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Optimization in Statistics and Machine Learning

Optimization underlies almost everything we do in Statistics and
Machine Learning. In many settings, you learn how to:

translate into P : min
x∈D

f(x)

Conceptual idea Optimization problem

Examples of this? Examples of the contrary?

This course: how to solve P , and why this is a good skill to have
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Motivation: why do we bother?

Presumably, other people have already figured out how to solve

P : min
x∈D

f(x)

So why bother? Many reasons. Here’s three:

1. Different algorithms can perform better or worse for different
problems P (sometimes drastically so)

2. Studying P through an optimization lens can actually give you
a deeper understanding of the task/procedure at hand

3. Knowledge of optimization can actually help you create a new
problem P that is even more interesting/useful

Optimization moves quickly as a field. But there is still much room
for progress, especially its intersection with ML and Stats
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Example: algorithms for the 2d fused lasso

The 2d fused lasso or 2d total variation denoising problem:

min θ
1

2

n∑

i=1

(yi − θi)2 + λ
∑

(i,j)∈E

|θi − θj |

This fits a piecewise constant function over an image, given data
yi, i = 1, . . . , n at pixels. Here λ ≥ 0 is a tuning parameter

3
4

5
6

7

True image Data Solution
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Our problem: min θ
1

2

n∑

i=1

(yi − θi)2 + λ
∑

(i,j)∈E

|θi − θj |

Specialized ADMM, 20 it-
erations

Proximal gradient descent,
1000 iterations

Coordinate descent, 10K
cycles

(Last two from the dual)

5



Our problem: min θ
1

2

n∑

i=1

(yi − θi)2 + λ
∑

(i,j)∈E

|θi − θj |

Specialized ADMM, 20 it-
erations

Proximal gradient descent,
1000 iterations

Coordinate descent, 10K
cycles

(Last two from the dual)

5



Our problem: min θ
1

2

n∑

i=1

(yi − θi)2 + λ
∑

(i,j)∈E

|θi − θj |

Specialized ADMM, 20 it-
erations

Proximal gradient descent,
1000 iterations

Coordinate descent, 10K
cycles

(Last two from the dual)

5



Our problem: min θ
1

2

n∑

i=1

(yi − θi)2 + λ
∑

(i,j)∈E

|θi − θj |

Specialized ADMM, 20 it-
erations

Proximal gradient descent,
1000 iterations

Coordinate descent, 10K
cycles

(Last two from the dual)

5



What’s the message here?

So what’s the right conclusion here?

Is the alternating direction method of multipliers (ADMM) method
simply a better method than proximal gradient descent, coordinate
descent? ... No

In fact, different algorithms will perform better or worse in different
situations. We’ll learn details later

In the 2d fused lasso problem:

• Special ADMM: fast (structured subproblems)

• Proximal gradient: slow (poor conditioning)

• Coordinate descent: slow (large active set)
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Example: changepoints in the 1d fused lasso

The 1d fused lasso or 1d total variation denoising problem:

min θ
1

2

n∑

i=1

(yi − θi)2 + λ

n−1∑

i=1

|θi − θi+1|

Again here λ ≥ 0 is a tuning parameter. As λ decreases, we see
more changepoints in the solution β̂
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Let’s look at the solution at λ = 0.41 a little more closely
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How can we test the
significance of detected
changepoints? Say, at
location 11?

Classically (z-test): av-
erage the data in region
A minus the average in
B, compare this to what
we expect if the signal
was flat

But this is incorrect, because location 11 was selected based on the
data, so of course the difference in averages looks high!
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What we want: compare our observed difference to that in proper
null data, where the signal was flat and we happen to select same
location 11 (and 50)
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Observed data Null data
Test stat ≈ 0.088 Test stat ≈ 0.072

But it took 1222 simulated data sets to get one null data set!
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The role of optimization: if we understand the fused lasso, i.e., the
way it selects changepoints (stems from KKT conditions), then we
can come up with a null distribution without simulation
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p−value = 0.359

p−value = 0.000

We can use this to efficiently
conduct significance tests1

1Hyun et al. 2018, “Exact post-selection inference for the generalized lasso
path”
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Widsom from Friedman (1985)

From Jerry Friedman’s discussion of Peter Huber’s 1985 projection
pursuit paper, in Annals of Statistics:

Arguably, less true today due to the advent of disciplined convex
programming? But it still rings true in large part ...
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Central concept: convexity

Historically, linear programs were the focus in optimization

Initially, it was thought that the important distinction was between
linear and nonlinear optimization problems. But some nonlinear
problems turned out to be much harder than others ...

Now it is widely recognized that the right distinction is between
convex and nonconvex problems

My two favorite textbooks:

Boyd and Vandenberghe
(2004)

and
Rockafellar

(1970)
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Wisdom from Rockafellar (1993)

From Terry Rockafellar’s 1993 SIAM Review survey paper:

Credit to Nemirovski, Yudin, Nesterov, others for formalizing this

This view was dominant both within the optimization community
and in many application domains for many decades (... currently
being challenged by successes of neural networks?)
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Prerequisites?

I will assume working knowledge of/proficiency with:

• Real analysis, calculus, linear algebra

• Core problems in Machine Learning and Statistics

• Data structures, computational complexity

• Formal mathematical thinking
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Convex sets and functions

Convex set: C ⊆ Rn such that

x, y ∈ C =⇒ tx+ (1− t)y ∈ C for all 0 ≤ t ≤ 124 2 Convex sets

Figure 2.2 Some simple convex and nonconvex sets. Left. The hexagon,
which includes its boundary (shown darker), is convex. Middle. The kidney
shaped set is not convex, since the line segment between the two points in
the set shown as dots is not contained in the set. Right. The square contains
some boundary points but not others, and is not convex.

Figure 2.3 The convex hulls of two sets in R2. Left. The convex hull of a
set of fifteen points (shown as dots) is the pentagon (shown shaded). Right.
The convex hull of the kidney shaped set in figure 2.2 is the shaded set.

Roughly speaking, a set is convex if every point in the set can be seen by every other
point, along an unobstructed straight path between them, where unobstructed
means lying in the set. Every affine set is also convex, since it contains the entire
line between any two distinct points in it, and therefore also the line segment
between the points. Figure 2.2 illustrates some simple convex and nonconvex sets
in R2.

We call a point of the form θ1x1 + · · · + θkxk, where θ1 + · · · + θk = 1 and
θi ≥ 0, i = 1, . . . , k, a convex combination of the points x1, . . . , xk. As with affine
sets, it can be shown that a set is convex if and only if it contains every convex
combination of its points. A convex combination of points can be thought of as a
mixture or weighted average of the points, with θi the fraction of xi in the mixture.

The convex hull of a set C, denoted conv C, is the set of all convex combinations
of points in C:

conv C = {θ1x1 + · · · + θkxk | xi ∈ C, θi ≥ 0, i = 1, . . . , k, θ1 + · · · + θk = 1}.

As the name suggests, the convex hull conv C is always convex. It is the smallest
convex set that contains C: If B is any convex set that contains C, then conv C ⊆
B. Figure 2.3 illustrates the definition of convex hull.

The idea of a convex combination can be generalized to include infinite sums, in-
tegrals, and, in the most general form, probability distributions. Suppose θ1, θ2, . . .

Convex function: f : Rn → R such that dom(f) ⊆ Rn convex, and

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for all 0 ≤ t ≤ 1

and all x, y ∈ dom(f)

Chapter 3

Convex functions

3.1 Basic properties and examples

3.1.1 Definition

A function f : Rn → R is convex if dom f is a convex set and if for all x,
y ∈ dom f , and θ with 0 ≤ θ ≤ 1, we have

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y). (3.1)

Geometrically, this inequality means that the line segment between (x, f(x)) and
(y, f(y)), which is the chord from x to y, lies above the graph of f (figure 3.1).
A function f is strictly convex if strict inequality holds in (3.1) whenever x ̸= y
and 0 < θ < 1. We say f is concave if −f is convex, and strictly concave if −f is
strictly convex.

For an affine function we always have equality in (3.1), so all affine (and therefore
also linear) functions are both convex and concave. Conversely, any function that
is convex and concave is affine.

A function is convex if and only if it is convex when restricted to any line that
intersects its domain. In other words f is convex if and only if for all x ∈ dom f and

(x, f(x))

(y, f(y))

Figure 3.1 Graph of a convex function. The chord (i.e., line segment) be-
tween any two points on the graph lies above the graph. 15



Convex optimization problems

Optimization problem:

min
x∈D

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , r

Here D = dom(f) ∩⋂m
i=1 dom(gi) ∩

⋂p
j=1 dom(hj), common

domain of all the functions

This is a convex optimization problem provided the functions f
and gi, i = 1, . . . ,m are convex, and hj , j = 1, . . . , p are affine:

hj(x) = aTj x+ bj , j = 1, . . . , p
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Local minima are global minima

For convex optimization problems, local minima are global minima

Formally, if x is feasible—x ∈ D, and satisfies all constraints—and
minimizes f in a local neighborhood,

f(x) ≤ f(y) for all feasible y, ‖x− y‖2 ≤ ρ,
then

f(x) ≤ f(y) for all feasible y

This is a very useful
fact and will save us
a lot of trouble!

●

●

●

●

●

●

●

●

●

●

Convex Nonconvex
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Outline for Part I

• Part A. Convex sets and functions

• Part B. Basics of optimization

• Part C. Canonical problem forms
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Part I: Basic convex analysis
A. Convex sets and functions
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Convex sets

Convex set: C ⊆ Rn such that

x, y ∈ C =⇒ tx+ (1− t)y ∈ C for all 0 ≤ t ≤ 1

In words, line segment joining any two elements lies entirely in set
24 2 Convex sets

Figure 2.2 Some simple convex and nonconvex sets. Left. The hexagon,
which includes its boundary (shown darker), is convex. Middle. The kidney
shaped set is not convex, since the line segment between the two points in
the set shown as dots is not contained in the set. Right. The square contains
some boundary points but not others, and is not convex.

Figure 2.3 The convex hulls of two sets in R2. Left. The convex hull of a
set of fifteen points (shown as dots) is the pentagon (shown shaded). Right.
The convex hull of the kidney shaped set in figure 2.2 is the shaded set.

Roughly speaking, a set is convex if every point in the set can be seen by every other
point, along an unobstructed straight path between them, where unobstructed
means lying in the set. Every affine set is also convex, since it contains the entire
line between any two distinct points in it, and therefore also the line segment
between the points. Figure 2.2 illustrates some simple convex and nonconvex sets
in R2.

We call a point of the form θ1x1 + · · · + θkxk, where θ1 + · · · + θk = 1 and
θi ≥ 0, i = 1, . . . , k, a convex combination of the points x1, . . . , xk. As with affine
sets, it can be shown that a set is convex if and only if it contains every convex
combination of its points. A convex combination of points can be thought of as a
mixture or weighted average of the points, with θi the fraction of xi in the mixture.

The convex hull of a set C, denoted conv C, is the set of all convex combinations
of points in C:

conv C = {θ1x1 + · · · + θkxk | xi ∈ C, θi ≥ 0, i = 1, . . . , k, θ1 + · · · + θk = 1}.

As the name suggests, the convex hull conv C is always convex. It is the smallest
convex set that contains C: If B is any convex set that contains C, then conv C ⊆
B. Figure 2.3 illustrates the definition of convex hull.

The idea of a convex combination can be generalized to include infinite sums, in-
tegrals, and, in the most general form, probability distributions. Suppose θ1, θ2, . . .

Convex combination of x1, . . . , xk ∈ Rn: any linear combination

θ1x1 + · · ·+ θkxk

with θi ≥ 0, i = 1, . . . , k, and
∑k

i=1 θi = 1. Convex hull of a set C,
conv(C), is all convex combinations of elements. Always convex
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Examples of convex sets

• Trivial ones: empty set, point, line

• Norm ball: {x : ‖x‖ ≤ r}, for given norm ‖ · ‖, radius r

• Hyperplane: {x : aTx = b}, for given a, b

• Halfspace: {x : aTx ≤ b}

• Affine space: {x : Ax = b}, for given A, b
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• Polyhedron: {x : Ax ≤ b}, where inequality ≤ is interpreted
componentwise. Note: the set {x : Ax ≤ b, Cx = d} is also a
polyhedron (why?)32 2 Convex sets

a1 a2

a3

a4

a5

P

Figure 2.11 The polyhedron P (shown shaded) is the intersection of five
halfspaces, with outward normal vectors a1, . . . . , a5.

when it is bounded). Figure 2.11 shows an example of a polyhedron defined as the
intersection of five halfspaces.

It will be convenient to use the compact notation

P = {x | Ax ≼ b, Cx = d} (2.6)

for (2.5), where

A =

⎡
⎢⎣

aT
1
...

aT
m

⎤
⎥⎦ , C =

⎡
⎢⎣

cT
1
...

cT
p

⎤
⎥⎦ ,

and the symbol ≼ denotes vector inequality or componentwise inequality in Rm:
u ≼ v means ui ≤ vi for i = 1, . . . , m.

Example 2.4 The nonnegative orthant is the set of points with nonnegative compo-
nents, i.e.,

Rn
+ = {x ∈ Rn | xi ≥ 0, i = 1, . . . , n} = {x ∈ Rn | x ≽ 0}.

(Here R+ denotes the set of nonnegative numbers: R+ = {x ∈ R | x ≥ 0}.) The
nonnegative orthant is a polyhedron and a cone (and therefore called a polyhedral
cone).

Simplexes

Simplexes are another important family of polyhedra. Suppose the k + 1 points
v0, . . . , vk ∈ Rn are affinely independent, which means v1 − v0, . . . , vk − v0 are
linearly independent. The simplex determined by them is given by

C = conv{v0, . . . , vk} = {θ0v0 + · · · + θkvk | θ ≽ 0, 1T θ = 1}, (2.7)

• Simplex: special case of polyhedra, given by
conv{x0, . . . , xk}, where these points are affinely independent.
The canonical example is the probability simplex,

conv{e1, . . . , en} = {w : w ≥ 0, 1Tw = 1}
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Cones

Cone: C ⊆ Rn such that

x ∈ C =⇒ tx ∈ C for all t ≥ 0

Convex cone: cone that is also convex, i.e.,

x1, x2 ∈ C =⇒ t1x1 + t2x2 ∈ C for all t1, t2 ≥ 0

26 2 Convex sets

0

x1

x2

Figure 2.4 The pie slice shows all points of the form θ1x1 + θ2x2, where
θ1, θ2 ≥ 0. The apex of the slice (which corresponds to θ1 = θ2 = 0) is at
0; its edges (which correspond to θ1 = 0 or θ2 = 0) pass through the points
x1 and x2.

00

Figure 2.5 The conic hulls (shown shaded) of the two sets of figure 2.3.

Conic combination of x1, . . . , xk ∈ Rn: any linear combination

θ1x1 + · · ·+ θkxk

with θi ≥ 0, i = 1, . . . , k. Conic hull collects all conic combinations

23



Examples of convex cones

• Norm cone: {(x, t) : ‖x‖ ≤ t}, for a norm ‖ · ‖. Under the `2
norm ‖ · ‖2, called second-order cone

• Normal cone: given any set C and point x ∈ C, we can define

NC(x) = {g : gTx ≥ gT y, for all y ∈ C}

●

●

●

●

This is always a convex cone,
regardless of C

• Positive semidefinite cone: Sn+ = {X ∈ Sn : X � 0}, where
X � 0 means that X is positive semidefinite (and Sn is the
set of n× n symmetric matrices)
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Key properties of convex sets

• Separating hyperplane theorem: two disjoint convex sets have
a separating between hyperplane them

2.5 Separating and supporting hyperplanes 47

E1

E2

E3

Figure 2.18 Three ellipsoids in R2, centered at the origin (shown as the
lower dot), that contain the points shown as the upper dots. The ellipsoid
E1 is not minimal, since there exist ellipsoids that contain the points, and
are smaller (e.g., E3). E3 is not minimal for the same reason. The ellipsoid
E2 is minimal, since no other ellipsoid (centered at the origin) contains the
points and is contained in E2.

D

C

a

aT x ≥ b aT x ≤ b

Figure 2.19 The hyperplane {x | aT x = b} separates the disjoint convex sets
C and D. The affine function aT x − b is nonpositive on C and nonnegative
on D.

Formally: if C,D are nonempty convex sets with C ∩D = ∅,
then there exists a, b such that

C ⊆ {x : aTx ≤ b}
D ⊆ {x : aTx ≥ b}
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• Supporting hyperplane theorem: a boundary point of a convex
set has a supporting hyperplane passing through it

●

Formally: if C is a nonempty convex set, and x0 ∈ bd(C),
then there exists a such that

C ⊆ {x : aTx ≤ aTx0}

Both of the above theorems (separating and supporting hyperplane
theorems) have partial converses; see Section 2.5 of BV
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Operations preserving convexity

• Intersection: the intersection of convex sets is convex

• Scaling and translation: if C is convex, then

aC + b = {ax+ b : x ∈ C}

is convex for any a, b

• Affine images and preimages: if f(x) = Ax+ b and C is
convex then

f(C) = {f(x) : x ∈ C}
is convex, and if D is convex then

f−1(D) = {x : f(x) ∈ D}

is convex
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Example: linear matrix inequality solution set

Given A1, . . . , Ak, B ∈ Sn, a linear matrix inequality is of the form

x1A1 + x2A2 + · · ·+ xkAk � B

for a variable x ∈ Rk. Let’s prove the set C of points x that satisfy
the above inequality is convex

Approach 1: directly verify that x, y ∈ C ⇒ tx+ (1− t)y ∈ C.
This follows by checking that, for any v,

vT
(
B −

k∑

i=1

(txi + (1− t)yi)Ai
)
v ≥ 0

Approach 2: let f : Rk → Sn, f(x) = B −∑k
i=1 xiAi. Note that

C = f−1(Sn+), affine preimage of convex set
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More operations preserving convexity

• Perspective images and preimages: the perspective function is
P : Rn × R++ → Rn (where R++ denotes positive reals),

P (x, z) = x/z

for z > 0. If C ⊆ dom(P ) is convex then so is P (C), and if
D is convex then so is P−1(D)

• Linear-fractional images and preimages: the perspective map
composed with an affine function,

f(x) =
Ax+ b

cTx+ d

is called a linear-fractional function, defined on cTx+ d > 0.
If C ⊆ dom(f) is convex then so if f(C), and if D is convex
then so is f−1(D)
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Example: conditional probability set

Let U, V be random variables over {1, . . . , n} and {1, . . . ,m}. Let
C ⊆ Rnm be a set of joint distributions for U, V , i.e., each p ∈ C
defines joint probabilities

pij = P(U = i, V = j)

Let D ⊆ Rnm contain corresponding conditional distributions, i.e.,
each q ∈ D defines

qij = P(U = i|V = j)

Assume C is convex. Let’s prove that D is convex. Write

D =
{
q ∈ Rnm : qij =

pij∑n
k=1 pkj

, for some p ∈ C
}

= f(C)

where f is a linear-fractional function, hence D is convex
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Convex functions

Convex function: f : Rn → R such that dom(f) ⊆ Rn convex, and

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) for 0 ≤ t ≤ 1

and all x, y ∈ dom(f)

Chapter 3

Convex functions

3.1 Basic properties and examples

3.1.1 Definition

A function f : Rn → R is convex if dom f is a convex set and if for all x,
y ∈ dom f , and θ with 0 ≤ θ ≤ 1, we have

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θ)f(y). (3.1)

Geometrically, this inequality means that the line segment between (x, f(x)) and
(y, f(y)), which is the chord from x to y, lies above the graph of f (figure 3.1).
A function f is strictly convex if strict inequality holds in (3.1) whenever x ̸= y
and 0 < θ < 1. We say f is concave if −f is convex, and strictly concave if −f is
strictly convex.

For an affine function we always have equality in (3.1), so all affine (and therefore
also linear) functions are both convex and concave. Conversely, any function that
is convex and concave is affine.

A function is convex if and only if it is convex when restricted to any line that
intersects its domain. In other words f is convex if and only if for all x ∈ dom f and

(x, f(x))

(y, f(y))

Figure 3.1 Graph of a convex function. The chord (i.e., line segment) be-
tween any two points on the graph lies above the graph.

In words, function lies below the line segment joining f(x), f(y)

Concave function: opposite inequality above, so that

f concave ⇐⇒ −f convex
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Important modifiers:

• Strictly convex: f
(
tx+ (1− t)y

)
< tf(x) + (1− t)f(y) for

x 6= y and 0 < t < 1. In words, f is convex and has greater
curvature than a linear function

• Strongly convex with parameter m > 0: f − m
2 ‖x‖22 is convex.

In words, f is at least as convex as a quadratic function

Note: strongly convex ⇒ strictly convex ⇒ convex

(Analogously for concave functions)
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Examples of convex functions

• Univariate functions:

I Exponential function: eax is convex for any a over R
I Power function: xa is convex for a ≥ 1 or a ≤ 0 over R+

(nonnegative reals)
I Power function: xa is concave for 0 ≤ a ≤ 1 over R+

I Logarithmic function: log x is concave over R++

• Affine function: aTx+ b is both convex and concave

• Quadratic function: 1
2x

TQx+ bTx+ c is convex provided that
Q � 0 (positive semidefinite)

• Least squares loss: ‖y −Ax‖22 is always convex (since ATA is
always positive semidefinite)
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• Norm: ‖x‖ is convex for any norm; e.g., `p norms,

‖x‖p =

(
n∑

i=1

xpi

)1/p

for p ≥ 1, ‖x‖∞ = max
i=1,...,n

|xi|

and also operator (spectral) and trace (nuclear) norms,

‖X‖op = σ1(X), ‖X‖tr =

r∑

i=1

σr(X)

where σ1(X) ≥ . . . ≥ σr(X) ≥ 0 are the singular values of
the matrix X
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• Indicator function: if C is convex, then its indicator function

IC(x) =

{
0 x ∈ C
∞ x /∈ C

is convex

• Support function: for any set C (convex or not), its support
function

I∗C(x) = max
y∈C

xT y

is convex

• Max function: f(x) = max{x1, . . . , xn} is convex
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Key properties of convex functions

• A function is convex if and only if its restriction to any line is
convex

• Epigraph characterization: a function f is convex if and only
if its epigraph

epi(f) = {(x, t) ∈ dom(f)× R : f(x) ≤ t}

is a convex set

• Convex sublevel sets: if f is convex, then its sublevel sets

{x ∈ dom(f) : f(x) ≤ t}

are convex, for all t ∈ R. The converse is not true
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• First-order characterization: if f is differentiable, then f is
convex if and only if dom(f) is convex, and

f(y) ≥ f(x) +∇f(x)T (y − x)

for all x, y ∈ dom(f). Therefore for a differentiable convex
function ∇f(x) = 0 ⇐⇒ x minimizes f

• Second-order characterization: if f is twice differentiable, then
f is convex if and only if dom(f) is convex, and ∇2f(x) � 0
for all x ∈ dom(f)

• Jensen’s inequality: if f is convex, and X is a random variable
supported on dom(f), then f(E[X]) ≤ E[f(X)]
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Operations preserving convexity

• Nonnegative linear combination: f1, . . . , fm convex implies
a1f1 + · · ·+ amfm convex for any a1, . . . , am ≥ 0

• Pointwise maximization: if fs is convex for any s ∈ S, then
f(x) = maxs∈S fs(x) is convex. Note that the set S here
(number of functions fs) can be infinite

• Partial minimization: if g(x, y) is convex in x, y, and C is
convex, then f(x) = miny∈C g(x, y) is convex

38



More operations preserving convexity

• Affine composition: if f is convex, then g(x) = f(Ax+ b) is
convex

• General composition: suppose f = h ◦ g, where g : Rn → R,
h : R→ R, f : Rn → R. Then:

I f is convex if h is convex and nondecreasing, g is convex
I f is convex if h is convex and nonincreasing, g is concave
I f is concave if h is concave and nondecreasing, g concave
I f is concave if h is concave and nonincreasing, g convex

How to remember these? Think of the chain rule when n = 1:

f ′′(x) = h′′(g(x))g′(x)2 + h′(g(x))g′′(x)
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• Vector composition: suppose that

f(x) = h
(
g(x)

)
= h

(
g1(x), . . . , gk(x)

)

where g : Rn → Rk, h : Rk → R, f : Rn → R. Then:

I f is convex if h is convex and nondecreasing in each
argument, g is convex

I f is convex if h is convex and nonincreasing in each
argument, g is concave

I f is concave if h is concave and nondecreasing in each
argument, g is concave

I f is concave if h is concave and nonincreasing in each
argument, g is convex
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Example: log-sum-exp function

Log-sum-exp function: g(x) = log(
∑k

i=1 e
aTi x+bi), for fixed ai, bi,

i = 1, . . . , k. Often called “soft max”, as it smoothly approximates
maxi=1,...k (aTi x+ bi)

How to show convexity? First, note it suffices to prove convexity of
f(x) = log(

∑n
i=1 e

xi) (affine composition rule)

Now use second-order characterization. Calculate

∇if(x) =
exi∑n
`=1 e

x`

∇2
ijf(x) =

exi∑n
`=1 e

x`
1{i = j} − exiexj

(
∑n

`=1 e
x`)2

Write ∇2f(x) = diag(z)− zzT , where zi = exi/(
∑n

`=1 e
x`). This

matrix is diagonally dominant, hence positive semidefinite
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Part I: Basic convex analysis
B. Basics of optimization
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Optimization terminology

Reminder: a convex optimization problem (or program) is

min
x∈D

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

Ax = b

where f and gi, i = 1, . . . ,m are all convex, and the optimization
domain is D = dom(f) ∩⋂m

i=1 dom(gi) (often we do not write D)

• f is called criterion or objective function

• gi is called inequality constraint function

• If x ∈ D, gi(x) ≤ 0, i = 1, . . . ,m, and Ax = b then x is
called a feasible point

• The minimum of f(x) over all feasible points x is called the
optimal value, written f?
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• If x is feasible and f(x) = f?, then x is called optimal; also
called a solution, or a minimizer2

• If x is feasible and f(x) ≤ f?+ ε, then x is called ε-suboptimal

• If x is feasible and gi(x) = 0, then we say gi is active at x

• Convex minimization can be reposed as concave maximization

min
x

f(x)

subject to gi(x) ≤ 0,

i = 1, . . . ,m

Ax = b

⇐⇒

max
x

− f(x)

subject to gi(x) ≤ 0,

i = 1, . . . ,m

Ax = b

Both are called convex optimization problems

2Note: a convex optimization problem need not have solutions, i.e., need
not attain its minimum, but we will not be careful about this
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Solution set

Let Xopt be the set of all solutions of convex problem, written

Xopt = argmin f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

Ax = b

Key property 1: Xopt is a convex set

Proof: use definitions. If x, y are solutions, then for 0 ≤ t ≤ 1,

• gi(tx+ (1− t)y) ≤ tgi(x) + (1− t)gi(y) ≤ 0

• A(tx+ (1− t)y) = tAx+ (1− t)Ay = b

• f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) = f?

Therefore tx+ (1− t)y is also a solution

Key property 2: if f is strictly convex, then solution is unique, i.e.,
Xopt contains one element
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Example: lasso

Given y ∈ Rn, X ∈ Rn×p, consider the lasso problem:

min
β

‖y −Xβ‖22
subject to ‖β‖1 ≤ s

Is this convex? What is the criterion function? The inequality and
equality constraints? Feasible set? Is the solution unique, when:

• n ≥ p and X has full column rank?

• p > n (“high-dimensional” case)?

How do our answers change if we changed criterion to Huber loss:

n∑

i=1

ρ(yi − xTi β), ρ(z) =

{
1
2z

2 |z| ≤ δ
δ|z| − 1

2δ
2 else

?
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Example: support vector machines

Given y ∈ {−1, 1}n, X ∈ Rn×p with rows x1, . . . xn, consider the
support vector machine or SVM problem:

min
β,β0,ξ

1

2
‖β‖22 + C

n∑

i=1

ξi

subject to ξi ≥ 0, i = 1, . . . , n

yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . , n

Is this convex? What is the criterion, constraints, feasible set? Is
the solution (β, β0, ξ) unique? What if changed the criterion to

1

2
‖β‖22 +

1

2
β20 + C

n∑

i=1

ξ1.01i ?

For original criterion, what about β component, at the solution?
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Rewriting constraints

The optimization problem

min
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

Ax = b

can be rewritten as

min
x

f(x) subject to x ∈ C

where C = {x : gi(x) ≤ 0, i = 1, . . . ,m, Ax = b}, the feasible
set. Hence the latter formulation is completely general

With IC the indicator of C, we can write this in unconstrained form

min
x

f(x) + IC(x)
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First-order optimality condition

For a convex problem

min
x

f(x) subject to x ∈ C

and differentiable f , a feasible point x is optimal if and only if

∇f(x)T (y − x) ≥ 0 for all y ∈ C

This is called the first-order condition
for optimality

In words: all feasible directions from x
are aligned with gradient ∇f(x)

Important special case: if C = Rn (unconstrained optimization),
then optimality condition reduces to familiar ∇f(x) = 0
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Example: quadratic minimization

Consider minimizing the quadratic function

f(x) =
1

2
xTQx+ bTx+ c

where Q � 0. The first-order condition says that solution satisfies

∇f(x) = Qx+ b = 0

• if Q � 0, then there is a unique solution x = −Q−1b
• if Q is singular and b /∈ col(Q), then there is no solution (i.e.,

minx f(x) = −∞)

• if Q is singular and b ∈ col(Q), then there are infinitely many
solutions

x = −Q+b+ z, z ∈ null(Q)

where Q+ is the pseudoinverse of Q
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Example: equality-constrained minimization

Consider the equality-constrained convex problem:

min
x

f(x) subject to Ax = b

with f differentiable. Let’s prove Lagrange multiplier optimality
condition

∇f(x) +ATu = 0 for some u

According to first-order optimality, solution x satisfies Ax = b and

∇f(x)T (y − x) ≥ 0 for all y such that Ay = b

This is equivalent to

∇f(x)T v = 0 for all v ∈ null(A)

Result follows because null(A)⊥ = row(A)

51



Example: projection onto a convex set

Consider projection onto convex set C:

min
x
‖a− x‖22 subject to x ∈ C

First-order optimality condition says that the solution x satisfies

∇f(x)T (y − x) = (x− a)T (y − x) ≥ 0 for all y ∈ C

Equivalently, this says that

a− x ∈ NC(x)

where recall NC(x) is the normal
cone to C at x

●

●

●

●

52



Partial optimization

Reminder: g(x) = miny∈C f(x, y) is convex in x, provided that f
is convex in (x, y) and C is a convex set

Therefore we can always partially optimize a convex problem and
retain convexity

E.g., if we decompose x = (x1, x2) ∈ Rn1+n2 , then

min
x1,x2

f(x1, x2)

subject to g1(x1) ≤ 0

g2(x2) ≤ 0

⇐⇒
min
x1

f̃(x1)

subject to g1(x1) ≤ 0

where f̃(x1) = min{f(x1, x2) : g2(x2) ≤ 0}. The right problem is
convex if the left problem is
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Example: hinge form of SVMs

Recall the SVM problem

min
β,β0,ξ

1

2
‖β‖22 + C

n∑

i=1

ξi

subject to ξi ≥ 0, yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . , n

Rewrite the constraints as ξi ≥ max{0, 1− yi(xTi β + β0)}. Indeed
we can argue that we have = at solution

Therefore plugging in for optimal ξ gives the hinge form of SVMs:

min
β,β0

1

2
‖β‖22 + C

n∑

i=1

[
1− yi(xTi β + β0)

]
+

where a+ = max{0, a} is called the hinge function
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Transformations and change of variables

If h : R→ R is a monotone increasing transformation, then

min
x

f(x) subject to x ∈ C
⇐⇒ min

x
h(f(x)) subject to x ∈ C

Similarly, inequality or equality constraints can be transformed and
yield equivalent optimization problems. Can use this to reveal the
“hidden convexity” of a problem

If φ : Rn → Rm is one-to-one, and its image covers feasible set C,
then we can change variables in an optimization problem:

min
x

f(x) subject to x ∈ C
⇐⇒ min

y
f(φ(y)) subject to φ(y) ∈ C
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Example: geometric programming

A monomial is a function f : Rn++ → R of the form

f(x) = γxa11 x
a2
2 · · ·xann

for γ > 0, a1, . . . , an ∈ R. A posynomial is a sum of monomials,

f(x) =

p∑

k=1

γkx
ak1
1 xak22 · · ·xaknn

A geometric program is of the form

min
x

f(x)

subject to gi(x) ≤ 1, i = 1, . . . ,m

hj(x) = 1, j = 1, . . . , r

where f , gi, i = 1, . . . ,m are posynomials and hj , j = 1, . . . , r are
monomials. This is nonconvex
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Given f(x) = γxa11 x
a2
2 · · ·xann , let yi = log xi and rewrite this as

γ(ey1)a1(ey2)a2 · · · (eyn)an = ea
T y+b

for b = log γ. Also, a posynomial can be written as
∑p

k=1 e
aTk y+bk .

With this variable substitution, and after taking logs, a geometric
program is equivalent to

min
x

log

(
p0∑

k=1

ea
T
0ky+b0k

)

subject to log

(
pi∑

k=1

ea
T
iky+bik

)
≤ 0, i = 1, . . . ,m

cTj y + dj = 0, j = 1, . . . , r

This is convex, recalling the convexity of soft max functions
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Eliminating equality constraints

Important special case of change of variables: eliminating equality
constraints. Given the problem

min
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

Ax = b

we can always express any feasible point as x = My + x0, where
Ax0 = b and col(M) = null(A). Hence the above is equivalent to

min
y

f(My + x0)

subject to gi(My + x0) ≤ 0, i = 1, . . . ,m

Note: this is fully general but not always a good idea (practically)
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Introducing slack variables

Essentially opposite to eliminating equality contraints: introducing
slack variables. Given the problem

min
x

f(x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

Ax = b

we can transform the inequality constraints via

min
x,s

f(x)

subject to si ≥ 0, i = 1, . . . ,m

gi(x) + si = 0, i = 1, . . . ,m

Ax = b

Note: this is no longer convex unless gi, i = 1, . . . , n are affine
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Convex relaxations

Given an optimization problem

min
x

f(x) subject to x ∈ C

we can always take an enlarged constraint set C̃ ⊇ C and consider

min
x

f(x) subject to x ∈ C̃

This is called a relaxation and its optimal value is always smaller or
equal to that of the original problem

Important special case: relaxing nonaffine equality constraints, i.e.,

hj(x) = 0, j = 1, . . . , r

where hj , j = 1, . . . , r are convex but nonaffine, are replaced with

hj(x) ≤ 0, j = 1, . . . , r
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Example: principal components analysis

Given X ∈ Rn×p, consider the low rank approximation problem:

min
R
‖X −R‖2F subject to rank(R) = k

Here ‖A‖2F =
∑n

i=1

∑p
j=1A

2
ij , the entrywise squared `2 norm, and

rank(A) denotes the rank of A

Also called principal components analysis or PCA problem. Given
X = UDV T , singular value decomposition or SVD, the solution is

R = UkDkV
T
k

where Uk, Vk are the first k columns of U, V and Dk is the first k
diagonal elements of D. That is, R is reconstruction of X from its
first k principal components
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The PCA problem is not convex. Let’s recast it. First rewrite as

min
Z∈Sp

‖X −XZ‖2F subject to rank(Z) = k, Z is a projection

⇐⇒ max
Z∈Sp

tr(SZ) subject to rank(Z) = k, Z is a projection

where S = XTX. Hence constraint set is the nonconvex set

C =
{
Z ∈ Sp : λi(Z) ∈ {0, 1}, i = 1, . . . , p, tr(Z) = k}

where λi(Z), i = 1, . . . , n are the eigenvalues of Z. Solution in
this formulation is

Z = VkV
T
k

where Vk gives first k columns of V
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Now consider relaxing constraint set to Fk = conv(C), its convex
hull. Note

Fk = {Z ∈ Sp : λi(Z) ∈ [0, 1], i = 1, . . . , p, tr(Z) = k}
= {Z ∈ Sp : 0 � Z � I, tr(Z) = k}

This set is called the Fantope of order k. It is convex. Hence, the
linear maximization over the Fantope, namely

max
Z∈Fk

tr(SZ)

is a convex problem. Remarkably, this is equivalent to the original
nonconvex PCA problem (admits the same solution)!

(Famous result: Fan (1949), “On a theorem of Weyl conerning
eigenvalues of linear transformations”)
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Part I: Basic convex analysis
C. Canonical problem forms
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Linear program

A linear program or LP is an optimization problem of the form

min
x

cTx

subject to Dx ≤ d
Ax = b

Observe that this is always a convex optimization problem

• First introduced by Kantorovich in the late 1930s and Dantzig
in the 1940s

• Dantzig’s simplex algorithm gives a direct (noniterative) solver
for LPs (later in the course we’ll see interior point methods)

• Fundamental problem in convex optimization. Many diverse
applications, rich history
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Example: diet problem

Find cheapest combination of foods that satisfies some nutritional
requirements (useful for graduate students!)

min
x

cTx

subject to Dx ≥ d
x ≥ 0

Interpretation:

• cj : per-unit cost of food j

• di : minimum required intake of nutrient i

• Dij : content of nutrient i per unit of food j

• xj : units of food j in the diet
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Example: basis pursuit

Given y ∈ Rn and X ∈ Rn×p, where p > n. Suppose that we seek
the sparsest solution to underdetermined linear system Xβ = y:

min
β

‖β‖0

subject to Xβ = y

where recall ‖β‖0 =
∑p

j=1 1{βj 6= 0}, the `0 “norm”

The `1 approximation, often called basis pursuit:

min
β

‖β‖1

subject to Xβ = y

This can be reformulated as a linear program (check this!)
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Example: Dantzig selector

Modification of previous problem, where we allow for Xβ ≈ y (we
don’t require exact equality), the Dantzig selector:3

min
β

‖β‖1

subject to ‖XT (y −Xβ)‖∞ ≤ λ

Here λ ≥ 0 is a tuning parameter

Again, this can be reformulated as a linear program (check this!)

3Candes and Tao (2007), “The Dantzig selector: statistical estimation when
p is much larger than n”
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Standard form

A linear program is said to be in standard form when it is written as

min
x

cTx

subject to Ax = b

x ≥ 0

Any linear program can be rewritten in standard form (check this!)
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Convex quadratic program

A convex quadratic program or QP is an optimization problem of
the form

min
x

cTx+
1

2
xTQx

subject to Dx ≤ d
Ax = b

where Q � 0, i.e., positive semidefinite

Note that this problem is not convex when Q 6� 0

From now on, when we say quadratic program or QP, we implicitly
assume that Q � 0 (so the problem is convex)
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Example: portfolio optimization

Construct a financial portfolio, trading off performance and risk:

max
x

µTx− γ

2
xTQx

subject to 1Tx = 1

x ≥ 0

Interpretation:

• µ : expected assets’ returns

• Q : covariance matrix of assets’ returns

• γ : risk aversion

• x : portfolio holdings (percentages)
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Example: support vector machines

Given y ∈ {−1, 1}n, X ∈ Rn×p having rows x1, . . . , xn, recall the
support vector machine or SVM problem:

min
β,β0,ξ

1

2
‖β‖22 + C

n∑

i=1

ξi

subject to ξi ≥ 0, i = 1, . . . , n

yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . , n

This is a quadratic program
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Example: lasso

Given y ∈ Rn, X ∈ Rn×p, recall the lasso problem:

min
β

‖y −Xβ‖22
subject to ‖β‖1 ≤ s

Here s ≥ 0 is a tuning parameter. Indeed, this can be reformulated
as a quadratic program (check this!)

Alternative parametrization (called Lagrange, or penalized form):

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1

Now λ ≥ 0 is a tuning parameter. And again, this can be rewritten
as a quadratic program (check this!)
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Standard form

A quadratic program is in standard form if it is written as

min
x

cTx+
1

2
xTQx

subject to Ax = b

x ≥ 0

Any quadratic program can be rewritten in standard form
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Motivation for semidefinite programs

Consider linear programming again:

min
x

cTx

subject to Dx ≤ d
Ax = b

Can generalize by changing ≤ to different (partial) order. Recall:

• Sn is space of n× n symmetric matrices

• Sn+ is the space of positive semidefinite matrices, i.e.,

Sn+ = {X ∈ Sn : uTXu ≥ 0 for all u ∈ Rn}

• Sn++ is the space of positive definite matrices, i.e.,

Sn++ =
{
X ∈ Sn : uTXu > 0 for all u ∈ Rn \ {0}

}
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Semidefinite program

A semidefinite program or SDP is an optimization problem of the
form

min
x

cTx

subject to x1F1 + · · ·+ xnFn � F0

Ax = b

Here Fj ∈ Sd, for j = 0, 1, . . . n, and A ∈ Rm×n, c ∈ Rn, b ∈ Rm.
Observe that this is always a convex optimization problem

Also, any linear program is a semidefinite program (check this!)
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Standard form

A semidefinite program is in standard form if it is written as

min
X

C •X

subject to Ai •X = bi, i = 1, . . . ,m

X � 0

where X • Y = tr(XY ). Any semidefinite program can be written
in standard form (for a challenge, check this!)
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Example: theta function

Let G = (N,E) be an undirected graph, N = {1, . . . , n}, and

• ω(G) : clique number of G

• χ(G) : chromatic number of G

The Lovasz theta function:4

ϑ(G) = max
X

11T •X

subject to I •X = 1

Xij = 0, (i, j) /∈ E
X � 0

The Lovasz sandwich theorem: ω(G) ≤ ϑ(Ḡ) ≤ χ(G), where Ḡ is
the complement graph of G

4Lovasz (1979), “On the Shannon capacity of a graph”
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Example: trace norm minimization

Let A : Rm×n → Rp be a linear map,

A(X) =




A1 •X
. . .

Ap •X




for A1, . . . , Ap ∈ Rm×n (and where Ai •X = tr(ATi X)). Finding
lowest-rank solution to an underdetermined system, nonconvex:

min
X

rank(X)

subject to A(X) = b

Trace norm approximation:

min
X

‖X‖tr
subject to A(X) = b

This is indeed an SDP (but harder to show, requires duality ...)

80



Conic program

A conic program is an optimization problem of the form:

min
x

cTx

subject to Ax = b

D(x) + d ∈ K

Here:

• c, x ∈ Rn, and A ∈ Rm×n, b ∈ Rm

• D : Rn → Y is a linear map, d ∈ Y , for Euclidean space Y

• K ⊆ Y is a closed convex cone

Both LPs and SDPs are special cases of conic programming. For
LPs, K = Rn+; for SDPs, K = Sn+
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Hey, what about QPs?

Lastly, our old friend QPs “sneak” into the hierarchy. It’s not easy
to directly show that every QP is an SDP

But it turns out QPs are a special type of conic program called a
second-order cone program (SOCP):

min
x

cTx

subject to ‖Dix+ di‖2 ≤ eTi x+ fi, i = 1, . . . , p

Ax = b

In fact, every SOCP is an SDP. This gives the (extended) hierachy

LPs ⊆ QPs ⊆ SOCPs ⊆ SDPs ⊆ Conic programs

completing the picture we saw at the start
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