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Goal:

Goals: a) Introduce optimal transport methods
popular applications and properties, then

b) use these results for robust peformance analysis
and finally c) also show how optimal transport applied

to statistical estimation.
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Agenda

Day 1: Introduction to Optimal Transport (Primals and Duals)

Day 2: Distributionally robust performance analysis and optimization.

Day 3: Statistical properties of estimators.
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Introduction to Optimal Transport

Monge-Kantorovich Problem & Duality
(see e.g. C. Villani’s 2008 textbook)

Blanchet (Stanford) 4 / 99



Monge Problem

What’s the cheapest way to transport a pile of sand to cover a
sinkhole?
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Monge Problem

What’s the cheapest way to transport a pile of sand to cover a
sinkhole?

min
T (·):T (X )∼v

Eµ {c (X ,T (X ))} ,

where c (x , y) ≥ 0 is the cost of transporting x to y .
T (X ) ∼ v means T (X ) follows distribution v (·).
Problem is highly non-linear, not much progress for about 160 yrs!
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Kantorovich Relaxation: Primal Problem

Let Π (µ, v) be the class of joint distributions π of random variables
(X ,Y ) such that

πX = marginal of X = µ, πY = marginal of Y = v .

Solve
min{Eπ [c (X ,Y )] : π ∈ Π (µ, v)}

Linear programming (infinite dimensional):

Dc (µ, v) : = min
π(dx ,dy )≥0

∫
X×Y

c (x , y)π (dx , dy)∫
Y

π (dx , dy) = µ (dx) ,
∫
X

π (dx , dy) = v (dy) .

If c (x , y) = d (x , y) (d-metric) then Dc (µ, v) is a metric <—We’ll
check this later (this is Wasserstein distance).
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Illustration of Optimal Transport Costs

Monge’s solution would take the form

π∗ (dx , dy) = δ{T (x )} (dy) µ (dx) .
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Warm up exercise to practice primal interpretation...

Warm up exercise: Check that Dc (·) is a metric if c (x , y) = d (x , y)
where d (·) is a metric.
i) Dd (µ, v) = Dd (v , µ)

ii) Dd (µ, v) ≥ 0 and Dd (µ, v) = 0 if and only if µ = v .
iii) Dd (µ,w) ≤ Dd (µ, v) +Dd (v ,w).
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Kantorovich Relaxation: Primal Problem

Keep in mind primal:

Dc (µ, v) : = min
π(dx ,dy )≥0

∫
X×Y

d (x , y)π (dx , dy)∫
Y

π (dx , dy) = µ (dx) ,
∫
X

π (dx , dy) = v (dy) .

Primal always has a solution (if c is lower semicontinuous) —> easy to
see if Y and X are compact.

If Dd (µ, v) = 0, then Eπ∗ (d (X ,Y )) = 0, then X = Y -π∗ a.s. so
µ (A) = π (X ∈ A) = π (Y ∈ A) = v (A).
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Kantorovich Relaxation: Primal Problem

Now verify triangle inequality

Dd (µ,w) ≤ Dd (µ, v) +Dd (v ,w) .

Pick X ,Y ,Z so that X ∼ µ, Y ∼ v and Z ∼ w . Sample Y ∼ v and
then X |Y = y from the optimal coupling solving Dd (µ, v). Also,
sample Z |Y = y using optimal coupling for computing Dd (v ,w).
Previous construction gives a coupling for X and Z , which is not
necessarily optimal for computing Dd (µ,w).

On the other hand, d (X ,Z ) ≤ d (X ,Y ) + d (Y ,Z ) because d (·) is
a metric.

Thus Dd (µ,w) ≤ E (d (X ,Z )) ≤ Dd (µ, v) +Dd (v ,w).
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Towards the Dual Problem

It is always natural to study the dual of a linear programming problem...
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Kantorovich Relaxation: Dual Problem

Primal:

min
π(dx ,dy )≥0

∫
X×Y

d (x , y)π (dx , dy)∫
Y

π (dx , dy) = µ (dx) ,
∫
X

π (dx , dy) = v (dy) .

Dual:

sup
α,β

∫
X

α (x) µ (dx) +
∫
Y

β (y) v (dy)

α (x) + β (y) ≤ c (x , y) ∀ (x , y) ∈ X ×Y .

Here α and β can be taken continuous
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Kantorovich Relaxation: Primal Interpretation

Martin wants to remove of a pile of sand, µ (·).

Henry wants to cover a sinkhole, v (·).
Cost for Martin and Henry to transport the sand to cover the sinkhole
is

Dc (µ, v) =
∫
X×Y

c (x , y)π∗ (dx , dy) .

Now comes Victoria, who has a business...

Vicky promises to transport on behalf of Martin and Henry the whole
amount.
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Kantorovich Relaxation: Primal Interpretation

Vicky charges John α (x) per-unit of mass at x (similarly to Peter,
β (y)).

For Peter and John to agree we must have

α (x) + β (y) ≤ c (x , y) .

Vicky wishes to maximize her profit∫
α (x) µ (dx) +

∫
β (y) v (dy) .

Kantorovich duality says primal and dual optimal values coincide and

α∗ (x) + β∗ (y) = c (x , y) - π∗ a.s. <—complementary slackness

Existence of dual optimizers: c (x , y) ≤ a (x) + b (y) so
Eµa (X ) < ∞, Eµb (Y ) < ∞.
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Proof Technique: Sketch of Strong Duality

Suppose X and Y compact

inf
π≥0

sup
α,β

{∫
X×Y

c (x , y)π (dx , dy)

−
∫
X×Y

α (x)π (dx , dy) +
∫
X

α (x) µ (dx)

−
∫
X×Y

β (y)π (dx , dy) +
∫
Y

β (y) v (dy)}

Swap sup and inf using Sion’s min-max theorem by a compactness
argument and conclude.

Some amount of work to extend to general Polish spaces.
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Application of Optimal Transport in Economics

Economic Interpretations & Some Closed Form Solutions
(see e.g. A. Galichon’s 2016 textbook & McCann 2013 notes).
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Applications in Labor Markets

Worker with skill x & company with technology y yield Ψ (x , y)
surplus.

The population of workers is given by µ (x).

The population of companies is given by v (y).

The salary of worker x is α (x) & cost of technology y is β (y)

α (x) + β (y) ≥ Ψ (x , y) .

Companies want to minimize total production cost∫
α (x) µ (x) dx +

∫
β (y) v (y) dy
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Applications in Labor Markets

Letting a central planner organize the Labor market.

The planner wishes to maximize total surplus∫
Ψ (x , y)π (dx , dy)

Over assignments π (·) which satisfy market clearing∫
Y

π (dx , dy) = µ (dx) ,
∫
X

π (dx , dy) = v (dy) .
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Solving for Optimal Transport Coupling

Suppose that Ψ (x , y) = xy , µ (x) = I (x ∈ [0, 1]),
v (y) = e−y I (y > 0).

Solve primal by sampling: Let {X ni }
n
i=1 and {Y ni }

n
i=1 both i.i.d. from

µ and v , respectively.

Fµn (x) =
1
n

n

∑
i=1
I (X ni ≤ x) , Fvn (y) =

1
n

n

∑
j=1
I
(
Y nj ≤ y

)
Consider

max
π(x ni ,x nj )≥0

∑
i ,j

Ψ
(
xni , y

n
j

)
π
(
xni , y

n
j

)
∑
j

π
(
xni , y

n
j

)
=
1
n
∀xi , ∑

i
π
(
xni , y

n
j

)
=
1
n
∀yj .

Clearly, simply sort and match is the solution!
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Solving for Optimal Transport Coupling

Think of Y nj = − log
(
1− Unj

)
= F−1v

(
Unj
)
for Unj s i.i.d.

uniform(0, 1).

The j-th order statistic X n(j) is matched to Y
n
(j).

As n→ ∞, X n(nt) → t, so Y n(nt) → − log (1− t).
Thus, the optimal coupling as n→ ∞ is X = U and
Y = − log (1− U) (comonotonic coupling).
In general, the optimal coupling is X = F−1µ (U) and Y = F−1v (U).
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Identities for Wasserstein Distances

Comonotonic coupling is the solution if ∂2x ,yΨ (x , y) ≥ 0 -
supermodularity:

Ψ
(
x ∨ x ′, y ∨ y ′

)
+Ψ

(
x ∧ x ′, y ∧ y ′

)
≥ Ψ (x , y) +Ψ

(
x ′, y ′

)

Or, for costs c (x , y) = −Ψ (x , y), if ∂2x ,y c (x , y) ≤ 0
(submodularity).

Corollary: Suppose c (x , y) = |x − y | then X = F−1µ (U) and
Y = F−1v (U) thus

Dc
(
Fµ,Fv

)
=

∫ 1

0

∣∣∣F−1µ (u)− F−1v (u)
∣∣∣ du

=
∫ ∞

−∞

∣∣Fµ (x)− Fv (x)
∣∣ dx .

Similar identities are common for Wasserstein distances...
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Interesting Insight on Salary Effects

In equilibrium, by the envelope theorem

β̇
∗
(y) =

d
dy
sup
x
[Ψ (x , y)− α∗ (x)] =

∂

∂y
Ψ (xy , y) = xy

α̇∗ (x) =
∂

∂x
Ψ (x , yx ) = yx = F−1v

(
Fµ (x)

)
.

We also know that y = − log (1− x), or x = 1− exp (−y)

β∗ (y) = y + exp (−y)− 1+ β∗ (0) .

α∗ (x) + β∗ (− log (1− x)) = xy .

What if Ψ (x , y)→ Ψ (x , y) + f (x)? (i.e. productivity changes).
Answer: salaries increase if f (·) is increasing.
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Back to Wasserstein Distances

Additional properties of Optimal Transport Solutions:
Kantorovich-Rubinstein Duality and Wasserstein GAN.

Blanchet (Stanford) 24 / 99



Back to Wasserstein Distances

Consider the case c (x , y) = d (x , y).

Recall dual

maxEµα (X )− Ev β (Y )

s.t. α (x)− β (y) ≤ d (x , y) ∀ x , y ∈ S .

Note that given β, we should pick

α (x) = βd (x) := inf
y
{β (y) + d (x , y)},

similarly once α (·) is chosen, we could improve by picking

βdd (y) = sup
x
{βd (x)− d (x , y)}.
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Transforms are Lipschitz

Moreover, observe that βd (·) is 1-Lipschitz

βd (x) = inf
y
{β (y) + d (x , y)} <- recall def

βd (x)− βd
(
x ′
)
= β (yx ) + d (x , yx )

−β (yx ′)− d (x , yx ′)
≤ d (x , yx ′)− d (x , yx ′) ≤ d

(
x , x ′

)
.

Same argument is true for βdd (y).
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The Transform of a Lipschitz Function is the Function
Itself

Moreover,
βd (x) := inf

y
{β (y) + d (x , y)} ≤ β (x)

and if β is 1-Lipschitz (meaning |β (x)− β (y)| ≤ d (x , y)) then

βd (x)− β (x) = inf
y
{d (x , y) + β (y)− β (x)}

≥ inf
y
{d (x , y)− d (x , y)} = 0.

Consequently, if β is 1-Lipschitz β = βd ... So, the dual can be
simplified.
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Back to Wasserstein Distances

Original Dual:

maxEµα (X )− Ev β (Y )

s.t. α (x)− β (y) ≤ d (x , y) ∀ x , y ∈ S .

Simplified Dual (called Kantorovich duality result):

maxEµα (X )− Ev α (Y )

s.t. α is 1-Lipschitz .

This is the basis for so-called Wasserstein GAN (Generative
Adversarial Networks) —popular in artificial intelligence.
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A Quick Discussion on Wasserstein GAN

Have you even thought about how to generate a "face" at random? (
https://github.com/hindupuravinash/the-gan-zoo ).
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A Quick Discussion on Wasserstein GAN

What’s the formulation

min
θ<NN parameter

Dd (vθ, µn) ,

where µn represents the empirical measure of images.

vθ (·) is a probability measure generated by a Neural Network (NN),
from initial random noise

θ represents the parameter of the network.

By duality

min
θ<NN parameter

sup
α-1-Lip

{
Evθ
(α (X ))− Eµn (α (Y ))

}
.

Use another Neural Network to parameterize α (i.e. a 1-Lip function).

Apply automatic differentiation to compute gradients & run
stochastic gradient descent.
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Optimal Transport with Quadratic Costs

The case c (x , y) = ‖x − y‖22 /2 is important because of its intuitive
appeal and its theoretical properties.

We consider

Dc (µ, v) = min
π
{2−1Eπ ‖X − Y ‖22 : πX = µ and πY = v}.

We assume that E ‖X‖22 + E ‖Y ‖
2
2 < ∞.

So, the problem is equivalent to

max
π
{Eπ

(
XTY

)
: πX = µ and πY = v}.

The dual is

min{Eµα (X ) + Ev β (Y ) : α (x) + β (y) ≥ xT y for x , y ∈ S}.
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min{Eµα (X ) + Ev β (Y ) : α (x) + β (y) ≥ xT y for x , y ∈ S}.
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Note now that given α (x) we improve the objective function choosing

α∗ (y) = sup
x
[xT y − α (x)],
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Optimal Transport with Quadratic Costs

Now, our goal is to characterize the optimal solution of the primal
and dual problems.

Suppose that µ has a density with respect to the Lebesgue measure.

By complementary slackness

α (x) + α∗ (y) = xT y -π∗ a.s.

But given x , equality holds if and only if y ∈ ∂a (x) <—
subdifferential (by convex analysis).

Similarly, given y , if and only if x ∈ ∂α∗ (y).

But by Rademacher’s theorem α (·) is differentiable almost
everywhere. So, given X ∼ µ, Y = ∇α (X ).
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Optimal Transport with Quadratic Costs

Consequently, this establishes Brennier’s Theorem: If
c (x , y) = ‖x − y‖22 /2 then the optimal coupling

(X ,Y ) = (X ,∇α (X )) ,

where α (·) is convex.

The optimal ∇α (·) is unique almost surely: Suppose ∇ᾱ is another
solution to the dual.

Then consider the couplings (X ,∇α (X )) and (X ,∇ᾱ (X )) we have
that for almost every x

α (x) + α∗ (∇ᾱ (x)) = xT∇ᾱ (x)

(by complementary slackness).

Therefore ∇ᾱ (x) ∈ ∂α (x) and by Rademacher ∇ᾱ = ∇α almost
surely.
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that for almost every x
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Optimal Transport with Quadratic Costs

Example: Suppose that X ∼ N (0, I ) and Y ∼ N (0,Σ) we want to
transport X into Y optimally using the cost c (x , y) = ‖x − y‖22 /2.

We postulate that ∇α (x) = Ax where A is positive definite.

So, we must have that A · A = Σ, the solution is that A is the
polar factorization of Σ.
From here it is easy to derive what the general optimal transport map
is between two Gaussians (try this as an exercise).
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Illustration of Optimal Transport in Image Analysis

Santambrogio (2010)’s illustration
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Distributionally Robust Performance Analysis

The discussion is based on
B. & Murthy (2016)

https://arxiv.org/abs/1604.01446.
https://pubsonline.informs.org/doi/abs/10.1287/moor.2018.0936?journalCode=moor
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A Distributionally Robust Performance Analysis

We are often interested in

EPtrue (f (X ))

for a complex model Ptrue .

Moreover, we wish to optimize, namely

min
θ
EPtrue (h (X , θ)) .

Model Ptrue might be unknown or too diffi cult to work with.

So, we introduce a proxy P0 which provides a good trade-off between
tractability and model fidelity (e.g. Brownian motion for random walk
approximations).
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A Distributionally Robust Performance Analysis

For f (·) upper semicontinuous with EP0 |f (X )| < ∞

supEP (f (Y ))

Dc (P,P0) ≤ δ ,

X takes values on a Polish space and c (·) is lower semi-continuous.

Also an infinite dimensional linear program

sup
∫
X×Y

f (y)π (dx , dy)

s.t.
∫
X×Y

c (x , y)π (dx , dy) ≤ δ∫
Y

π (dx , dy) = P0 (dx) .
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A Distributionally Robust Performance Analysis

Formal duality:

Dual = inf
λ≥0,α

{
λδ+

∫
α (x)P0 (dx)

}
λc (x , y) + α (x) ≥ f (y) .

B. & Murthy (2016) - No duality gap:

Dual = inf
λ≥0

[
λδ+ E0

(
sup
y
{f (y)− λc (X , y)}

)]
.

We refer to this as RoPA Duality in this talk.

Let us consider an important case first: f (y) = I (y ∈ A) &
c (x , x) = 0.
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A Distributionally Robust Performance Analysis

So, if f (y) = I (y ∈ A) and cA (X ) = inf{y ∈ A : c (x , y)}, then

Dual = inf
λ≥0

[
λδ+ E0 (1− λcA (X ))

+
]
= P0 (cA (X ) ≤ 1/λ∗) .

If cA (X ) is continuous under P0 & E0 (cA (X )) ≥ δ, then

δ = E0 [cA (X ) I (cA (X ) ≤ 1/λ∗)] .
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Example: Model Uncertainty in Bankruptcy Calculations

R (t) = the reserve (perhaps multiple lines) at time t.

Bankruptcy probability (in finite time horizon T )

uT = Ptrue (R (t) ∈ B for some t ∈ [0,T ]) .

B is a set which models bankruptcy.

Problem: Model (Ptrue) may be complex, intractable or simply
unknown...
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A Distributionally Robust Risk Analysis Formulation

Our solution: Estimate uT by solving

sup
Dc (P0,P )≤δ

Ptrue (R (t) ∈ B for some t ∈ [0,T ]) ,

where P0 is a suitable model.

P0 = proxy for Ptrue .

P0 right trade-off between fidelity and tractability.

δ is the distributional uncertainty size.

Dc (·) is the distributional uncertainty region.

Blanchet (Stanford) 43 / 99



A Distributionally Robust Risk Analysis Formulation

Our solution: Estimate uT by solving

sup
Dc (P0,P )≤δ

Ptrue (R (t) ∈ B for some t ∈ [0,T ]) ,

where P0 is a suitable model.

P0 = proxy for Ptrue .

P0 right trade-off between fidelity and tractability.

δ is the distributional uncertainty size.

Dc (·) is the distributional uncertainty region.

Blanchet (Stanford) 43 / 99



A Distributionally Robust Risk Analysis Formulation

Our solution: Estimate uT by solving

sup
Dc (P0,P )≤δ

Ptrue (R (t) ∈ B for some t ∈ [0,T ]) ,

where P0 is a suitable model.

P0 = proxy for Ptrue .

P0 right trade-off between fidelity and tractability.

δ is the distributional uncertainty size.

Dc (·) is the distributional uncertainty region.

Blanchet (Stanford) 43 / 99



A Distributionally Robust Risk Analysis Formulation

Our solution: Estimate uT by solving

sup
Dc (P0,P )≤δ

Ptrue (R (t) ∈ B for some t ∈ [0,T ]) ,

where P0 is a suitable model.

P0 = proxy for Ptrue .

P0 right trade-off between fidelity and tractability.

δ is the distributional uncertainty size.

Dc (·) is the distributional uncertainty region.

Blanchet (Stanford) 43 / 99



A Distributionally Robust Risk Analysis Formulation

Our solution: Estimate uT by solving

sup
Dc (P0,P )≤δ

Ptrue (R (t) ∈ B for some t ∈ [0,T ]) ,

where P0 is a suitable model.

P0 = proxy for Ptrue .

P0 right trade-off between fidelity and tractability.

δ is the distributional uncertainty size.

Dc (·) is the distributional uncertainty region.

Blanchet (Stanford) 43 / 99



Desirable Elements of Distributionally Robust Formulation

Would like Dc (·) to have wide flexibility (even non-parametric).

Want optimization to be tractable.

Want to preserve advantages of using P0.

Want a way to estimate δ.
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Connections to Distributionally Robust Optimization

Standard choices based on divergence (such as Kullback-Leibler) -
Hansen & Sargent (2016)

D (v ||µ) = Ev
(
log
(
dv
dµ

))
.

Robust Optimization: Ben-Tal, El Ghaoui, Nemirovski (2009).

Big problem: Absolute continuity may typically be violated...
Think of using Brownian motion as a proxy model for R (t)...

Optimal transport is a natural option!
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Application 1: Back to Classical Risk Problem

Suppose that

c (x , y) = dJ (x (·) , y (·)) = Skorokhod J1 metric.
= inf

φ(·) bijection
{ sup
t∈[0,1]

|x (t)− y (φ (t))| , sup
t∈[0,1]

|φ (t)− t|}.

If R (t) = b− Z (t), then ruin during time interval [0, 1] is

Bb = {R (·) : 0 ≥ inf
t∈[0,1]

R (t)} = {Z (·) : b ≤ sup
t∈[0,1]

Z (t)}.

Let P0 (·) be the Wiener measure want to compute

sup
Dc (P0,P )≤δ

P (Z ∈ Bb) .
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Application 1: Computing Distance to Bankruptcy

So: {cBb (Z ) ≤ 1/λ∗} = {supt∈[0,1] Z (t) ≥ b− 1/λ∗}, and

sup
Dc (P0,P )≤δ

P (Z ∈ Bb) = P0

(
sup
t∈[0,1]

Z (t) ≥ b− 1/λ∗
)
.
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Application 1: Computing Uncertainty Size

Note any coupling π so that πX = P0 and πY = P satisfies

Dc (P0,P) ≤ Eπ [c (X ,Y )] ≈ δ.

So use any coupling between evidence and P0 or expert knowledge.

We discuss choosing δ non-parametrically momentarily.
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Application 1: Illustration of Coupling

Given arrivals and claim sizes let Z (t) = m−1/2
2 ∑

N (t)
k=1 (Xk −m1)

See also Fomivoch, Gonzalez-Cazares, Ivanovs (2021).
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Application 1: Coupling in Action

Blanchet (Stanford) 50 / 99



Application 1: Numerical Example

Assume Poisson arrivals.

Pareto claim sizes with index 2.2 —(P (V > t) = 1/(1+ t)2.2).
Cost c (x , y) = dJ (x , y)

2 <—note power of 2.

Used Algorithm 1 to calibrate (estimating means and variances from
data).

b P0(Ruin)
Ptrue (Ruin)

P ∗robust (Ruin)
Ptrue (Ruin)

100 1.07× 10−1 12.28
150 2.52× 10−4 10.65
200 5.35× 10−8 10.80
250 1.15× 10−12 10.98

.

See also Birghila, Aigner, Engelke (2021)
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Additional Applications: Multidimensional Ruin Problems

https://arxiv.org/abs/1604.01446 contains more applications.

Control: minθ supP :D (P ,P0)≤δ E [L (θ,Z )] <—robust optimal
reinsurance.

Multidimensional risk processes (explicit evaluation of cB (x) for dJ
metric).
Key insight: Geometry of target set often remains largely the
same!
See also Engelke and Ivanovs (2017).
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A Bit of Background on Online Advertising
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A Bit of Background on Online Advertising

Until recently, most exchanges operated using second price auctions.

The optimal bidding policy in second price auctions is to bid truthfully.

Now, first price auction exchanges have become popular.

How to transfer information from second-price exchanges into
first-price exchanges?
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Transfer Information and Mitigation of Model Error

Summary of blue print
A —> B —> C —> D
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Notations

Ui = (dlls/1000) value of the item in auction i if we win. We write
Ui = ui when value is given.

bi = (dlls/1000) is what we bid in the i-th auction (cost in 1st price
auction).

Vi = (dlls/1000) is the highest competing bid in the i-th auction.

fVi = the probability density function of Vi .

FVi = the cumulative distribution function of Vi .

Blanchet (Stanford) 56 / 99



Model and Performance Measure

A Simplified Model:

max
{b1,...,bn}

1
n

n

∑
i=1
(ui − bi )P (Vi ≤ bi |Ui = ui ) ,

where n is the number of auctions in a given time period, for
instance, a day.

Assume auctions are split according to segments, such as line and
exchange, to induce homogeneity.
Homogeneity : For each i 6= j

P (Vi ≤ b|Ui = u) = P (Vj ≤ b|Uj = u) .

Under homogeneity it suffi ces to solve

max
b
(u − b)P (V ≤ b|U = u) .

Also assume conditional independence.
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Dealing with Dependence

Setting the derivative with respect to b equal to zero yields

b = u − FV |U=u (b) /fV |U=u (b) .

Challenge: The quantity

FV |U=u (·) and fV |U=u (·)

are virtually impossible to estimate in a first price auction setting.

Virtually ONLY solution: Assume that V and U are conditionally
independent given some other observable factor Θ.
For example: Θ is a value type (i.e. Θ = k ⇔ U ∈ Ak ) =
segmentation across values (there are only a few segments).

We go back to this in part II)...
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Inducing Homogeneity and Conditional Independence
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Quantifying Model Mispecifications

Even if two exchanges run under second price auctions, their
competitive landscapes may be different.

So, if V̄ is taken from exchange X, we need to recognize the
possibility of model error.

We do this by introducing a metric to compare CDFs, say F and G

D (F ,G ) =
∫ ∞

−∞
|F (x)− G (x)| dx .

It turns out that

D (F ,G ) = min{E (|X − Y |) over all joint distributions
such that X has CDF F and Y has CDF G}.
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Quantifying Model Mispecifications

We now want
max
b

min
D (F ,FV )≤δ

(u − b) F (b) .

If we write F̄ (x) = 1− F (x) = P (V > x), then the inner
minimization is equivalent to

max
D (F ,FV )≤δ

F̄ (b) = max
D (F ,FV )≤δ

PF (V > b) = PF (V > b− λb) .

Let λ = λb ≥ 0 be a Lagrange multiplier, the "worst case
distribution" is

V ∗ = V · I (V > b) + b · I (b− λ < V ≤ b)
+V · I (V ≤ b− λ) .

Intuitively: re-arrange V as cheaply as possible to produce V ∗ so that
V ∗ > b happens (λ computed to satisfy cost constraint).
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Quantifying Model Mispecifications

Conclusion: We are trying to find the (Nash Equilibrium) policy
b∗ (u) = f (u) so

max
b

min
D (F ,FV̄ )≤δ

(u − b) FV̄
(
f −1 (b)

)
= max

b
(u − b) FV̄

(
f −1 (b)− λf −1(b)

)
.

Optimizing over b (·) we obtain

b (u) =

∫ u
0 xfV̄ (x − λx )

(
1− λ̇ (x)

)
dx

FV̄ (u − λu)
,

with ∫ u

u−λu
(u − v) fV̄ (v) dv = δ.
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Approximate Distributionally Robust Equilibrium Bidding
Policies

While the previous equations can be solved numerically, they may be
a bit cumbersome to implement.

So, we provide an asymptotic expansion as δ→ 0.

This leads to a bidding strategy of the form

bδ (u) = b0 (u) + δ1/2b1 (u) +O (δ) ,

where
b0 (u) = E (V̄ |V̄ ≤ u) =

∫ u

0
xfV̄ (x) dx/FV̄ (x)

and

b1 (u) =

√
2

FV̄ (u)

(∫ u

0

√
fV̄ (x)dx −

fV̄ (u)
FV̄ (u)

∫ u

0
FV̄ (x) dx

)
.
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Example

Example 3: Back to logistic model

P (V̄ ≤ x) = (1+ exp (−xc)) / (1+ exp (a− xc)) for a ∈ R, c > 0.
a = 5, c = 1 and δ = .01 (figures in $/1000)
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Our Goal

So, now we want to add a player optimizing a decision
and play the game:

min
θ

max
D (P ,Pn)≤δ

E (l (X , θ)) .

Based on: Robust Wasserstein Profile Inference (B., Murthy & Kang ’16)
https://arxiv.org/abs/1610.05627

https://www.cambridge.org/core/journals/journal-of-applied-probability
/article/abs/robust-wasserstein-profile-inference-and-applications-to-

machine-learning
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Distributionally Robust Optimization in Machine Learning

Consider estimating β∗ ∈ Rm in linear regression

Yi = βXi + ei ,

where {(Yi ,Xi )}ni=1 are data points.

Optimal Least Squares approach consists in estimating β∗ via

min
β
EPn

[(
Y − βTX

)2]
= min

β

1
n

n

∑
i=1

(
Yi − βTXi

)2
Apply the distributionally robust estimator based on optimal
transport.

Blanchet (Stanford) 66 / 99



Distributionally Robust Optimization in Machine Learning

Consider estimating β∗ ∈ Rm in linear regression

Yi = βXi + ei ,

where {(Yi ,Xi )}ni=1 are data points.
Optimal Least Squares approach consists in estimating β∗ via

min
β
EPn

[(
Y − βTX

)2]
= min

β

1
n

n

∑
i=1

(
Yi − βTXi

)2

Apply the distributionally robust estimator based on optimal
transport.

Blanchet (Stanford) 66 / 99



Distributionally Robust Optimization in Machine Learning

Consider estimating β∗ ∈ Rm in linear regression

Yi = βXi + ei ,

where {(Yi ,Xi )}ni=1 are data points.
Optimal Least Squares approach consists in estimating β∗ via

min
β
EPn

[(
Y − βTX

)2]
= min

β

1
n

n

∑
i=1

(
Yi − βTXi

)2
Apply the distributionally robust estimator based on optimal
transport.

Blanchet (Stanford) 66 / 99



Applying Distributionally Robust Optimization in Linear
Regression
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Connection to Sqrt-Lasso

Theorem (B., Kang, Murthy (2016)) Suppose that

c
(
(x , y) ,

(
x ′, y ′

))
=

{
‖x − x ′‖2q if y = y ′

∞ if y 6= y ′ .

Then, if 1/p + 1/q = 1

max
P :Dc (P ,Pn)≤δ

E 1/2
P

((
Y − βTX

)2)
= E 1/2

Pn

[(
Y − βTX

)2]
+
√

δ ‖β‖p .

Remark 1: This is sqrt-Lasso (Belloni et al. (2011)).
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Logistic Regression

Classical classification model:

P (Y = 1|X ) =
exp

(
βTX

)
1+ exp

(
βTX

) = 1

exp
(
−βTX

)
+ 1

P (Y = −1|X ) =
1

1+ exp
(

βTX
)

The likelihood of (y , x) is:

− log
(
1+ exp

(
−yβT x

))
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Logistic Regression

Therefore, given {(yi , xi )}ni=1 maximum likelihood is equivalent to

max
β
−

n

∑
i=1
log
(
1+ exp

(
−yi βT xi

))
.

Also equivalent to

min
β
EPn

[
log
(
1+ exp

(
−Y βTX

))]
= min

β

1
n

n

∑
i=1
log
(
1+ exp

(
−yi βT xi

))
.
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Regularized Logistic Regression

Theorem (B., Kang, Murthy (2016)) Suppose that

c
(
(x , y) ,

(
x ′, y ′

))
=

{
‖x − x ′‖q if y = y ′

∞ if y 6= y ′ .

Then,

sup
P : Dc (P ,Pn)≤δ

EP
[
log(1+ e−Y βTX )

]
= EPn

[
log(1+ e−Y βTX )

]
+ δ ‖β‖p .

Remark 1: First studied via an approximation in Esfahani and Kuhn
(2015).
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Connection to Support Vector Machines

Theorem (B., Kang, Murthy (2016)) Suppose that

c
(
(x , y) ,

(
x ′, y ′

))
=

{
‖x − x ′‖q if y = y ′

∞ if y 6= y ′ .

Then,

sup
P : Dc (P ,Pn)≤δ

EP [
(
1− Y βTX

)+
]

= EPn

[(
1− Y βTX

)+]
+ δ ‖β‖p .
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Unification and Extensions of Regularized Estimators

Distributionally Robust Optimization using Optimal Transport
recovers many other estimators...

Group Lasso: B., & Kang (2016):
https://arxiv.org/abs/1705.04241
Generalized adaptive ridge: B., Kang, Murthy, Zhang (2017):
https://arxiv.org/abs/1705.07152
Semisupervised learning: B., and Kang (2016):
https://arxiv.org/abs/1702.08848
See the excellent tutorials by Kuhn et al (2019) and Rahimian &
Mehrotra (2019).

Other areas in which optimal transport arises in machine learning
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Deep Neural Networks: Adversarial Attacks

Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, and Fergus
(2014).
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Deep Neural Networks: Adversarial Attacks

Sharif, Bhagavatula, Bauer, and Reiter (2016)
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Deep Neural Networks: Adversarial Attacks

Picture from the BBC
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How Regularization and Dual Norms Arise?

Let us work out a simple example...

Recall RoPA Duality: Pick c ((x , y) , (x ′, y ′)) = ‖(x , y)− (x ′, y ′)‖2q

max
P :Dc (P ,Pn)≤δ

EP
(
((X ,Y ) · (β, 1))2

)
= min

λ≥0

{
λδ+ EPn sup

(x ′,y ′)

[((
x ′, y ′

)
· (β, 1)

)2 − λ
∥∥(X ,Y )− (x ′, y ′)∥∥2q]

}
.

Let’s focus on the inside EPn ...
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How Regularization and Dual Norms Arise?

Let ∆ = (X ,Y )− (x ′, y ′)

sup
(x ′,y ′)

[((
x ′, y ′

)
· (β, 1)

)2 − λ
∥∥(X ,Y )− (x ′, y ′)∥∥2q]

= sup
∆

[
((X ,Y ) · (β, 1)− ∆ · (β, 1))2 − λ ‖∆‖2q

]
= sup

‖∆‖q

[
(|(X ,Y ) · (β, 1)|+ ‖∆‖q ‖(β, 1)‖p)2 − λ ‖∆‖2q

]

Last equality uses z → z2 is symmetric around origin and
|a · b| ≤ ‖a‖p ‖b‖q .
Note problem is now one-dimensional (easily computable).
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A Fully Worked Out Example: Support Vector Machines

Use RoPA: with
c ((x , y) , (x ′, y ′)) = ‖x − x ′‖q I (y = y ′) +∞I (y 6= y ′)

sup
P : Dc (P ,Pn)≤δ

EP [
(
1− Y βTX

)+
]

= min
λ≥0

[
λδ+ EPn

{
max
x

((
1− Y βT x

)+
− λ ‖x − X‖q

)}]
= min

λ≥0

[
λδ+ EPn

{
max

∆

((
1− Y βTX − Y βT∆

)+
− λ ‖∆‖q

)}]
= min

λ≥0

[
λδ+ EPn

{
max

∆

((
1− Y βTX + ‖β‖p ‖∆‖q

)+
− λ ‖∆‖q

)}]
= min

λ≥‖β‖p

[
λδ+ EPn

{
max
‖∆‖q

((
1− Y βTX + ‖β‖p ‖∆‖q

)+
− λ ‖∆‖q

)}]

= min
λ≥‖β‖p

[
λδ+ EPn

(
1− Y βTX

)+]
= λ ‖β‖p + EPn

(
1− Y βTX

)+
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Explaining the Adversarial Attacks of Neural Networks

So, in general
c ((x , y) , (x ′, y ′)) = ‖x − x ′‖q I (y = y ′) +∞I (y 6= y ′)

sup
P : Dc (P ,Pn)≤δ

EP [l (θ,Y ,X )]

= min
λ≥0

[
λδ+ EPn

{
max
x

(
l (θ,Y , x)− λ ‖x − X‖q

)}]
= min

λ≥0

[
λδ+ EPn

{
max

∆

(
l (θ,Y ,X + ∆)− λ ‖∆‖q

)}]
= min

λ≥0

[
λδ+ EPn

{
max

∆

(
l (θ,Y ,X + ∆/λ)− ‖∆‖q

)}]
.

If δ ≈ 0, then λ is large, so inner maximization

max
∆

(
l (θ,Y ,X + ∆/λ)− ‖∆‖q

)
≈ l (θ,Y ,X ) + ‖lx (θ,Y ,X )‖p ‖∆‖q /λ− ‖∆‖q
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Summary

The worst case perturbation is given by ∆ such that

lx (θ,Y ,X ) · ∆/λ = ‖lx (θ,Y ,X )‖p ‖∆‖q /λ,

if q = ∞, then ∆ = c · sign (lx (θ,Y ,X )) .

So, δ ≈ 0 means perturbing by

ε · sign (lx (θ,Y ,X ))

for ε > 0.

This explains the nature of the panda example given earlier.
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Can We Defend Against Attacks?

Naturally, it makes sense then to train networks using

min
θ

max
D (P ,Pn)≤δ

EP (l (θ,Y ,X ))

= min
θ
{λδ+ EPn maxx

[l (θ,Y , x)− λ ‖x − X‖q ].

This will automatically protect against attacks.

This is an active area of research currently.

But there may be many possible attacks.
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On Role of Transport Cost...

https://arxiv.org/abs/1705.07152: Data-driven chose of c (·).

Suppose that ‖x − x ′‖2A = (x − x ′)A (x − x) with A positive definite
(Mahalanobis distance).

Then,

max
P :Dc (P ,Pn)≤δ

E 1/2
P

((
Y − βTX

)2)
= min

β
E 1/2
Pn

[(
Y − βTX

)2]
+
√

δ ‖β‖A−1 .

Intuition: Think of A diagonal, encoding inverse variability of Xi s...

High variability – > cheap transportation – > high impact in
risk estimation.
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On Role of Transport Cost...

https://arxiv.org/abs/1705.07152: Data-driven chose of c (·).

Suppose that ‖x − x ′‖2Λ = (x − x ′)Λ (x − x) with Λ positive
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Connections to Statistical Analysis

Based on:
Robust Wasserstein Profile Inference (B., Murthy & Kang ’16)

https://arxiv.org/abs/1610.05627

Highlight: How to choose size of uncertainty?
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Towards an Optimal Choice of Uncertainty Size

How to choose uncertainty size in a data-driven way?

Once again, consider Lasso as example:

min
β

max
P :Dc (P ,Pn)≤δ

E 1/2
P

((
Y − βTX

)2)
= min

β
E 1/2
Pn

[(
Y − βTX

)2]
+
√

δ ‖β‖p .

Use left hand side to define a statistical principle to choose δ.

Important: Optimizing δ is equivalent to optimizing regularization!

Blanchet (Stanford) 86 / 99



Towards an Optimal Choice of Uncertainty Size

How to choose uncertainty size in a data-driven way?

Once again, consider Lasso as example:

min
β

max
P :Dc (P ,Pn)≤δ

E 1/2
P

((
Y − βTX

)2)
= min

β
E 1/2
Pn

[(
Y − βTX

)2]
+
√

δ ‖β‖p .

Use left hand side to define a statistical principle to choose δ.

Important: Optimizing δ is equivalent to optimizing regularization!

Blanchet (Stanford) 86 / 99



Towards an Optimal Choice of Uncertainty Size

How to choose uncertainty size in a data-driven way?

Once again, consider Lasso as example:

min
β

max
P :Dc (P ,Pn)≤δ

E 1/2
P

((
Y − βTX

)2)
= min

β
E 1/2
Pn

[(
Y − βTX

)2]
+
√

δ ‖β‖p .

Use left hand side to define a statistical principle to choose δ.

Important: Optimizing δ is equivalent to optimizing regularization!

Blanchet (Stanford) 86 / 99



Towards an Optimal Choice of Uncertainty Size

How to choose uncertainty size in a data-driven way?

Once again, consider Lasso as example:

min
β

max
P :Dc (P ,Pn)≤δ

E 1/2
P

((
Y − βTX

)2)
= min

β
E 1/2
Pn

[(
Y − βTX

)2]
+
√

δ ‖β‖p .

Use left hand side to define a statistical principle to choose δ.

Important: Optimizing δ is equivalent to optimizing regularization!

Blanchet (Stanford) 86 / 99



Towards an Optimal Choice of Uncertainty Size

One way to select δ: estimate D (Ptrue ,Pn)?

This was advocated and seems natural at first sight... but there is a
big problem.

Consider the case c (x , x ′) = ‖x − x ′‖∞ by Kantorovich-Rubinstein
duality

D (Ptrue ,Pn) = sup
α ∈ Lip(1)

EPtrueα (X )− EPnα (X )

= sup
α ∈ Lip(1)

∫
α (x) (dPtrue − dPn) .

The analysis of this object is extensively studied in the theory of
Empirical Processes.

Unfortunately, it turns out that typically D (Ptrue ,Pn) = O
(
n−1/d )

(Dudley ’68) for d > 2.
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Towards an Optimal Choice of Uncertainty Size

So, even if statistics for D (Ptrue ,Pn) = O
(
n−1/d ) are known, this

approach would suggest choosing δ = cn−1/d .

But this would imply solving (say for the logistic regression)

min
β
{EPn

[
log(1+ e−Y βTX )

]
+ cn−1/d ‖β‖1}.

But we know that letting δ = 0 we typically obtain asymptotically
normal estimators

βn ≈ βtrue + n
−1/2N

(
0, σ2

)
.

So, using δ = cn−1/d induces an error much bigger than n−1/2 when
d > 2.

So, instead, we’ll focus on an optimal (in some sense to be explained)
approach.
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Towards an Optimal Choice of Uncertainty Size

Keep in mind linear regression problem

Yi = βT∗ Xi + εi .

The plausible model variations of Pn are given by the set

Uδ (n) = {P : Dc (P,Pn) ≤ δ}.

Given P ∈ Uδ (n), define β̄ (P) = argminEP
(
Y − βTX

)
.

It is natural to say that

Λδ (n) = {β̄ (P) : P ∈ Uδ (n)}

are plausible estimates of β∗.
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Optimal Choice of Uncertainty Size

Given a confidence level 1− α we advocate choosing δ via

min δ

s.t. P (β∗ ∈ Λδ (n)) ≥ 1− α .

Equivalently: Find smallest confidence region Λδ (n) at level 1− α.

In simple words: Find the smallest δ so that β∗ is plausible with
confidence level 1− α.
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The Robust Wasserstein Profile Function

The value β̄ (P) is characterized by

EP

(
∇β

(
Y − βTX

)2)
= 2EP

((
Y − βTX

)
X
)
= 0.

Define the Robust Wasserstein Profile (RWP) Function:

Rn (β) = min{Dc (P,Pn) : EP
((
Y − βTX

)
X
)
= 0}.

Note that

Rn (β∗) ≤ δ⇐⇒ β∗ ∈ Λδ (n) = {β̄ (P) : D (P,Pn) ≤ δ}.

So δ is 1− α quantile of Rn (β∗)!
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The Robust Wasserstein Profile Function
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Computing Optimal Regularization Parameter

Theorem (B., Murthy, Kang (2016)) Suppose that {(Yi ,Xi )}ni=1 is an
i.i.d. sample with finite variance, with

c
(
(x , y) ,

(
x ′, y ′

))
=

{
‖x − x ′‖2q if y = y ′

∞ if y 6= y ′ ,

then
nRn(β∗)⇒ L1,

where L1 is explicitly and

L1
D
≤ L2 :=

E [e2]

E [e2]− (E |e|)2
‖N(0,Cov (X ))‖2q .

Remark: We recover same order of regularization (but L1 gives the
optimal constant!)
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Discussion on Optimal Uncertainty Size

Optimal δ is of order O (1/n) as opposed to O
(
1/n1/d ) as

advocated in the standard approach.

We characterize the asymptotic constant (not only order) in optimal
regularization:

P
(
L1 ≤ η1−α

)
= 1− α.

Rn (β∗) is inspired by Empirical Likelihood —Owen (1988).
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A Toy Example Illustrating Proof Techniques

Consider
min

β
max

P :Dc (P ,Pn)≤δ
E
[
(Y − β)2

]
with c (y , y ′) = (y − y ′)ρ and define

Rn (β) = min
π(dy ,du)≥0

∫
(y − u)ρ π (dy , du) :∫

u∈R
π (dy , du) =

1
n

δ{Yi } (dy) ∀i ,

2
∫ ∫

(u − β)π (dy , du) = 0.
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A Toy Example Illustrating Proof Techniques

Dual linear programming problem: Plug in β = β∗

Rn (β∗) = sup
λ∈R

{
−1
n

n

∑
i=1
sup
u∈R

{
λ(u − β∗)− |Yi − u|

ρ }}

= sup
λ∈R

{
−λ
n ∑n

i=1(Yi − β∗)
− 1n ∑n

i=1 supu∈R

{
λ (u − Yi )− |Yi − u|ρ

} }
= sup

λ

{
−λ

n

n

∑
i=1
(Yi − β∗)− (ρ− 1)

∣∣∣∣λρ
∣∣∣∣

ρ
ρ−1
}

=

∣∣∣∣∣1n n

∑
i=1
(Yi − β∗)

∣∣∣∣∣
ρ

=
1
n1/2

∣∣N (0, σ2)∣∣ρ .
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Computational Tools

Fast computation of Optimal Transport Distances is an active topic of
research currently.

Fastest algorithm for solving

min
π(i ,j)≥0∑ c (i , j)π (i , j)

n

∑
j=1

π (i , j) = µ (i) ∀i ,
n

∑
i=1

π (i , j) = v (j) ∀j

is in Quanrud ’18 (arxiv/1810.05957B) and B., Kent, Jambulapati,
Kent, Sidford ’18, (arxiv/1810.07717) it runs in O

(
n2 ‖c‖∞ /ε

)
time

for ε-additive error.

Optimal complexity algorithms for continuous problems is still an
open problem.
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Discussion: Some Open Problems

Extensions: Optimal Transport with constrains, Optimal Martingale
Transport.

Computational methods: Typical approach is entropic regularization
(new methods currently developed in the machine learning literature).
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Conclusions

Optimal transport (OT) is a powerful tool based on linear
programming.

Arises in Economics, Machine Learning, Operations Research,
Statistics, etc.

OT can be used in path-space to quantify model error.

OT can be used for data-driven distributionally robust optimization.

Cost function in OT can be used to improve out-of-sample
performance.

OT can be used for statistical inference using RWP function.
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