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David Hinkley, 1944-2019

Bootstrap: Motivation
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AIDS data
Diagnosis Reporting-delay interval (quarters): Total
period reports
to end
Year Quarter 0f 1 2 3 4 5 6 >14  of 1992
1988 1 31 8 16 9 3 2 8 6 174
2 26 99 2r 9 8 11 3 3 211
3 31 95 35 13 18 4 6 3 224
4 36 77 20 26 11 3 8 2 205
1989 1 32 92 32 10 12 19 12 2 224
2 15 92 14 27 22 21 12 1 219
3 34 104 29 31 18 8 6 253
4 38 101 34 18 9 15 6 233
1990 1 31 124 47 24 11 15 8 281
2 32 132 36 10 9 7 6 245
3 49 107 51 17 15 8 9 260
4 44 153 41 16 11 6 5 285
1991 1 41 137 29 33 7 11 6 271
2 56 124 39 14 12 7 10 263
3 53 175 35 17 13 11 2 306
4 63 135 24 23 12 1 258
1992 1 71 161 48 25 5 310
2 95 178 39 6 318
3 76 181 16 273
4 67 66 133
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AIDS data
[0 UK AIDS diagnoses 1988-1992.
[0 Reporting delay up to several years!
[0 Problem: predict state of epidemic at end 1992, with realistic statement of uncertainty.
0 Simple model: number of reports in row j and column k Poisson, mean
tik = exp(ay + By).-
[0 Unreported diagnoses in period j Poisson, mean
> g =cxplay) Y exp(Br).

k unobs k unobs

[J Estimate total unreported diagnoses from period j by replacing o; and 3}, by MLEs.
— How reliable are these predictions?
— How sensible is the Poisson model?
February 2021 — slide 5
AIDS data
0 Data (+), fits of simple model (solid), complex model (dots)
[0 Variance formulae could be derived — painful! but useful?
[0 Effects of overdispersion, complex model, ...?
19‘84 19;36 19;88 19‘90 19‘92
Time
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Goal

Find reliable frequentist assessment of uncertainty when

O

U
U
U

estimator complex
data complex
sample size small

model non-standard
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Reading

00  Chernick (2008) Bootstrap Methods: A Guide for Practitioner and Researchers. Second edition.

Wiley

Hall (1992) The Bootstrap and Edgeworth Expansion. Springer
Lahiri (2003) Resampling Methods for Dependent Data. Springer

I I I I O O A O

Biology. 4th edition. Chapman & Hall

O

Politis, Romano and Wolf (1999) Subsampling. Springer
Shao and Tu (1995) The Jackknife and Bootstrap. Springer

[0 Bootstrap anniversary issue of Statistical Science, 2003

O

Davison and Hinkley (1997) Bootstrap Methods and their Application. Cambridge University Press
Efron and Tibshirani (1993) An Introduction to the Bootstrap. Chapman & Hall

Lunneborg (2000) Data Analysis by Resampling: Concepts and Applications. Duxbury Press
Manly and Navarro Alberto (2020) Randomisation, Bootstrap and Monte Carlo Methods in

Bootstrap: Basic Notions
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Handedness data

Table 1: Data from a study of handedness; hand is an integer measure of handedness, and dnan a

genetic measure. Data due to Dr Gordon Claridge, University of Oxford.

dnan hand dnan hand dnan hand dnan hand

1 13 1 11 28 1 21 29 2 31 31 1
2 18 1 12 28 2 22 29 1 32 31 2
3 20 3 13 28 1 23 29 1 33 33 6
4 21 1 14 28 4 24 30 1 34 33 1
5 21 1 15 28 1 25 30 1 35 34 1
6 24 1 16 28 1 26 30 2 36 41 4
7 24 1 17 29 1 27 30 1 37 44 8
8 27 1 18 29 1 28 31 1

9 28 1 19 29 1 29 31 1

10 28 2 20 29 2 30 31 1
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Handedness data

Scatter plot of handedness data. The numbers show the multiplicities of the observations.

hand

N 2211

-1 1 2 2 15534 11
T T T T T T
15 20 25 30 35 40 45
dnan

February 2021 — slide 11

Handedness data

[0 Is there dependence between dnan and hand for these n = 37 individuals?

[0 Sample product-moment correlation coefficient is

7o >_j—1(dnan; — dnan)(hand; — hand)

{Z?Zl(dnanj — dnan)? Z?Zl(handj — hand)2}
= 0.509.

1/2

[0 Standard confidence interval (based on bivariate normal population) gives 95% CI (0.221, 0.715).
0 Data not bivariate normal!
0 What is the status of the interval? Can we do better?
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Frequentist inference

[0 Estimator @ for unknown parameter 6.

[0 Statistical model: data y1,...,yn i F', unknown

[0 Handedness data
- y = (dnan,hand)
— F puts probability mass on subset of R?
— @ is correlation coefficient

[0 Key questions
— How does 8 behave when samples are repeatedly taken from F'?7
— How can we use knowledge of this to learn about 67

[0 Thought experiment: imagine F' known — could answer question by
— analytical (mathematical) calculation

— simulation
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Simulation with F known

0 Forr=1,....R:

— generate random sample y7,..., v, id ;
— compute 5;* using yi,. .., Yn;
[0 Output after R iterations:
1>Y25--VR
O Use 5{,5;, ... ,5}} to estimate sampling distribution of 0 (histogram, density estimate, ...)

O If R — oo, then get perfect match to theoretical calculation (if available): Monte Carlo error
disappears completely

0 In practice R is finite, so some error remains
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Handedness data: Fitted bivariate normal model

Contours of bivariate normal distribution fitted to handedness data; parameter estimates are
1 = 28.5, ip = 1.7, 51 = 5.4, 55 = 1.5, p = 0.509. The data are also shown.
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Handedness data: Parametric bootstrap samples

Left: original data, with jittered vertical values. Centre and right: two samples generated from the
fitted bivariate normal distribution.
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Handedness data: Correlation coefficient

Bootstrap distributions with R = 10000. Left: simulation from fitted bivariate normal distribution.
Right: simulation from the data by bootstrap resampling. The lines show the theoretical probability
density function of the correlation coefficient under sampling from a fitted bivariate normal
distribution.
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F unknown

[0 Replace unknown F' by estimate F obtained

— parametrically — e.g., maximum likelihood or robust fit of distribution F(y) = F(y; )
(exponential, bivariate normal, ...)

— nonparametrically — using empirical distribution function (EDF) of original data y1,. .., yn,
which puts mass 1/n on each of the y;

O  Algorithm: Forr=1,..., R:

i~
— generate random sample y7,...,y; ~ I
— compute 5: using yy,...,Yn;
[0 Output after R iterations:
01,05,...,0%

February 2021 — slide 18

Nonparametric bootstrap

O Bootstrap (re)sample y7,...,y" id F, where I is EDF of Yy s Yn
- If f7 = #{y; = yi}, then (f{,..., f) has the multinomial distribution with denominator n
and probability vector (n=1,... n71).
— Repetitions will occur!
[0 Compute bootstrap o using yi, ..., Ym.

O For handedness data take n = 37 pairs y* = (dnan, hand)* with equal probabilities 1/37 and
replacement from original pairs (dnan, hand)

[J Repeat this R times, to get 5{, .. ,5}‘%
[0 See picture

[0 Results quite different from parametric simulation — why?
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Handedness data: Correlation coefficient

Bootstrap distributions with R = 10000. Left: simulation from fitted bivariate normal distribution.
Right: simulation from the data by bootstrap resampling. The lines show the theoretical probability
density function of the correlation coefficient under sampling from a fitted bivariate normal
distribution.
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Handedness data: Bootstrap samples

Left: original data, with jittered vertical values. Centre and right: two bootstrap samples, with
jittered vertical values.
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Using the §*: Bias
[0 Bootstrap replicates 5;‘ used to estimate properties of 0.
O Write # = 6(F') to emphasize dependence on F
[0 Bias of § as estimator of 0 is
~ iid
BF)=E@O |y, yn ~ F) = 0(F)
estimated by replacing unknown F' by known estimate F:
iid 7

BEY=E@ | y1,...,yn < F) — 0(F)

O Replace theoretical expectation E(-) by empirical average:

. R
BF)mb=0"—0=R"1'> 0;—0
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Using the 6 Variance/Quantiles
O Estimate variance v(F) = var(§| F) by
1 ~ 2
U:R—1Z(9’"_9>
r=1
[0 Estimate quantiles of ) by taking empirical quantiles of
e 0R
[0 For handedness data, 10,000 replicates shown earlier give

b= —0.046, v = 0.043 = 0.205°
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Handedness data

Summaries of the §*. Left: histogram, with vertical line showing 0. Right: normal Q-Q plot of 0*.
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Common questions

0 How big should n be? — depends on the context
[0 What if the sample is unrepresentative? — this is always a potential problem in statistics, not
specific to resampling methods.
[0 How big should R be? — at least 1000 for most purposes
[0 Why take resamples of size n?
—  We usually want to mimic the sampling properties of samples like the original one, so take
resamples of size n,
— but sometimes we take resamples of size m < n in order to achieve validity of the
bootstrap—e.g., for extreme quantiles.
0 Why resample from the EDF?
— The EDF is the nonparametric MLE of F, so is a natural choice when there are no restrictions
imposed on F', but
— in some cases (e.g., testing) it may be appropriate to resample from a ‘tilted’ version of F

— in other cases it may be useful to smooth F

February 2021 — slide 25

10



How big should n be?

0 For the average = Y, the number of distinct samples is

(Qn — 1>
my = s
n

the most probable of which has probability p,, = n!/n"
O So for n > 12, we have m,, > 10 and p,, < 6 x 107°.
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How big should n be?

[0 For the median of a sample of size n = 2m + 1, the possible distinct values of 0" are

Yya) <+ < Ymn), and
. m n l T l n—r
P*(0" > y) =) ) (= ,
r=0

so exact calculations of the variance etc. are possible.
[0 However the median is very vulnerable to bad values in the sample.

[0 Exact, approximate and mean bootstrap estimates of variance (x10~2) of sample median, based
on 10000 data sets of sizes n = 11,21. The effective degrees of freedom of bootstrap variances
uses a 2 approximation to their distribution.

Normal t3 Cauchy
1 21 11 21 11 21
Theoretical 143 7.5 16.8 8.8 224 117
Exact 139 7.3 19.1 95 383 146
Mean bootstrap 17.2 8.8 259 114 14000 22.8
Effective df 4.3 5.4 32 49 0.002 0.5
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What about outliers?

[0 Bad sample values not specific to bootstrap methods—need to consider them in any analysis

[0 Can reduce their effects by using robust estimators, but beware, as outliers may affect
bootstrapped estimators even if they don't affect original value

(0 As example, consider 20% trimmed average with n = 11 and two outliers

11
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How many bootstraps?

0

O

Must estimate moments and quantiles of 0 and derived quantities. Nowadays often feasible to
take R > 5000

Need R > 200 to estimate bias, variance, etc.

Need R > 100, prefer R > 1000 to estimate quantiles needed for 95% confidence intervals
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Resamples of size n?

0

O oo

Exponential sample of size n = 1000
, Y5 is exp(1)
Y*

m

Distribution of nmin(Y7, ...

Resampling distribution m min(Y7*,...,Y,*) using resamples of size m = 1000, 100, 50

To avoid discreteness must choose m < n, but how?
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Variants of 7
[0 Can be useful to simulate from a smoothed EDF, given by
Y* =y +he*, & ~N(0,1) 1L j* ~U{L,...,n},

equivalent to simulating from a kernel density estimate of F’. Below, with h = 0.1 (red) and
h = 0.5 (blue).

O Since var*(Y*) = 52 4+ h?, may prefer a shrunk smoothed estimate, given by

(yj* — ) + he*
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When does the bootstrap work?

0 ‘Work’ might mean the bootstrap gives
— reliable answers when used in practice, or
— mathematically correct answers under ‘suitable’ regularity conditions.

[0 For the second of these, suppose we seek to estimate properties of a standardized quantity
Q=q(Y1,...,Y,; F), maybe Q = n'/2(Y — 6). Let n — oo to get limiting results for the
distribution function

Grn(q) =P{QM1,.... Y F) < q| F},

where the conditioning on F' indicates that Y7,...,Y,, is a random sample from F.

[0 Bootstrap estimate of this is

~

Gpa0) =P{QOT,... Y F) <q| F}

~

where Q(Y, ..., Y, s F) =n'2(Y" 7).

Yy Itno

[ We need conditions under which Gﬁn — Gpp asn — oo.
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Regularity conditions

0

Suppose that the true distribution Fis surrounded by a neighbourhood N in a suitable space of
distributions, and that as n — oo, F eventually falls into A/ with probability one. Then regularity
conditions are:

1. forany A€ N, G4, must converge weakly to a limit G4 c;
2. this convergence must be uniform on N; and
3. the function mapping A to G 4, must be continuous.

Weak convergence of G4, to G4 .o means that for all integrable A(-),

/h( )dGAn — / dGAoo ) as n — Q.

Under these conditions the bootstrap is consistent: for any ¢ and € > 0,
P{|Gﬁ7n(q) — Groo(q)| > e} = 0 as n — oo.

The first condition ensures that there is a limit for G, to converge to, and would be needed
even if F' = F for every n > n/, for some n'.

As n increases, F changes, so the second and third conditions are needed to ensure that Gﬁ,n
approaches G’ along every possible sequence of Fs.

If any one of these conditions fails, the bootstrap can fail. For the minimum, the convergence is
not uniform on suitable neighbourhoods of F'.

February 2021 — slide 33

Key points

0

Estimator is algorithm

— applied to original data y1,...,y, gives original 0

— applied to simulated data y7, ...,y gives o

— 0 can be of (almost) any complexity

— for more sophisticated ideas to work, f must often be smooth function of data
Sample is used to estimate F'

— F ~ F — heroic assumption

Simulation replaces theoretical calculation

— removes need for mathematical skill

— does not remove need for thought

— check code very carefully — garbage in, garbage out!
Two sources of error

~ statistical (F # F) — reduce by thought

— simulation (R # oco) — reduce by taking R large (enough)
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Confidence Intervals slide 35

Desiderata

00 Recall that a (1 — «) upper confidence limit for an unknown scalar parameter 6 based on data

Y is a random variable 6, = 6,(Y") with the property that
PO<6,)=a 0<a<lbecQy (1)
We may seek invariance to monotone transformations ) = 1/(#), that is
P{y@) <¢p}t=0a, 0<a<1,6ey.

In practice exact intervals are rarely available, and we seek intervals such that (1) is satisfied as
closely as possible. Typically if Y = Y7,...,Y,,, then we have

P(0<0,)=a+0n"1?), 0<a<1,0ecQy,
and the corresponding two-sided interval satisfies

PO, <0<0_o)=(1-20)+0m"), 0<a<ibecq,.
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Normal confidence intervals

0

0

If gapproximately normal, then 6 ~ N0+ 5,v), where 0 has bias B = B(F) and variance
v=v(F)

If B, v were known, (1 — 2«a) confidence interval for § would be found as the solution to the

equation
0—0-8
P (Za< 7 Szloz) =1-2a,

giving limits 8 — 8 & zo/'/2, where D(z) = .
Replace the unknowns 3, v by estimates:

BF) = B(F)=b=0"—9, B
v(F) = v(F)=v=(R-1)""Y (0 -0

.
giving (1 — 2a) interval 0 — b+ zqvl/2,

Handedness data: R = 10,000, b = —0.046, v = 0.2052, o = 0.025, 2z, = —1.96, so 95% Cl is
(0.147,0.963)
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Normal confidence intervals

[0 Normal approximation reliable? Transformation needed?
O Here are plots for 1" = $log{(1 + 6%)/(1 — 6)}:

1.5

Transformed correlation coefficient

T !
-0.5 0.0 0.5 1.0 15 -4 -2 0 2 4
Transformed correlation coefficient Quantiles of Standard Normal
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Normal confidence intervals

[0 Correlation coefficient: try Fisher's z transformation:
0" = () = 3log{(1 +6")/(1 - 6")}
for which compute
—~ ~ 1 R ~ =\ 2
b, — —1 * - = * Ik
w R ;¢T ) Uw R—l;(% ¢) 9

[0 After inverse transformation ¢!, (1 — 2a) confidence interval for 6 is

~

R (I W e T (I

[0 For handedness data, get (0.074,0.804)

[0 But how do we choose a transformation in general?

February 2021 — slide 39
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Pivots

[0 Hope properties of 5{, e ,5}3 mimic effect of sampling from original model.
O Amounts to faith in substitution principle (or plugin principle): may replace unknown F' with
known F' — false in general, but often more nearly true for pivots.

[0 Pivot is combination of data and parameter whose distribution is independent of underlying
model.

O Canonical example: Y7,...,Y, i N(u,0?). Then

Y —p

Z= (S2/n)1/2

tnfla

for all i, 0 — so independent of the underlying (normal!) distribution

[0 Exact pivot generally unavailable in nonparametric case.

February 2021 — slide 40

Studentized statistic

O Idea: generalize Student ¢ statistic to bootstrap setting

[0 Requires variance V for é\computed from y1,...,Yn
O Analogue of Student t statistic:
0—6
Z= V1/2
[0 If the quantiles z, of Z known, then
P <Z< =P < 60 < _
(2 S Z < 21-q) = 2o < i <zilg | =1-2a

(zo no longer denotes a normal quantile!) implies that
P <§— Vl/Qzl,a <f< 0 — V1/2za) =1-2«

so (1 — 2a) confidence interval is 0 — VY22 _,,0 — V122

February 2021 — slide 41
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Studentized statistic

[0 Bootstrap sample gives (6%, V*) and hence

. 6 -0
Z" = V*1/2
O R bootstrap copies of (5, V):
( >1k>‘/1*)> (957‘/2*)7 IR (e}k%vﬁ)
and corresponding
. 07—90 . 05-0 . Op—0
M= gmy 2= g s FR=
v 1/2 v, 1/2 VRl/z
0O Use z27,..., 25 to estimate distribution of Z — for example, order statistics szl) << sz)

used to estimate quantiles
O Get (1 — 2«) confidence interval

0= VY220 ey 0= VP20
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Mathematical Aside: Why Studentize?
O Studentize, so Z — N(0,1) as n — oco. Edgeworth series:
P(Z <z |F)=®(z)+n Ya(2)$(z) + O(n™);

a(-) even quadratic polynomial.

[0 Example: if we use # =Y and V = n~152 to compute Z for the average of a sample with
skewness 7, then a(z) = 7(22% + 1)/6 and (next slide) a/(x) = —y(z% — 1)/6.

[0 Corresponding expansion for Z* is
P(Z* <z | F) = ®(2) + n %a(2)(2) + Op(n™h).

Typically a(z) = a(z) + Op(n~"1/?), so

February 2021 — slide 43
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Aside continued . ..
O If don't studentize, Z = n/2( — 0) -2 N(0,+/). Then

z

)+ (o) 6 () + O

HZgzuw:®(wﬂ

and

Pz <z | F)=o )+n4ﬂa(ﬁig¢(5%5)+0An4y

z

o1L/2

Typically 7' = v/ + O, (n~"/2), giving
P(Z* <z |F)=P(Z<z|F)=0,n"?).

[0 Thus use of Studentized Z reduces error from O,(n~'/2) to O,(n™'): better than using
large-sample asymptotics, for which error is usually O,(n~1/2).
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Other confidence intervals

O Problem for studentized intervals: must obtain V, intervals not transformation-invariant
O Simpler approaches:

— Basic bootstrap interval: treat § — 6 as pivot, get

~ ~ ~ -~ ~

0= O renya—ay — ) 0= (Orr1)a) — 0)-

— Percentile interval: use empirical quantiles of 67, ...,0%:

~

*

Vrier  Y@ina-a):
OO More complex: improved percentile intervals (BC,, ABC, ...)
— Replace percentile interval with
Orivay  O(rina-an)

where o/, o’ chosen to improve properties.

— Transformation-invariant.
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BC, intervals

O Bias-corrected and accelerated confidence intervals

WIS LS NN
1 —a(w+ zq)

0 Determine o’ by

where s 3
1 (A 1 i=11'5
w= o 1{@*()}, a-é—(zyill?;w,

with G* the EDF of the 5{, e ,5}}, and [y, ...,l, the empirical influence values, defined below
O If the bias w = 0, then @*(5) =150 § is at the median of the EDF of *

[0 If the acceleration a = 0, then the effect of the data yi1,...,y, on fis symmetric (see below)
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Handedness data

[0 95% confidence intervals for correlation coefficient 6§, R = 10, 000:

Normal 0.147  0.963

Percentile —0.047 0.758

Basic 0.262 1.043

BC, (o/ =0.0485,a” = 0.0085) 0.053 0.792
Student 0.030 1.206

Basic (transformed) 0.131 0.824
Student (transformed) —0.277 0.868

0 Transformation is essential here!
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Comparisons

Table 2: Empirical error rates (%) for nonparametric bootstrap confidence limits in ratio estimation:
rates for sample sizes n; = no = 10 are given above those for sample sizes n; = no = 25. R = 999 for
all bootstrap methods. 10,000 data sets generated from Gamma distributions.

Method Nominal error rate
Lower limit Upper limit

1 25 5 10 10 5 2.5 1
Exact 1.0 28 55 105 98 48 26 1.0

10 23 48 99 102 49 25 11
Normal approximation 01 05 17 6.3 206 157 125 9.6

01 05 21 64 16.3 115 82 55
Basic bootstrap 00 00 02 18 244 210 186 164

0.0 01 04 30 19.2 150 125 10.3
Basic bootstrap, log scale 26 49 81 129 131 75 48 25

16 32 60 114 115 63 33 17
Studentized bootstrap 06 21 46 99 119 6.7 40 20

08 23 46 99 109 59 30 14
Studentized bootstrap, log scale 1.1 28 5.6 10.7 116 63 35 17
1.1 25 50 10.1 108 57 29 13

Bootstrap percentile 18 36 65 11.6 146 89 59 33
1.2 26 51 101 126 71 42 21
BC, 19 40 69 123 140 83 53 30
14 30 56 109 118 68 38 19
ABC 19 42 74 127 146 87 55 31

1.3 3.0 57 11.0 121 68 37 19
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Confidence interval lengths

Lengths of 95% confidence intervals for the first 1000 simulated samples in the numerical experiment
with Gamma data.
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General comparison
[0 Bootstrap confidence intervals usually under-cover
[0 Normal, basic, and studentized intervals depend on scale.
[0 Percentile interval often too short but is transformation-invariant.
[0 Studentized intervals give best coverage overall, but
— depend on scale, can be sensitive to V'
— length can be very variable
— best on transformed scale, where V' is approximately constant
[0 Improved percentile intervals have same error in principle as studentized intervals, but often
shorter — so lower coverage
February 2021 — slide 50
Caution
[0 Edgeworth theory OK for smooth statistics—beware rough statistics: must check output.
[0 Bootstrap of median theoretically OK, but very sensitive to sample values in practice.
[0 Figure below shows results for bootstrapping a difference of medians—use smoothed bootstap, or

sample m-out-of-n observations?

10

T*-t for medians
0
|

-10

-2 0 2

Quantiles of Standard Normal
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Key points

Oo0O0o0odaod

Numerous procedures available for ‘automatic’ construction of confidence intervals
Computer does the work

Need R > 1000 in most cases

Generally such intervals are a bit too short

Must examine output to check if assumptions (e.g. smoothness of statistic) satisfied

May need variance estimate V' — see later

February 2021 — slide 52
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Several Samples slide 53

Gravity data

Table 3: Measurements of the acceleration due to gravity, g, given as deviations from 980,000 x10~3

cms 2, in units of cms™2 x 1073,

Series
1 2 3 4 5 6 7 8
76 87 105 95 76 78 82 84
82 95 83 90 76 78 79 86
83 98 76 76 78 78 81 85
54 100 75 76 79 86 79 82
35 109 51 87 72 87 77 717
46 109 76 79 68 81 79 76
87 100 93 77 75 73 79 717
68 81 75 71 78 67 78 80

7 62 7579 83
68 82 82 81
67 83 76 78
73 78
64 78
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Gravity data

Figure 1: Gravity series boxplots, showing a reduction in variance, a shift in location, and possible
outliers.
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Gravity data

0

Eight series of measurements of gravitational acceleration g made May 1934 — July 1935 in
Washington DC

Data are deviations from 9.8 m/s? in units of 1073 cm/s?
Goal: Estimate g and provide confidence interval

Weighted combination of series averages and its variance estimate

8 - 2 8 -1

~ ; . X M./ 84

0 = Zzzlgyl ”12/‘92, V= (E nl/s?> ,
Zi:l ni/si i—1

giving R
0 =7854, V =0.59

and 95% confidence interval of 8 = 1.96V'1/2 = (77.5,79.8)
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Gravity data: Bootstrap

O

0

Apply stratified (re)sampling to series, taking each series as a separate stratum. Compute 5* V*
for simulated data

Confidence interval based on

0*—0
7" = ——,
V*1/2
whose distribution is approximated by simulations
. 0r—46 )
21 = — 775 -3 RR — ;
V11/2 Vé/Q

giving R R
(9 — Vl/zsz(lfa)),G — Vl/QZEkRa))

For 95% limits set a = 0.025, so with R = 1000 use 22‘25), 2?975)’ giving interval (77.1,80.3).
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Results

Figure 2: Summary plots for 1000 nonparametric bootstrap simulations. Top: normal probability plots
of 6* and z* = (8* — §)/v*'/2. Line on the top left has intercept ¢ and slope v
right has intercept zero and unit slope. Bottom: the smallest 9* also has the smallest v* leading to an
outlying value of z*.

[.
77 78 79 80 81
\\

2 0 2
Quantiles of Standard Normal

15 10 5 0 5

—

Quantiles of Standard Normal

sqri(v)

01 02 03 04 05 06 0.7

01 02 03 04 05 06 0.7

45 210 5 0 5

1/2 line on the top
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Key points

[0 Same basic ideas apply for confidence intervals

[0 For several independent samples, implement bootstrap by stratified sampling independently from
each

Variance Estimation
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slide 60

Variance estimation

0 Ways to compute this:

double bootstrap
delta method
nonparametric delta method

jackknife

[0 Variance estimate V' needed for certain types of confidence interval (esp. studentized bootstrap)

25
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Double bootstrap

O Bootstrap sample y7,...,y, and corresponding estimate o

O Take @ second-level bootstrap samples yi*,...,y-* from yj,...,y", giving corresponding
bootstrap estimates 077, ..., 0.,

[0 Compute variance estimate V* as sample variance of 5?*, e ,HAZ)*

O Requires total R(Q + 1) resamples, so could be expensive

[0 Often reasonable to take @@ = 50 for variance estimation, so need O(50 x 1000) resamples —
nowadays not infeasible

[0 Aside: can use double bootstrap to diagnose problems with statistic, and to suggest changes.
Example: next slide shows smoothed estimation of standard error curve

~

a(0) = y/var(0),

which can be used to estimate variance-stabilising transformation

February 2021 — slide 62

Aside: Variance function estimation

Figure 3: Bias and variance estimates for ratio applied to city population data, n = 10. For each of
R =999 bootstrap samples from the data, M = 50 second-level samples were drawn, and the resulting
bias and standard error estimates b* and v*!/2 plotted against the bootstrapped ratio 0*. The lines are
from a robust nonparametric curve fit to the simulations.
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Delta method

g
U
U

O 0o

Computation of variance formulae for functions of averages and other estimators

Suppose ) = g(g) estimates ¢ = g(6), and 6~ N(6,02/n)

Then under mild conditions and provided ¢'(6) # 0, Taylor expansion gives
E@W) = g(6)+0®n™),

var(d) = o%g(0)*/n+0n~?).
Then var(¢)) = 52¢/(0)2/n =V
Example: 9=Y, 12 = logé\
Variance stabilisation: if var(6) = S(6)2/n, find transformation h such that var{h(6)} =constant

Extends to multivariate estimators, and to 12 = g(@l, e ,@\d)
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Nonparametric delta method

g
g

Write parameter § = 6(F') as function of distribution F’

General approximation:

. 1 < 2
V:VLzﬁzlL(n;F) .
j:

L(y; F) is influence function value for 6 for observation at y when distribution is F":

L(y; F) = lim 011 —e)F +eHy} — G(F)’

e—0 £

where H,, puts unit mass at y. Close link to robustness.

Empirical versions of L(y; F') and V, are
=Ly F), v=n"Y 13

usually obtained by analytic/numerical differentiation.
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Nonparametric delta method: Average

[0 Population mean and its empirical version
0= 1(F) = /xdF(x), §— 1(F) = /xdﬁ(x) A
j=1
O If Hy puts unit mass at y, its ‘density’ is a Dirac delta function d,(x), and
0{(1—-e)F +eH,} = /md{(l —¢e)F +ecHy} (x)

= (1- 5)/xdF(m) + a/dey(x) =(1—-¢)0(F)+ey

and therefore

L) — tim PLOZDF ) —0F) (1= )0(F) + ey — 0(F)

e—0 IS e—0 £

=y —0(F),

[0 Hence empirical influence values and variance estimate are

~

_ 1 _ n—1 _
L=Lyi )=y -7 =35> (4-9)"=——n"'s
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Computation of /;

O Write 6 in weighted form, differentiate with respect to ¢

~ _ 1
b Y= Ezyj - ijyj‘wjzl/n

[0 Sample average:

Change weights:
wire+(1—e)l w—(1-e)2 i#j
SO
Y=y =cy;+(1—e)y=c(y; —y) +7,

giving [; = y; —y and vg, = # >y — y)Q = "T_ln*132

U Interpretation: [; is standardized change in 4 when increase mass on y;

February 2021 — slide 67
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Nonparametric delta method: Ratio

O Population F(u,z) with y = (u,z) and

0=0(F)= /xdF(u,x)//udF(u,x),
sample version is
6=0(F) = /wdﬁ(u,x)//udﬁ(u,x) =7Z/u
O Then using result for averages and chain rule,
lj = (j — bu;)/u,
giving

~ 2
1 xj — Ouy;
UL_nQZ< T ) :
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Handedness data: Correlation coefficient

0 Correlation coefficient may be written as a function of averages Tu = n~! > xjuj etc.:

from which empirical influence values [; can be derived

O In this example (and for others involving only averages), nonparametric delta method is equivalent
to delta method

O Get
v, = 0.029
for comparison with v = 0.043 obtained by bootstrapping.

~

O wg, typically underestimates var(f) — as here!
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Delta methods: Comments

[0 Can be applied to many complex statistics
0 For small n, delta method often underestimates true variances:

~

vy, < var(f)

O Can be applied automatically (numerical differentation) if algorithm for 0 written in weighted
form, e.g.

Ty = ijxj, w; =1/n for T
and vary weights successively for j = 1,...,n, setting

wj =w; +¢€, 1# ], Zwizl

for e = 1/(100n) and using the definition as derivative
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Jackknife

[0 Approximation to empirical influence values given by

lj ~ ljack,j = (n — 1)(9 — G,j),
where 5_j is value of 5computed from sample
Y, Yj—-1,  Yj+1,---5Yn

O Jackknife bias and variance estimates are
bk = —~ 57 ! 12 b2
jack = — Z jack,j>  Vjack = m Z jack,j — "Wjack

[0 Requires n + 1 calculations of )

[0 Corresponds to numerical differentiation of 6, with & = —-1/(n—1)
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Key points

[0 Several methods available for estimation of variances
Needed for some types of confidence interval
Most general method is double bootstrap: can be expensive

Delta methods rely on linear expansion, can be applied numerically or analytically

Ooo0oono

Jackknife gives approximation to delta method, can fail for rough statistics
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Tests slide 73

Ingredients

[0 Ingredients for testing problems:

- data yi,...,Yn;
—  hypothesis Hy (equivalently model M) to be tested;
—  test statistic t = t(y1,...,Yyn), with large values giving evidence against Hy, and observed
value tgps
00 P-value

Pobs = Po(T > tops) = P(T > tops | Mo)
measures evidence against My — small pgps indicates evidence against M.
[0 Difficulties:
—  pobs May depend upon ‘nuisance’ parameters, those of My;

—  Pobs Often hard to calculate.
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Examples

[0 Balsam-fir seedlings in 5 x 5 quadrats — Poisson sample?

01 2 3 4 3 4 2 21
0 2 0 2 4 2 3 3 4 2
1111 4 15 2 2 3
4 1 2 5 2 0 3 2 11
31 4 3 100 2 70
0 Two-way layout: row-column independence?

1 2 2 1 1 01

2 0 0 23 00

0111 2 7 3

112 0 0 0 1

0 1.1 1 1 0 O
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Estimation of p,,

g
U

Estimate pohs by simulation from fitted null hypothesis model 1\70.
Algorithm: forr=1,... R:
— simulate data set yj,...,y; from ]\70;
— calculate test statistic ¢ from y,...,y;.

Calculate simulation estimate
]/9\: #{t: > 75obs}
R
of -
I/)\obs = P(T = Tobs | MO)

Simulation and statistical errors:
1/)\% ﬁobs ~ Pobs

February 2021 — slide 76

Handedness data: Test of independence

g
g

Are dnan and hand positively associated?

Take T =0 (correlation coefficient), with @\Obs = 0.509; this is large in case of positive association
(one-sided test)

Null hypothesis of independence: F'(u,z) = Fj(u)Fs(x)

Take bootstrap samples independently from ﬁl = (dnany,...,dnan,) and from
F, = (handy, ... ,hand, ), then put them together to get bootstrap data
(dnanj, handj), ..., (dnan},hand}).

With R = 10,000 get 19 values of 8% > 8., so

5= 9 00019
P=T0000 — "

hand and dnan seem to be positively associated

To test positive or negative association (two-sided test), take T = |6]: gives = 0.004.
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Handedness data: Bootstrap from ]/\4\0

0 — 1
0
~ — T
© 2 A = N
c
0 - 3
2 >
[} =
< < 3
So |
—
™ — 1 E
0 _|
~N 2 2 ©
o
— — 2 1 11®34 3 1 :
T T T T T T e I T T T T T 1
15 20 25 30 35 40 45 -0.6 -0.2 0.2 0.6
dnan Test statistic
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Choice of R

0 Take R big enough to get small standard error for p, typically > 100, using binomial calculation:

var(p) = var (W%jﬂ)

1 pobs(l—pobs)
—5 Rpobs(1 — pobs) = ——————>
72 FPobs( Pobs) 7

50 if Pops = 0.05 need R > 1900 for 10% relative error

0 Can choose R sequentially: e.g. if p = 0.06 and R = 99, can augment R enough to diminish
standard error.

O Taking R too small lowers power of test, because the randomness of the ¢} means that the
rejection region for the test is random.
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Two situations

[0 Tests about parameters:
— s correlation coefficient equal to zero for handedness data?
O Pure significance tests:
— Are the balsam-fir seedling data Poisson?
— Are the row and column classifications independent for the two-way layout data?

[0 In the first case, can exploit duality of test and confidence interval to obtain significance levels, or
can use pivot test.
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Duality with confidence interval

[0 For test concerning the value of a parameter ¢

[0 General approach based on duality between confidence interval Z;_, = (6,,00) and test of null
hypothesis 6 = 6
[0 Reject null hypothesis at level « in favour of alternative 6 > 6y, if 8y < 0,

[0 Handedness data: 8y = 0 & Zy.95, but g = 0 € Zy.99, so estimated significance level
0.01 < p < 0.05: weaker evidence than before

[0 Extends to tests of # = 6y against other alternatives:
— ify € T'7 = (—00,0%), have evidence that § < 6
— if Oy € Z1_24 = (04,0%), have evidence that 6 # 6,
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Pivot tests

[0 Equivalent to use of confidence intervals

O Idea: use (approximate) pivot such as Z = (5— 6)/V1/2 as statistic to test = 6
O Observed value of pivot is zgps = (5— 6o)/V1/?
U

Significance level is

60
p (W > Zobs | Mo) = P(Z > zops | Mo)

= P(ZEZObS‘F)
= P(Z > zops | F)
[0 Compare observed zoys with simulated distribution of Z* = (6* — §)/V*}/2, without needing to
construct null hypothesis model ]\/4\0

OO0 Use of (approximate) pivot is essential for success
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Example: Handedness data

[0 Test zero correlation (fy = 0), not independence; § = 0.509, V = 0.1702:

-0, 0.509—0
Zobs = V1/2 == 0.170 = 2.99

[0 Observed significance level is

#{zF > zops} _ 216
R 10000

5= = 0.0216

Probability density
0.2 0.3

0.1

0.0

T T T T T T 1
-6 -4 -2 0 2 4 6
Test statistic
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Exact tests

[0 Problem: bootstrap estimate is
ﬁobs = P(T > ZL'obs ‘ MO) 7& P(T >t ’ MO) = Pobs>

so estimate the wrong thing

[0 In some cases can eliminate parameters from null hypothesis distribution by conditioning on
sufficient statistic

O Then simulate from conditional distribution

[0 More generally, can use Metropolis—Hastings algorithm to simulate from conditional distribution
(below)
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Example: Fir data

[ DataVi,...,Y, “ Pois()\), with A unknown

0 Poisson model has E(Y) = var(Y) = \: base test of overdispersion on

T=) (Vi =Y)/Y ~ x; s

observed value is typs = 55.15

O Unconditional significance level:

P(T > tops | Mo, A)

0O Condition on value w of sufficient statistic W = > Yj:

Pobs = P(T = tobs | MO> W = w)>

independent of A\, owing to sufficiency of W

[J Exact test: simulate from multinomial distribution of Y7, ...

Y, given W =3%"Y; =107.
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Example: Fir data

Simulation results for dispersion test. Left panel: R = 1000 values of the dispersion statistic t*
obtained under multinomial sampling: the data value is tops = 55.15 and p = 0.25. Right panel:
chi-squared plot of ordered values of ¢t*, dotted line shows X4219 approximation to null conditional

distribution.

0.03 0.04

0.02

0.01

0.0

20 40 60 80

dispersion statistic t*

80

60

40

20

30 40 50 60 70 80

chi-squared quantiles
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Handedness data: Permutation test

O Are dnan and hand related?
O TakeT =6 (correlation coefficient) again

O Impose null hypothesis of independence: F'(u,x) = Fj(u)F5(x), but condition so that marginal
distributions F; and F5 are held fixed under resampling plan — permutation test

[0 Take resamples of form
(dnan;,hand;-),..., (dnan,, hand,~)
where (1%, ...,n*) is random permutation of (1,...,n)
O Doing this with R = 10,000 gives one- and two-sided significance probabilities of 0.002, 0.003

O Typically values of p very similar to those for corresponding bootstrap test
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Handedness data: Permutation resample

© - 'Y A
© — [) %‘Q -
g ] 247
< < o o E °
o . 2]
o~ oo o0 3
- e o 00000 00 ° o 2
\ \ T \ T T I T T T T T 1
15 20 25 30 35 40 45 -0.6 -0.2 0.2 0.6
dnan Test statistic
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Contingency table
1 2 2 1 1 0 1
2 0 0 2 3 0 O
01 1 1 2 7 3
1 1.2 0 0 0 1
0 1.1 1 1 0 O

[0  Are row and column classifications independent:
P(row i, column j) = P(row i) x P(column j)?

[0 Standard test statistic for independence is

y  Yij =

T_ Z (ij — 05)° ~ Yy
P ﬂz‘j Y.

O Get P(x3, > 38.52) = 0.048, but is T ~ x3,?
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Exact tests: Contingency table

O For exact test, need to simulate distribution of T conditional on sufficient statistics — row and
column totals

[0 Metropolis—Hastings algorithm for conditional simulation:
1. choose two rows j; < jo and two columns k; < ko at random

2. generate new values from hypergeometric distribution of y; 5, conditional on margins of 2 x 2
table
Yjrkr  Yjiko
Yjok1  Yjoko
3. compute test statistic T every I = 100 iterations, say

0 Compare observed value typs = 38.52 with simulated T* — get p = 0.08
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Exact tests: Contingency table

Comparison of 10,000 simulated values of T* with the x3, distribution. Monte Carlo ‘exact’ value is
P = 0.08, while x3, approximation gives 0.048.

0.?6

Density

O.IOZ

0 10 20 30 40 50 60
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Key points

[0 Tests can be performed using resampling/simulation

[0 Must take account of null hypothesis, by
— modifying sampling scheme to satisfy null hypothesis
— inverting confidence interval (pivot test)

[0 Can use Monte Carlo simulation to get approximations to exact tests — simulate from null
distribution of data, conditional on observed value of sufficient statistic

[0 Sometimes obtain permutation tests — very similar to bootstrap tests
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37



Regression slide 93

Linear regression

O Independent data (x1,¥1), ..., (Tn,Yn) with
yj=ajB+e;, &5~ (0,0%)
[1 Least squares estimates 3 leverages h;, residuals

yj —

e O

ej =
[0 Design matrix X should be held fixed if possible, at least for designed experiments, as
var(B) = c2(X"X) 7!

if model y = X + ¢ correct
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Linear regression: Resampling schemes

[0 Two main resampling schemes

[0 Model-based resampling:
y; = x}ﬁ%—ej, e; ~EDF(e; —€,...,e, —€)

— Fixes design but not robust to model failure
— Assumes ¢; sampled from population
[0 Case resampling:
(zj,y;)" ~ EDF{(z1,91),- -+, (Tn,yn)}
— Varying design X but robust
— Assumes (z;,7;) sampled from population

— Usually design variation no problem; can prove awkward in designed experiments and when
design sensitive.
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Belgian phone calls

Annual number of calls (millions), with least squares (black), M-estimate (red), and least trimmed

squares (blue) fits.

100 150 200
| | |

Calls (millions)

50
|

50 55 60 65 70
Year
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Robust estimators
0 Obvious need for robust fits here
[0 Two possibilities:
— Me-estimator result of minimising

n

> o{(y; —2}B)/o},

j=1

with p chosen to downweight or eliminate big residuals

— least trimmed squares result of minimising
2
> (yj — ;B)
|(n+p+1)/2] smallest

— Neither has reliable large-sample theory for estimates

[0 For phone data, years are fixed, so apply model-based resampling

39
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Belgian phone calls

Linear model fits, with nominal and bootstrap standard errors

Intercept, 1950 Slope
Least squares —8.0 (22.3) 5.0 (1.66)
M-estimate 2.6 (0.6) 1.1 (0.05)
bootstrap SE (8.6) (0.27)
Least trimmed squares 1.8 1.1
bootstrap SE (4.5) (0.14)

[0 Least squares fit is nonsense, with huge standard errors

[J Me-estimate nominal standard errors are much too small, don't take large residuals into account

[0 Least trimmed squares uses genetic algorithm, gives no nominal standard errors, so bootstrap is

best (only?) option

[ Least trimmed squares seems less perturbed by bootstrap including big residuals than is

M-estimation
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Cement data

y is the heat (calories per gram of cement) evolved while samples of cement set. The covariates are
percentages by weight of four constituents, tricalciumaluminate x1, tricalcium silicate xo, tetracalcium

alumino ferrite 23 and dicalcium silicate z4.

Ty T2 T3 T4 Y
1 26 6 60 785
2 1 29 15 52 743
3 11 56 8 20 1043
4 11 31 8 47 87.6
5 7 52 6 33 059
6 11 55 9 22 109.2
7 3 71 17 6 1027
8 1 31 22 44 725
9 2 54 18 22 931
10 21 47 4 26 1159
11 1 40 23 34 8338
12 11 66 9 12 1133
13 10 68 8 12 109.4
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Cement data

O Fit linear model

and apply case resampling

O Covariates compositional: 1 + -+ + x4 = 100% so X almost collinear — smallest eigenvalue of
p g

XTX is Is = 0.0012

O Plot of Bf against smallest eigenvalue of X*"X* reveals that var*(f]) strongly variable

[0 Relevant subset for case resampling — post-stratification of output based on [5?

y = Po + P11 + Paxa + B3xs + Paxa+ €
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Cement data

betalhat*
0

beta2hat*
0

1 5 10 50 500 1 5 10 50 500

smallest eigenvalue smallest eigenvalue
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Cement data

Table 4: Standard errors of linear regression coefficients for cement data. Theoretical and error resam-
pling assume homoscedasticity. Resampling results use R = 1000 samples, but last two rows are based
only on those samples with the middle 500 and the largest 800 values of /5.

Bo B DB
Normal theory 70.1 0.74 0.72
Model-based resampling, R = 1000 66.3 0.70 0.69
Case resampling, all R = 1000 1085 1.13 1.12
Case resampling, largest 500 68.4 0.76 0.71
Case resampling, largest 800 67.3 0.77 0.69
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Survival data

dose x

1175 2350 470.0 705.0 940.0

1410

survival % y 44.000 16.000 4.000 0.500 0.110
55.000 13.000 1.960 0.320 0.015

6.120

0.019

0.700
0.006

0 Data on survival % for rats at different doses

O Linear model:

survival %
0 10 20 30 40 50

log(survival) = By + B1dose

log survival %

200 600 1000 1400 200 600

dose dose

1000 1400
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Survival data

[0 Case resampling

O Replication of outlier: none (0), once (1), two or more (e).

[0 Model-based sampling including residual would lead to change in intercept but not slope.

=

o
2 3 Ty,
o 2 -
° 9 ' 1"-: fs..'
g }ﬂﬂfh
E 3 0@ 9000%0
£ o
3 2 0 0%0
O Q@ | 00@(%3@)

N |0

=

<

05 10 15 20 25 30

sum of squares
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Generalized linear model

[J Response may be binomial, Poisson, gamma, normal, ...
yj ~ mean uj;, variance ¢V (u;),
where g(u;) = x7 3 is linear predictor; g(-) is link function.

O MLE B fitted values ﬁj, Pearson residuals

S Yj — Hj L(0.0).
P W) - )y (0:0)

[0 Bootstrapped responses
vi =i+ V(i)' e
where €7~ EDF(rpy —7p,...,rpy —Tp). However
— possible that y} ¢ {0,1,2,...,}

— rp; not exchangeable, so may need stratified resampling
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Remission data

27 observations on how remission of patient depends on measure of cell activity, LI, with fit of
logistic regression model

. exp(Bo + BiLI)
P( remission ) = T+ exp(Bo+ BiLD)"

with By = —3.8 (1.4), B = 2.9 (1.2).

1.0

— o O O o O [e] o

0.8

0.6

Remission

0.4

0.0 0.5 1.0 15 2.0 25
LI
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Remission data

Case resampling, 95% confidence intervals for slope, 31 =2.90

Slope
100 200 300 400

0

GLM output  (0.57,5.22)
Normal (—27.9,30.7)
Basic (—5.50,4.62)
Studentized  (0.92,5.00)
Percentile (1.18,11.29)
BC, (0.74,7.57)

Normal Q-Q Plot Normal Q-Q Plot

T
-3

T T T T T
-2 -1 0 1 2 3
Theoretical Quantiles

T T T T T
-3 -2 -1 0 1 2 3
Theoretical Quantiles
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AIDS data

[0 Log-linear model: number of reports in row j and column k follows Poisson distribution with mean

0 Log link function

and variance function

0 Pearson residuals:

0 Model-based simulation:

ik = exp(a; + Bg)

g(pjx) =log pjr = o + By

var(Yje) = ¢ x V(pjx) = 1 X

Yjr — Ijk

Tjk

~ gk = hy)y 2

~1/2

Y = Bjk + I} €k
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AIDS data

Diagnosis Reporting-delay interval (quarters): Total
period reports
to end
Year Quarter 07 1 2 3 4 5 6 >14  of 1992
1988 1 31 8 16 9 3 2 8 6 174
2 26 99 27 9 8 11 3 3 211
3 31 95 35 13 18 4 6 3 224
4 36 77 20 26 11 3 8 2 205
1989 1 32 92 32 10 12 19 12 2 224
2 15 92 14 27 22 21 12 1 219
3 34 104 29 31 18 8 6 253
4 33 101 34 18 9 15 6 233
1990 1 31 124 47 24 11 15 8 281
2 32 132 36 10 9 7 6 245
3 49 107 51 17 15 8 9 260
4 44 153 41 16 11 6 5 285
1991 1 41 137 29 33 7 11 6 271
2 56 124 39 14 12 7 10 263
3 53 175 35 17 13 11 2 306
4 63 135 24 23 12 1 258
1992 1 71 161 48 25 5 310
2 95 178 39 6 318
3 76 181 16 273
4 67 66 133
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AIDS data

[0 Poisson two-way model deviance 716.5 on 413 df — indicates strong overdispersion: ¢ > 1, so

Poisson model implausible

[0 Residuals highly inhomogeneous — exchangeability doubtful

Diagnoses
100 200 300 400 500

0

+

1984 1986 1988 1990 1992

P
0

2

3 4

skewness
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AIDS data: Prediction intervals

0

To estimate prediction error:

simulate complete table y}kk
estimate parameters from incomplete y;‘k_

get estimated row totals and ‘truth’

o~k a* B* *
Ba=e Y F

k unobs

Prediction error i .
Yvj “ P+
~x1/2
+7j

studentized so more nearly pivotal.

Form prediction intervals from R replicates.

= > U

k unobs
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AIDS data: Resampling plans

0

Resampling schemes:

Stratification based on skewness of residuals, equivalent to stratifying original data by values of

parametric simulation, fitted Poisson model
parametric simulation, fitted negative binomial model
nonparametric resampling of rp

stratified nonparametric resampling of rp

fitted means

Take strata for which

Hig <1, 1< [ <2,

Pk > 2
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AIDS data: Results

O Deviance/df ratios for the sampling schemes, R = 1000.

[0 Poisson variation inadequate.
05% prediction limits.

O

poisson negative binomial

600

001 2 3 4 5 6
0 1 2 3 4 5 6

500

00 05 10 15 20 25 00 05 10 15 20 25
deviance/di deviance/df

Diagnoses
400

nonparametric stratified nonparametric

300

200

0 1 2 3 4 5 6
0 1 2 3 4 5 6

00 05 10 15 20 25 00 05 10 15 20 25
deviance/ Idf deviance/df

1989 1990 1991 1992
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AIDS data: Semiparametric model

[0  More realistic: generalized additive model

ik = exp {a(j) + Be},

where a(j) is locally-fitted smooth.

[0 Same resampling plans as before

O 95% intervals now generally narrower and shifted upwards
g y

Diagnoses
0 100 200 300 400 500 600

1984 1986 1988 1990 1992

Diagnoses

1989 1990 1991 1992
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Key points

[0 Key assumption: independence of cases

[0 Two main resampling schemes for regression settings:

— Model-based
— Case resampling
[l Intermediate schemes possible

[0 Can help to reduce dependence on assumptions needed for regression model

0 These two basic approaches also used for more complex settings (time series, ...), where data are

dependent
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