delta$$
 s.t. $P\left(eta_{*}\in\Lambda_{\delta}\left(n
ight)
ight)\geq1-lpha$.

- Equivalently: Find smallest confidence region $\Lambda_{\delta}(n)$ at level $1-\alpha$.
- In simple words: Find the smallest δ so that β_* is plausible with confidence level $1-\alpha$.

ullet The value $ar{eta}(P)$ is characterized by

$$E_P\left(\nabla_{\beta}\left(Y-\beta^TX\right)^2\right)=2E_P\left(\left(Y-\beta^TX\right)X\right)=0.$$

ullet The value $ar{eta}\left(P
ight)$ is characterized by

$$E_P\left(\nabla_{\beta}\left(Y-\beta^TX\right)^2\right)=2E_P\left(\left(Y-\beta^TX\right)X\right)=0.$$

Define the Robust Wasserstein Profile (RWP) Function:

$$R_n(\beta) = \min\{D_c(P, P_n) : E_P((Y - \beta^T X)X) = 0\}.$$

ullet The value $ar{eta}\left(P
ight)$ is characterized by

$$E_P\left(\nabla_{\beta}\left(Y-\beta^TX\right)^2\right)=2E_P\left(\left(Y-\beta^TX\right)X\right)=0.$$

• Define the Robust Wasserstein Profile (RWP) Function:

$$R_n(\beta) = \min\{D_c(P, P_n) : E_P((Y - \beta^T X)X) = 0\}.$$

Note that

$$R_{n}\left(\beta_{*}\right) \leq \delta \iff \beta_{*} \in \Lambda_{\delta}\left(n\right) = \{\bar{\beta}\left(P\right) : D\left(P, P_{n}\right) \leq \delta\}.$$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

ullet The value $ar{eta}\left(P
ight)$ is characterized by

$$E_P\left(\nabla_{\beta}\left(Y-\beta^TX\right)^2\right)=2E_P\left(\left(Y-\beta^TX\right)X\right)=0.$$

• Define the Robust Wasserstein Profile (RWP) Function:

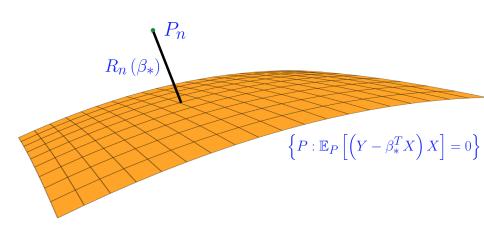
$$R_n(\beta) = \min\{D_c(P, P_n) : E_P((Y - \beta^T X)X) = 0\}.$$

Note that

$$R_{n}\left(\beta_{*}\right) \leq \delta \iff \beta_{*} \in \Lambda_{\delta}\left(n\right) = \{\bar{\beta}\left(P\right) : D\left(P, P_{n}\right) \leq \delta\}.$$

• So δ is $1 - \alpha$ quantile of $R_n(\beta_*)!$

◆ロト ◆個ト ◆差ト ◆差ト 差 めらゆ



Computing Optimal Regularization Parameter

Theorem (B., Murthy, Kang (2016)) Suppose that $\{(Y_i, X_i)\}_{i=1}^n$ is an i.i.d. sample with finite variance, with

$$c\left(\left(x,y\right),\left(x',y'\right)\right) = \begin{cases} \|x-x'\|_q^2 & \text{if } y=y' \\ \infty & \text{if } y\neq y' \end{cases}$$

then

$$nR_n(\beta_*) \Rightarrow L_1$$
,

where L_1 is explicitly (to be computed in one moment)

$$L_1 \stackrel{D}{\leq} L_2 := \frac{E[e^2]}{Var(e)} \|N(0, Cov(X))\|_q^2.$$

Remark: We recover same order of regularization (but L_1 gives the optimal constant!)

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ @

• Compute η_{α} the quantile of L_1 (we'll see that L_1 is explicit) – say for $\alpha=.95$.

- Compute η_{α} the quantile of L_1 (we'll see that L_1 is explicit) say for $\alpha = .95$.
- The distribution of L_1 will depend on β_* but you can use any consistent plug-in estimator for β_* (same asymptotic convergence holds).

- Compute η_{α} the quantile of L_1 (we'll see that L_1 is explicit) say for $\alpha=.95$.
- The distribution of L_1 will depend on β_* but you can use any consistent plug-in estimator for β_* (same asymptotic convergence holds).
- The distribution of L_1 also depends on Cov(X) but you again can use any consistent plug-in estimator.

- Compute η_{α} the quantile of L_1 (we'll see that L_1 is explicit) say for $\alpha=.95$.
- The distribution of L_1 will depend on β_* but you can use any consistent plug-in estimator for β_* (same asymptotic convergence holds).
- The distribution of L_1 also depends on Cov(X) but you again can use any consistent plug-in estimator.
- ullet So, using all of these estimators compute η_{lpha} and let $\delta=\eta_{lpha}/n$.

• Optimal δ is of order $O\left(1/n\right)$ as opposed to $O\left(1/n^{1/d}\right)$ as advocated in the standard approach.

- Optimal δ is of order $O\left(1/n\right)$ as opposed to $O\left(1/n^{1/d}\right)$ as advocated in the standard approach.
- Note that $R_n(\beta_*)$ turns out to be parallel to Empirical Likelihood Owen (1988).

- Optimal δ is of order $O\left(1/n\right)$ as opposed to $O\left(1/n^{1/d}\right)$ as advocated in the standard approach.
- Note that $R_n\left(\beta_*\right)$ turns out to be parallel to Empirical Likelihood Owen (1988).
- So, although we are using $R_n\left(\beta_*\right)$ to compute optimal uncertainty sizes.

- Optimal δ is of order $O\left(1/n\right)$ as opposed to $O\left(1/n^{1/d}\right)$ as advocated in the standard approach.
- Note that $R_n\left(\beta_*\right)$ turns out to be parallel to Empirical Likelihood Owen (1988).
- So, although we are using $R_n\left(\beta_*\right)$ to compute optimal uncertainty sizes.
- There is a broader connection to hypothesis testing (applications to fairness are explored in https://arxiv.org/abs/2012.04800)

- Optimal δ is of order $O\left(1/n\right)$ as opposed to $O\left(1/n^{1/d}\right)$ as advocated in the standard approach.
- Note that $R_n\left(\beta_*\right)$ turns out to be parallel to Empirical Likelihood Owen (1988).
- So, although we are using $R_n\left(\beta_*\right)$ to compute optimal uncertainty sizes.
- There is a broader connection to hypothesis testing (applications to fairness are explored in https://arxiv.org/abs/2012.04800)
- Next, we'll see what is L_1 in the more general hypothesis testing setting.

More Generally Projections to Linear Manifolds

Let

$$\mathcal{M} = \{P : E_P h_i(X) = 0 \text{ for } i = 1, ..., m\}$$

(i.e. distribution that are similar to P_* based on characteristics h_i)

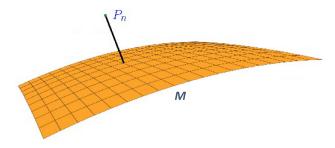
More Generally Projections to Linear Manifolds

Let

$$\mathcal{M}=\left\{ P:E_{P}h_{i}\left(X\right) =0\text{ for }i=1,...,m\right\}$$

(i.e. distribution that are similar to P_* based on characteristics h_i)

• We have that $R_n = D(P_n, \mathcal{M}) = \min\{D(P_n, P) : P \in \mathcal{M}\}$



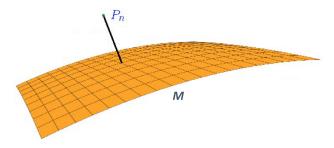
More Generally Projections to Linear Manifolds

Let

$$\mathcal{M}=\left\{ P:E_{P}h_{i}\left(X\right) =0\text{ for }i=1,...,m\right\}$$

(i.e. distribution that are similar to P_* based on characteristics h_i)

• We have that $R_n = D(P_n, \mathcal{M}) = \min\{D(P_n, P) : P \in \mathcal{M}\}$



 \bullet P_n is the empirical measure on some data set.

Blanchet (Stanford) 97 / 115

Duality Results

Theorem (B., Kang, Murthy '19)

Suppose that $c\left(x,y\right)\geq0$ is lower semicontinuous and define $H\left(x\right)=\left(h_{1}\left(x\right),...,h_{m}\left(x\right)\right)^{T}\in\mathbb{R}^{m}$ and suppose that $E_{P_{*}}\left(H\left(X\right)\right)$ is in the interior of $\{H\left(x\right):x\in\mathbb{R}^{d}\}$, then

$$R_{n} = \max_{\lambda \in R^{m}} \left\{ -E_{P_{n}} \left(\sup_{y} \left\{ \lambda^{T} H(y) - c(X, y) \right\} \right) \right\}$$

Some Comments on Proof: Finite Support Essential

Primal:

$$\min \int \int c(x, y) \pi(dx, dy)$$

$$\int \int h_i(y) \pi(dx, dy) = 0 \text{ for all } i = 1, ..., m.$$

$$\int \pi(dx, dy) = P_n(dx); \quad \pi(dx, dy) \ge 0.$$

Some Comments on Proof: Finite Support Essential

Primal:

$$\min \int \int c(x,y) \, \pi(dx,dy)$$

$$\int \int h_i(y) \, \pi(dx,dy) = 0 \text{ for all } i = 1,...,m.$$

$$\int \pi(dx,dy) = P_n(dx); \quad \pi(dx,dy) \ge 0.$$

• Dual:

$$\sup_{\lambda \in \mathbb{R}^{m}} E_{P_{n}} \alpha \left(X \right)$$

$$\lambda^{T} H \left(y \right) + \alpha \left(x \right) \leq c \left(x, y \right) \text{ for } x \in \left\{ X_{i} \right\}_{i=1}^{n}, y \in \mathbb{R}^{d}.$$

Some Comments on Proof: Finite Support Essential

Primal:

$$\min \int \int c\left(x,y\right) \pi\left(dx,dy\right)$$

$$\int \int h_{i}\left(y\right) \pi\left(dx,dy\right) = 0 \text{ for all } i = 1,...,m.$$

$$\int \pi\left(dx,dy\right) = P_{n}\left(dx\right); \quad \pi\left(dx,dy\right) \geq 0.$$

• Dual:

$$\sup_{\lambda \in \mathbb{R}^{m}} E_{P_{n}} \alpha \left(X \right)$$

$$\lambda^{T} H \left(y \right) + \alpha \left(x \right) \leq c \left(x, y \right) \text{ for } x \in \{X_{i}\}_{i=1}^{n}, \ y \in \mathbb{R}^{d} \ .$$

 Proof technique reduces to problem of moments (finitely many constraints in primal crucial).

Statistics: Limiting Distribution

Theorem (B., Kang, Murthy '19)

Suppose $c\left(x,y\right)=\left\|x-y\right\|^2$ for $r\geq 1$ (and $\left\|z\right\|_*=\sup_{\left\|x\right\|\leq 1}x^Tz$ is the dual norm of $\left\|\cdot\right\|$). Assume that duality holds and that $Cov_{P_*}\left(H\left(X\right)\right)=G$ exists. Then (under regularity assumptions to be discussed) if $P_*\in\mathcal{M}$ (recall $P_*=P_\infty$ the data generating distribution)

$$nR_n \Rightarrow \psi^*(Z) = \sup_{\theta} [\theta \cdot Z - \psi(\theta)],$$

where $Z \sim N(0, G)$ and

$$\psi\left(\theta\right) = E_{P_*} \left[\left\| \theta^T DH\left(X\right) \right\|_*^2 \right].$$

Remark: So, the solution is $\psi^*(Z)$ is a quadratic form of the Gaussian. Let's study the structure of the projection.

Blanchet (Stanford) 100 / 115

Intuition and Insights from the Proof

• By defining applying duality

$$R_{n} = \max_{\lambda} \left\{ -E_{P_{n}} \max_{\Delta} \left[\lambda^{T} H \left(X + \Delta \right) - \left\| \Delta \right\|^{2} \right] \right\}.$$

Intuition and Insights from the Proof

• By defining applying duality

$$R_{n} = \max_{\lambda} \left\{ -E_{P_{n}} \max_{\Delta} \left[\lambda^{T} H \left(X + \Delta \right) - \left\| \Delta \right\|^{2} \right] \right\}.$$

• Guessing scalings: $\Delta = O\left(n^{-1/2}\right)$ (since only $O\left(n^{-1/2}\right)$ transport will match constraints by the CLT).

Intuition and Insights from the Proof

• By defining applying duality

$$R_{n} = \max_{\lambda} \{ -E_{P_{n}} \max_{\Delta} \left[\lambda^{T} H \left(X + \Delta \right) - \left\| \Delta \right\|^{2} \right] \}.$$

- Guessing scalings: $\Delta = O\left(n^{-1/2}\right)$ (since only $O\left(n^{-1/2}\right)$ transport will match constraints by the CLT).
- $R_n = O\left(n^{-1}\right)$ because $R_n^{1/2} =$ distance to match constraints $= O\left(n^{-1/2}\right)$.

• By defining applying duality

$$R_{n} = \max_{\lambda} \{ -E_{P_{n}} \max_{\Delta} \left[\lambda^{T} H \left(X + \Delta \right) - \left\| \Delta \right\|^{2} \right] \}.$$

- Guessing scalings: $\Delta = O\left(n^{-1/2}\right)$ (since only $O\left(n^{-1/2}\right)$ transport will match constraints by the CLT).
- $R_n = O(n^{-1})$ because $R_n^{1/2}$ =distance to match constraints = $O(n^{-1/2})$.
- $\lambda =$ sensitivity with respect to change in constraints = $O\left(n^{-1}/n^{-1/2}\right) = O\left(n^{-1/2}\right)$.

◆ロト ◆個ト ◆差ト ◆差ト 差 めるの

• Substitute $\Delta \leftarrow \Delta/n^{1/2}$:

$$R_{n} = \max_{\lambda} \left\{ -E_{P_{n}} \max_{\Delta} \left[\lambda^{T} H \left(X + \Delta / n^{1/2} \right) - \left\| \Delta / n^{1/2} \right\|^{2} \right] \right\}$$

$$= \max_{\lambda} \left\{ -\lambda^{T} E_{P_{n}} H \left(X \right) - E_{P_{n}} \max_{\Delta} \left[\lambda^{T} \left(H \left(X + \Delta / n^{1/2} \right) - H \left(X \right) \right) - \left\| \Delta / n^{1/2} \right\|^{2} \right] \right\}.$$

102 / 115

• Substitute $\lambda \leftarrow \lambda n^{-1/2}$ and use $H\left(X + \Delta/n^{1/2}\right) - H\left(X\right) \approx DH\left(X\right) \Delta/n^{1/2}$: $\max_{\lambda} \left\{-n^{-1/2} \lambda^T E_{P_n}\left(H\left(X\right)\right) - E_{P_n} \max_{\Delta} \left[n^{-1} \lambda^T DH\left(X\right) \Delta - n^{-1} \left\|\Delta\right\|^2\right]\right\}$ $= n^{-1/2} \max_{\lambda} \left\{-n^{1/2} \lambda^T E_{P_n}\left(H\left(X\right)\right)\right\}$

 $-E_{P_n} \max \left| \lambda^T DH(X) \Delta - \|\Delta\|^2 \right|$.

• Substitute $\lambda \leftarrow \lambda n^{-1/2}$ and use $H\left(X + \Delta/n^{1/2}\right) - H\left(X\right) \approx DH\left(X\right) \Delta/n^{1/2}$: $\max_{\lambda} \left\{-n^{-1/2} \lambda^T E_{P_n}\left(H\left(X\right)\right) - E_{P_n} \max_{\Delta} \left[n^{-1} \lambda^T DH\left(X\right) \Delta - n^{-1} \left\|\Delta\right\|^2\right]\right\}$ $= n^{-1/2} \max_{\lambda} \left\{-n^{1/2} \lambda^T E_{P_n}\left(H\left(X\right)\right)\right\}$

• Already can see all the elements in the result (at least formally) since $n^{1/2}\lambda^T E_{P_n}H(X) \Rightarrow \lambda^T Z$ (by the CLT).

 $-E_{P_n} \max_{\Delta} \left| \lambda^T DH(X) \Delta - \|\Delta\|^2 \right|$.

(ロ) (部) (注) (注) 注 り(0)

Conclude by noting

$$E_{P_n} \max_{\Delta} \left[\lambda^T DH(X) \Delta - \|\Delta\|^2 \right]$$

$$= E_{P_n} \max_{\Delta} \left[\left\| \lambda^T DH(X) \right\|_* \|\Delta\| - \|\Delta\|^2 \right],$$

with $\Delta_{opt}\left(X\right)$ dual ("parallel") to $\lambda^T D \bar{H}\left(X\right)$ and with $\left\|\Delta_{opt}\left(X\right)\right\| = 2^{-1} \left\|\lambda^T D \bar{H}\left(X\right)\right\|_*$.

Conclude by noting

$$\begin{aligned} &E_{P_n} \max_{\Delta} \left[\lambda^T DH\left(X\right) \Delta - \|\Delta\|^2 \right] \\ &= &E_{P_n} \max_{\Delta} \left[\left\| \lambda^T DH\left(X\right) \right\|_* \|\Delta\| - \|\Delta\|^2 \right], \end{aligned}$$

with $\Delta_{opt}\left(X\right)$ dual ("parallel") to $\lambda^T D\bar{H}\left(X\right)$ and with $\left\|\Delta_{opt}\left(X\right)\right\| = 2^{-1} \left\|\lambda^T D\bar{H}\left(X\right)\right\|_*$.

• The map $X \to X + \Delta_{opt} \left(X \right) / n^{1/2}$ characterizes the optimal transport projection plan.

Conclude by noting

$$\begin{split} &E_{P_n} \max_{\Delta} \left[\lambda^T DH\left(X\right) \Delta - \|\Delta\|^2 \right] \\ &= &E_{P_n} \max_{\Delta} \left[\left\| \lambda^T DH\left(X\right) \right\|_* \|\Delta\| - \|\Delta\|^2 \right], \end{split}$$

with $\Delta_{opt}\left(X\right)$ dual ("parallel") to $\lambda^T D\bar{H}\left(X\right)$ and with $\left\|\Delta_{opt}\left(X\right)\right\| = 2^{-1} \left\|\lambda^T D\bar{H}\left(X\right)\right\|_*$.

- The map $X \to X + \Delta_{opt} \left(X \right) / n^{1/2}$ characterizes the optimal transport projection plan.
- This provides the elements and the intuition.

Conclude by noting

$$\begin{split} &E_{P_n} \max_{\Delta} \left[\lambda^T DH\left(X\right) \Delta - \|\Delta\|^2 \right] \\ &= &E_{P_n} \max_{\Delta} \left[\left\| \lambda^T DH\left(X\right) \right\|_* \|\Delta\| - \|\Delta\|^2 \right], \end{split}$$

with $\Delta_{opt}\left(X\right)$ dual ("parallel") to $\lambda^T D\bar{H}\left(X\right)$ and with $\left\|\Delta_{opt}\left(X\right)\right\| = 2^{-1} \left\|\lambda^T D\bar{H}\left(X\right)\right\|_*$.

- The map $X \to X + \Delta_{opt}(X) / n^{1/2}$ characterizes the optimal transport projection plan.
- This provides the elements and the intuition.
- Rigorous analysis requires compactifying over λ .

Infinite Dimensional Case

What about the infinite dimensional case?

Statistics: Limiting Distribution

Theorem (Si, B., Ghosh, Squillante '20)

Suppose $c(x,y) = \|x - y\|_2^2$ and $C = \{f(\theta^T x) : \theta \in \{\theta_1, ..., \theta_m\}, f \in \mathcal{F}\}$. If domain is compact, under regularity conditions on \mathcal{F}

$$nR_n \Rightarrow L = \sup_{f \in \mathcal{L}(\mathcal{C})} [-2Z(f) - E_{P_*}(\|Df(X)\|^2)],$$

where Z(f) is a Gaussian random field such that $cov_{P_*}(Z(f), Z(g)) = cov_{P_*}(f(X), g(X))$.

Remark: Regularity condition, it is required that P_* has a density and that \mathcal{F} satisfies

$$\sup_{f \in \mathcal{L}(\mathcal{F})} \frac{\sup_{x \in \Omega} \left| f''\left(\theta_i^T x\right) \right|^2}{\int_{\Omega} \left(f'\left(\theta_i^T z\right) \right)^2 dz} < \infty.$$

Blanchet (Stanford) 106 /

Comments

 Proof follows same elements as finite dimensional case (the compactification step is more involved).

Comments

- Proof follows same elements as finite dimensional case (the compactification step is more involved).
- Natural connection to a Poincaré inequality of the form

$$Var_{P_*}\left(f\left(X\right)\right) \leq cE_{P_*}\left(\left\|Df\left(X\right)\right\|^2\right)$$

arises naturally in the limit.

Asymptotic Normality

Once we know how to choose the size of the uncertainty optimally we can obtain asymptotically optimal estimators

Statistics of Distributionally Robust Optimization

Theorem (B., Murthy, Si (2019) https://arxiv.org/pdf/1906.01614.pdf)

Assume that $\{X_i: 1 \leq i \leq n\}$ is an i.i.d. sample from P_* . Suppose $I(\cdot)$ is twice differentiable, $I(x,\cdot)$ convex, $C = E\left(D^2_{\beta}I(X,\beta_*)\right) \succ 0$ (where $\beta_* = \arg\min E_P\left(I(X,\beta)\right)$), then, with $\delta_n^* = \eta/n$

$$\begin{split} & n^{1/2} \left(\beta_n^{DRO} \left(0 \right) - \beta_* \right) & \Rightarrow & C^{-1} Z_0 \\ & n^{1/2} \left(\beta_n^{DRO} \left(\delta_n^* \right) - \beta_n^{ERM} \right) & \Rightarrow & \nabla v \left(\beta \right), \end{split}$$

Remark: Recall $Z_0 \sim N\left(0, Cov\left(D_{\beta}I\left(X, \beta_*\right)\right)\right)$ and $v\left(\beta\right) = \eta^{1/2} E_{P_n}^{1/2} \left\|D_xI\left(X, \beta\right)\right\|_q^2$

Blanchet (Stanford) 109 / 115

• Recall the duality result with $\delta_n = \eta/n$

$$\begin{aligned} & \max_{D(P,P_n) \leq \delta_n} E_P\left(I\left(X,\beta\right)\right) \\ &= & \max_{\lambda} \{\frac{\lambda \eta}{n} + E_{P_n} \max_{\Delta} \{I\left(X + \Delta,\beta\right) - \lambda \left\|\Delta\right\|_p^2\}. \end{aligned}$$

• Recall the duality result with $\delta_n = \eta/n$

$$\begin{aligned} & \max_{D(P,P_n) \leq \delta_n} E_P\left(I\left(X,\beta\right)\right) \\ &= & \max_{\lambda} \{\frac{\lambda \eta}{n} + E_{P_n} \max_{\Delta} \{I\left(X + \Delta,\beta\right) - \lambda \left\|\Delta\right\|_p^2\}. \end{aligned}$$

• Similar scaling as before: $\Delta \to \Delta/n^{1/2}$, $\lambda \to \lambda n^{1/2}$

$$\begin{aligned} & \max_{\lambda} \left\{ \frac{\lambda \eta}{n^{1/2}} + E_{P_n} \max_{\Delta} \left\{ I\left(X + \frac{\Delta}{n^{1/2}}, \beta\right) - \frac{\lambda}{n^{1/2}} \left\|\Delta\right\|_p^2 \right\} \right\} \\ & \approx & E_{P_n} I\left(X, \beta\right) + n^{-1/2} \eta^{1/2} E_{P_n}^{1/2} \left\|D_x I\left(X, \beta\right)\right\|_q^2. \end{aligned}$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めるの

• Recall the duality result with $\delta_n = \eta/n$

$$\begin{aligned} & \max_{D(P,P_n) \leq \delta_n} E_P\left(I\left(X,\beta\right)\right) \\ &= & \max_{\lambda} \{\frac{\lambda \eta}{n} + E_{P_n} \max_{\Delta} \{I\left(X + \Delta,\beta\right) - \lambda \left\|\Delta\right\|_p^2\}. \end{aligned}$$

• Similar scaling as before: $\Delta \to \Delta/n^{1/2}$, $\lambda \to \lambda n^{1/2}$

$$\max_{\lambda} \left\{ \frac{\lambda \eta}{n^{1/2}} + E_{P_n} \max_{\Delta} \left\{ I \left(X + \frac{\Delta}{n^{1/2}}, \beta \right) - \frac{\lambda}{n^{1/2}} \left\| \Delta \right\|_p^2 \right\} \right\}$$

$$\approx E_{P_n} I(X, \beta) + n^{-1/2} \eta^{1/2} E_{P_n}^{1/2} \left\| D_x I(X, \beta) \right\|_q^2.$$

• From this form, it is easy to guess the result...

Blanchet (Stanford)

110 / 115

• Recall the duality result with $\delta_n = \eta/n$

$$\begin{aligned} & \max_{D(P,P_n) \leq \delta_n} E_P\left(I\left(X,\beta\right)\right) \\ &= & \max_{\lambda} \{\frac{\lambda \eta}{n} + E_{P_n} \max_{\Delta} \{I\left(X + \Delta,\beta\right) - \lambda \left\|\Delta\right\|_p^2\}. \end{aligned}$$

• Similar scaling as before: $\Delta \to \Delta/n^{1/2}$. $\lambda \to \lambda n^{1/2}$

$$\max_{\lambda} \left\{ \frac{\lambda \eta}{n^{1/2}} + E_{P_n} \max_{\Delta} \left\{ I \left(X + \frac{\Delta}{n^{1/2}}, \beta \right) - \frac{\lambda}{n^{1/2}} \left\| \Delta \right\|_p^2 \right\} \right\}$$

$$\approx E_{P_n} I(X, \beta) + n^{-1/2} \eta^{1/2} E_{P_n}^{1/2} \left\| D_x I(X, \beta) \right\|_q^2.$$

- From this form, it is easy to guess the result...
- Worst case adversary: $\Delta_{opt}(X_i)$ is parallel to $D_xI(X,\beta)$ & $\|\Delta_{opt}(X_i)\|_p = \|D_XI(X,\beta)\|_q/(2\lambda)$

$$\bullet \ \Lambda_{\delta_{n}^{*}}\left(n\right)=\{\bar{\beta}\left(P\right)=\arg\{\min E_{P}\left[I\left(X,\beta\right)\right]:D\left(P,P_{n}\right)\leq\delta_{n}^{*}\}$$

- $\Lambda_{\delta_n^*}(n) = \{\bar{\beta}(P) = \arg\{\min E_P[I(X,\beta)] : D(P,P_n) \leq \delta_n^*\}$
- $\Lambda_{\delta_n^*}(n)$ is the natural DRO confidence region & has desired coverage.

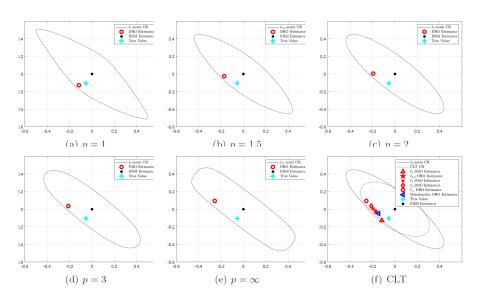
- $\bullet \ \Lambda_{\delta_{n}^{*}}\left(n\right)=\{\bar{\beta}\left(P\right)=\arg\{\min E_{P}\left[I\left(X,\beta\right)\right]:D\left(P,P_{n}\right)\leq\delta_{n}^{*}\}$
- $\Lambda_{\delta_n^*}(n)$ is the natural DRO confidence region & has desired coverage.
- ullet $\Lambda_{\delta_n^*}(n)$ contains both the ERM solution (i.e. $\delta=0$) and eta_n^{DRO} .

- $\Lambda_{\delta_n^*}(n) = \{\bar{\beta}(P) = \arg\{\min E_P[I(X,\beta)] : D(P,P_n) \leq \delta_n^*\}$
- $\Lambda_{\delta_n^*}(n)$ is the natural DRO confidence region & has desired coverage.
- ullet $\Lambda_{\delta_n^*}(n)$ contains both the ERM solution (i.e. $\delta=0$) and eta_n^{DRO} .
- Standard CLT confidence region does not necessarily contain β_n^{DRO} .

4□ > 4□ > 4 = > 4 = > = 90

- $\Lambda_{\delta_n^*}(n) = \{\bar{\beta}(P) = \arg\{\min E_P[I(X,\beta)] : D(P,P_n) \leq \delta_n^*\}$
- $\Lambda_{\delta_n^*}(n)$ is the natural DRO confidence region & has desired coverage.
- ullet $\Lambda_{\delta_n^*}(n)$ contains both the ERM solution (i.e. $\delta=0$) and eta_n^{DRO} .
- Standard CLT confidence region does not necessarily contain β_n^{DRO} .
- ullet $\Lambda_{\delta_n^*}\left(n
 ight)pprox \mathcal{C}^{-1}\mathcal{Z}_0+\Lambda_{\eta} ext{ and } \Lambda_{\eta}=\left\{u:\psi^*\left(\mathcal{C}u
 ight)\leq\eta
 ight\}$

Geometry of Confidence Region?



112 / 115

Containment of the DRO Solution

• The fact that

$$eta_{n}^{DRO}\in\Lambda_{\delta_{n}^{st}}\left(n
ight) .$$

is non-obvious.

Containment of the DRO Solution

The fact that

$$\beta_n^{DRO} \in \Lambda_{\delta_n^*}(n)$$
.

is non-obvious.

 It follows from the following duality result in B., Murthy and Si (2019) https://arxiv.org/pdf/1906.01614.pdf

$$\inf_{\beta} \sup_{D(P,P_n) \leq \delta} E_P I(X,\beta) = \sup_{D(P,P_n) \leq \delta} \inf_{\beta} E_P I(X,\beta).$$

Standard CLT May Not Contain the DRO Solution

TABLE 1. Coverage Fromability

β_0	ρ	ℓ_2 DRO confidence region		CLT confidence region	
		Coverage for β_n^{DRO}	Coverage for β_*	Coverage for β_n^{DRO}	Coverage for β_*
$\begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix}$	0.95 0 -0.95	100.0% 100.0% 100.0%	94.5% 94.0% 94.8%	99.4% 97.1% 75.8%	94.6% 93.5% 94.4%
$\begin{bmatrix} 1.0 \\ 0.0 \end{bmatrix}$	0.95 0 -0.95	100.0% 100.0% 100.0%	$94.6\% \\ 94.6\% \\ 95.3\%$	93.7% 100% 91.2%	95.4% 94.1% 94.9%

• Theory for optimal choice of uncertainty size in Wasserstein DRO.

- Theory for optimal choice of uncertainty size in Wasserstein DRO.
- Asymptotic normality of DRO results given optimal uncertainty size.

- Theory for optimal choice of uncertainty size in Wasserstein DRO.
- Asymptotic normality of DRO results given optimal uncertainty size.
- Existence of Nash equilibrium value in Wasserstein DRO.

- Theory for optimal choice of uncertainty size in Wasserstein DRO.
- Asymptotic normality of DRO results given optimal uncertainty size.
- Existence of Nash equilibrium value in Wasserstein DRO.
- Structure of the Nash equilibrium.

- Theory for optimal choice of uncertainty size in Wasserstein DRO.
- Asymptotic normality of DRO results given optimal uncertainty size.
- Existence of Nash equilibrium value in Wasserstein DRO.
- Structure of the Nash equilibrium.
- Connections to interesting projection problem $R_n = D(P_n, \mathcal{M})$:

$$nD(P_n, \mathcal{M}) \Rightarrow L.$$