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Part II: First-order methods
A. Gradient descent
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Gradient descent

Consider unconstrained, smooth convex optimization

min
x

f(x)

That is, f is convex and differentiable with dom(f) = Rn. Denote
optimal criterion value by f? = minx f(x), and a solution by x?

Gradient descent: choose initial point x(0) ∈ Rn, repeat:

x(k) = x(k−1) − tk · ∇f(x(k−1)), k = 1, 2, 3, . . .

Stop at some point
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Gradient descent interpretation

●

●

At each iteration, consider quadratic
approximation:

f(y) ≈ f(x) +∇f(x)T (y − x) +

1

2t
‖y − x‖22

Note the Hessian ∇2f(x) is replaced
by 1

t I

Minimizing the quadratic approxima-
tion over y gives

x+ = x− t∇f(x)

7



Fixed step size

Simply take tk = t for all k = 1, 2, 3, . . ., can diverge if t is too big.
Consider f(x) = (10x2

1 + x2
2)/2, gradient descent after 8 steps:
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Can be slow if t is too small. Same example, gradient descent after
100 steps:
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Converges nicely when t is “just right”. Same example, 40 steps:
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Convergence analysis later will give us a precise idea of “just right”
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Backtracking line search

One way to adaptively choose the step size is to use backtracking
line search:

• First fix parameters 0 < β < 1 and 0 < α ≤ 1/2

• At each iteration, start with t = tinit, and while

f(x− t∇f(x)) > f(x)− αt‖∇f(x)‖22

shrink t = βt. Else perform gradient descent update

x+ = x− t∇f(x)

Simple and tends to work well in practice (further simplification:
just take α = 1/2)
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Backtracking interpretation9.2 Descent methods 465

t

f(x + t∆x)

t = 0 t0

f(x) + αt∇f(x)T ∆xf(x) + t∇f(x)T ∆x

Figure 9.1 Backtracking line search. The curve shows f , restricted to the line
over which we search. The lower dashed line shows the linear extrapolation
of f , and the upper dashed line has a slope a factor of α smaller. The
backtracking condition is that f lies below the upper dashed line, i.e., 0 ≤
t ≤ t0.

The line search is called backtracking because it starts with unit step size and
then reduces it by the factor β until the stopping condition f(x + t∆x) ≤ f(x) +
αt∇f(x)T ∆x holds. Since ∆x is a descent direction, we have ∇f(x)T ∆x < 0, so
for small enough t we have

f(x + t∆x) ≈ f(x) + t∇f(x)T ∆x < f(x) + αt∇f(x)T ∆x,

which shows that the backtracking line search eventually terminates. The constant
α can be interpreted as the fraction of the decrease in f predicted by linear extrap-
olation that we will accept. (The reason for requiring α to be smaller than 0.5 will
become clear later.)

The backtracking condition is illustrated in figure 9.1. This figure suggests,
and it can be shown, that the backtracking exit inequality f(x + t∆x) ≤ f(x) +
αt∇f(x)T ∆x holds for t ≥ 0 in an interval (0, t0]. It follows that the backtracking
line search stops with a step length t that satisfies

t = 1, or t ∈ (βt0, t0].

The first case occurs when the step length t = 1 satisfies the backtracking condition,
i.e., 1 ≤ t0. In particular, we can say that the step length obtained by backtracking
line search satisfies

t ≥ min{1,βt0}.

When dom f is not all of Rn, the condition f(x+ t∆x) ≤ f(x)+αt∇f(x)T ∆x
in the backtracking line search must be interpreted carefully. By our convention
that f is infinite outside its domain, the inequality implies that x + t∆x ∈ dom f .
In a practical implementation, we first multiply t by β until x + t∆x ∈ dom f ;

For us ∆x = −∇f(x)
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Setting α = β = 0.5, backtracking picks up roughly the right step
size (12 outer steps, 40 steps total),
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Convergence analysis

Assume that f convex and differentiable, with dom(f) = Rn, and
additionally that ∇f is Lipschitz continuous with constant L > 0,

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2 for any x, y

(Or when twice differentiable: ∇2f(x) � LI)

Theorem: Gradient descent with fixed step size t ≤ 1/L satisfies

f(x(k))− f? ≤ ‖x
(0) − x?‖22

2tk

and same result holds for backtracking, with t replaced by β/L

We say gradient descent has convergence rate O(1/k). That is, it
finds ε-suboptimal point in O(1/ε) iterations
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Analysis for strong convexity

Reminder: strong convexity of f means f(x)− m
2 ‖x‖22 is convex

for some m > 0 (when twice differentiable: ∇2f(x) � mI)

Assuming Lipschitz gradient as before, and also strong convexity:

Theorem: Gradient descent with fixed step size t ≤ 2/(m+ L)
or with backtracking line search search satisfies

f(x(k))− f? ≤ γkL
2
‖x(0) − x?‖22

where 0 < γ < 1

Rate under strong convexity is O(γk), exponentially fast! That is,
it finds ε-suboptimal point in O(log(1/ε)) iterations
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Called linear convergence,
because looks linear on a
semi-log plot

9.3 Gradient descent method 473
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Figure 9.6 Error f(x(k))−p⋆ versus iteration k for the gradient method with
backtracking and exact line search, for a problem in R100.

These experiments suggest that the effect of the backtracking parameters on the
convergence is not large, no more than a factor of two or so.

Gradient method and condition number

Our last experiment will illustrate the importance of the condition number of
∇2f(x) (or the sublevel sets) on the rate of convergence of the gradient method.
We start with the function given by (9.21), but replace the variable x by x = T x̄,
where

T = diag((1, γ1/n, γ2/n, . . . , γ(n−1)/n)),

i.e., we minimize

f̄(x̄) = cT T x̄ −
m∑

i=1

log(bi − aT
i T x̄). (9.22)

This gives us a family of optimization problems, indexed by γ, which affects the
problem condition number.

Figure 9.7 shows the number of iterations required to achieve f̄(x̄(k))−p̄⋆ < 10−5

as a function of γ, using a backtracking line search with α = 0.3 and β = 0.7. This
plot shows that for diagonal scaling as small as 10 : 1 (i.e., γ = 10), the number of
iterations grows to more than a thousand; for a diagonal scaling of 20 or more, the
gradient method slows to essentially useless.

The condition number of the Hessian ∇2f̄(x̄⋆) at the optimum is shown in
figure 9.8. For large and small γ, the condition number increases roughly as
max{γ2, 1/γ2}, in a very similar way as the number of iterations depends on γ.
This shows again that the relation between conditioning and convergence speed is
a real phenomenon, and not just an artifact of our analysis.

(From B & V page 487)

Important note: contraction factor c in rate depends adversely on
condition number L/m: higher condition number ⇒ slower rate

Affects not only our upper bound ... very apparent in practice too
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Can we do better?

Gradient descent has O(1/ε) convergence rate over problem class
of convex, differentiable functions with Lipschitz gradients

First-order method: iterative method, which updates x(k) in

x(0) + span{∇f(x(0)),∇f(x(1)), . . .∇f(x(k−1))}

Theorem (Nesterov): For any k ≤ (n− 1)/2 and any starting
point x(0), there is a function f in the problem class such that
any first-order method satisfies

f(x(k))− f? ≥ 3L‖x(0) − x?‖22
32(k + 1)2

Can attain rate O(1/k2), or O(1/
√
ε)? Answer: yes (we’ll see)!
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Analysis for nonconvex case

Assume f is differentiable with Lipschitz gradient as before, but
now nonconvex. Asking for optimality is too much. So we’ll settle
for x such that ‖∇f(x)‖2 ≤ ε, called ε-stationarity

Theorem: Gradient descent with fixed step size t ≤ 1/L satisfies

min
i=0,...,k

‖∇f(x(i))‖2 ≤
√

2(f(x(0))− f?)
t(k + 1)

Thus gradient descent has rate O(1/
√
k), or O(1/ε2), even in the

nonconvex case for finding stationary points

This rate cannot be improved (over class of differentiable functions
with Lipschitz gradients) by any deterministic algorithm1

1Carmon et al. (2017), “Lower bounds for finding stationary points I”
18



Gradient boosting
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Given responses yi ∈ R and features xi ∈ Rp, i = 1, . . . , n

Want to construct a flexible (nonlinear) model for response based
on features. Weighted sum of trees:

ui =

m∑

j=1

βj · Tj(xi), i = 1, . . . , n

Each tree Tj inputs xi, outputs predicted response. Typically trees
are pretty short

...
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Pick a loss function L to reflect setting. For continuous responses,
e.g., could take L(yi, ui) = (yi − ui)2

Want to solve

min
β

n∑

i=1

L
(
yi,

M∑

j=1

βj · Tj(xi)
)

Indexes all trees of a fixed size (e.g., depth = 5), so M is huge.
Space is simply too big to optimize

Gradient boosting: basically a version of gradient descent that is
forced to work with trees

First think of optimization as minu f(u), over predicted values u,
subject to u coming from trees

21



Start with initial model, a single tree u(0) = T0. Repeat:

• Compute negative gradient d at latest prediction u(k−1),

di = −
[
∂L(yi, ui)

∂ui

] ∣∣∣∣
ui=u

(k−1)
i

, i = 1, . . . , n

• Find a tree Tk that is close to a, i.e., according to

min
trees T

n∑

i=1

(di − T (xi))
2

Not hard to (approximately) solve for a single tree

• Compute step size αk, and update our prediction:

u(k) = u(k−1) + αk · Tk

Note: predictions are weighted sums of trees, as desired
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Part II: First-order methods
B. Subgradients
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Subgradients

Recall that for convex and differentiable f ,

f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y

That is, linear approximation always underestimates f

A subgradient of a convex function f at x is any g ∈ Rn such that

f(y) ≥ f(x) + gT (y − x) for all y

• Always exists2

• If f differentiable at x, then g = ∇f(x) uniquely

• Same definition works for nonconvex f (however, subgradients
need not exist)

2On the relative interior of dom(f)
24



Examples of subgradients

Consider f : R→ R, f(x) = |x|
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• For x 6= 0, unique subgradient g = sign(x)

• For x = 0, subgradient g is any element of [−1, 1]
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Consider f : Rn → R, f(x) = ‖x‖2

x1

x2

f(x)

• For x 6= 0, unique subgradient g = x/‖x‖2
• For x = 0, subgradient g is any element of {z : ‖z‖2 ≤ 1}
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Consider f : Rn → R, f(x) = ‖x‖1

x1

x2

f(x)

• For xi 6= 0, unique ith component gi = sign(xi)

• For xi = 0, ith component gi is any element of [−1, 1]
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Consider f(x) = max{f1(x), f2(x)}, for f1, f2 : Rn → R convex,
differentiable
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x)

• For f1(x) > f2(x), unique subgradient g = ∇f1(x)

• For f2(x) > f1(x), unique subgradient g = ∇f2(x)

• For f1(x) = f2(x), subgradient g is any point on line segment
between ∇f1(x) and ∇f2(x)
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Subdifferential

Set of all subgradients of convex f is called the subdifferential:

∂f(x) = {g ∈ Rn : g is a subgradient of f at x}

• Nonempty (only for convex f)

• ∂f(x) is closed and convex (even for nonconvex f)

• If f is differentiable at x, then ∂f(x) = {∇f(x)}
• If ∂f(x) = {g}, then f is differentiable at x and ∇f(x) = g
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Connection to convex geometry

Convex set C ⊆ Rn, consider indicator function IC : Rn → R,

IC(x) = I{x ∈ C} =

{
0 if x ∈ C
∞ if x /∈ C

For x ∈ C, ∂IC(x) = NC(x), the normal cone of C at x is, recall

NC(x) = {g ∈ Rn : gTx ≥ gT y for any y ∈ C}

Why? By definition of subgradient g,

IC(y) ≥ IC(x) + gT (y − x) for all y

• For y /∈ C, IC(y) =∞
• For y ∈ C, this means 0 ≥ gT (y − x)
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Subgradient calculus

Basic rules for convex functions:

• Scaling: ∂(af) = a · ∂f provided a > 0

• Addition: ∂(f1 + f2) = ∂f1 + ∂f2

• Affine composition: if g(x) = f(Ax+ b), then

∂g(x) = AT∂f(Ax+ b)

• Finite pointwise maximum: if f(x) = maxi=1,...,m fi(x), then

∂f(x) = conv

( ⋃

i:fi(x)=f(x)

∂fi(x)

)

convex hull of union of subdifferentials of active functions at x

32



• General pointwise maximum: if f(x) = maxs∈S fs(x), then

∂f(x) ⊇ cl

{
conv

( ⋃

s:fs(x)=f(x)

∂fs(x)

)}

Under some regularity conditions (on S, fs), we get equality

• Norms: important special case, f(x) = ‖x‖p. Let q be such
that 1/p+ 1/q = 1, then

‖x‖p = max
‖z‖q≤1

zTx

And
∂f(x) = argmax

‖z‖q≤1
zTx
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Optimality condition

For any f (convex or not),

f(x?) = min
x

f(x) ⇐⇒ 0 ∈ ∂f(x?)

That is, x? is a minimizer if and only if 0 is a subgradient of f at
x?. This is called the subgradient optimality condition

Why? Easy: g = 0 being a subgradient means that for all y

f(y) ≥ f(x?) + 0T (y − x?) = f(x?)

Note the implication for a convex and differentiable function f ,
with ∂f(x) = {∇f(x)}
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Derivation of first-order optimality

Example of the power of subgradients: we can use what we have
learned so far to derive the first-order optimality condition. Recall

min
x

f(x) subject to x ∈ C

is solved at x, for f convex and differentiable, if and only if

∇f(x)T (y − x) ≥ 0 for all y ∈ C

Intuitively: says that gradient increases as we move away from x.
How to prove it? First recast problem as

min
x

f(x) + IC(x)

Now apply subgradient optimality: 0 ∈ ∂(f(x) + IC(x))
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Observe

0 ∈ ∂
(
f(x) + IC(x)

)

⇐⇒ 0 ∈ {∇f(x)}+NC(x)

⇐⇒ −∇f(x) ∈ NC(x)

⇐⇒ −∇f(x)Tx ≥ −∇f(x)T y for all y ∈ C
⇐⇒ ∇f(x)T (y − x) ≥ 0 for all y ∈ C

as desired

Note: the condition 0 ∈ ∂f(x) +NC(x) is a fully general condition
for optimality in convex problems. But it’s not always easy to work
with (KKT conditions, later, are easier)
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Example: lasso optimality conditions

Given y ∈ Rn, X ∈ Rn×p, lasso problem can be parametrized as

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1

where λ ≥ 0. Subgradient optimality:

0 ∈ ∂
(1

2
‖y −Xβ‖22 + λ‖β‖1

)

⇐⇒ 0 ∈ −XT (y −Xβ) + λ∂‖β‖1
⇐⇒ XT (y −Xβ) = λv

for some v ∈ ∂‖β‖1, i.e.,

vi ∈





{1} if βi > 0

{−1} if βi < 0

[−1, 1] if βi = 0

, i = 1, . . . , p

37



Write X1, . . . , Xp for columns of X. Then our condition reads:

{
XT
i (y −Xβ) = λ · sign(βi) if βi 6= 0

|XT
i (y −Xβ)| ≤ λ if βi = 0

Note: subgradient optimality conditions don’t lead to closed-form
expression for a lasso solution ... however they do provide a way to
check lasso optimality

They are also helpful in understanding the lasso estimator; e.g., if
|XT

i (y −Xβ)| < λ, then βi = 0 (used by screening rules, later?)
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Example: soft-thresholding

Simplfied lasso problem with X = I:

min
β

1

2
‖y − β‖22 + λ‖β‖1

This we can solve directly using subgradient optimality. Solution is
β = Sλ(y), where Sλ is the soft-thresholding operator:

[Sλ(y)]i =





yi − λ if yi > λ

0 if − λ ≤ yi ≤ λ
yi + λ if yi < −λ

, i = 1, . . . , n

Check: from last slide, subgradient optimality conditions are

{
yi − βi = λ · sign(βi) if βi 6= 0

|yi − βi| ≤ λ if βi = 0

39



Now plug in β = Sλ(y) and check these are satisfied:

• When yi > λ, βi = yi − λ > 0, so yi − βi = λ = λ · 1
• When yi < −λ, argument is similar

• When |yi| ≤ λ, βi = 0, and |yi − βi| = |yi| ≤ λ

Soft-thresholding in
one variable:
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0
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5
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0
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Subgradient method

Now consider f convex, having dom(f) = Rn, but not necessarily
differentiable

Subgradient method: like gradient descent, but replacing gradients
with subgradients. Initialize x(0), repeat:

x(k) = x(k−1) − tk · g(k−1), k = 1, 2, 3, . . .

where g(k−1) ∈ ∂f(x(k−1)), any subgradient of f at x(k−1)

Subgradient method is not necessarily a descent method, so we

keep track of best iterate x
(k)
best among x(0), . . . , x(k) so far, i.e.,

f(x
(k)
best) = min

i=0,...,k
f(x(i))

41



Step size choices

• Fixed step sizes: tk = t all k = 1, 2, 3, . . .

• Diminishing step sizes: choose to meet conditions

∞∑

k=1

t2k <∞,
∞∑

k=1

tk =∞,

i.e., square summable but not summable. Important here that
step sizes go to zero, but not too fast

There are several other options too, but key difference to gradient
descent: step sizes are pre-specified, not adaptively computed
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Convergence analysis

Assume that f convex, dom(f) = Rn, and also that f is Lipschitz
continuous with constant G > 0, i.e.,

|f(x)− f(y)| ≤ G‖x− y‖2 for all x, y

Theorem: For a fixed step size t, subgradient method satisfies

lim
k→∞

f(x
(k)
best) ≤ f? +G2t/2.

For diminishing step sizes, subgradient method satisfies

lim
k→∞

f(x
(k)
best) = f?

(Lipschitz condition can be removed with diminishing step sizes)
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Convergence rate

The proof of these results tells us that after k steps, we have

f(x
(k)
best)− f(x?) ≤ R2 +G2

∑k
i=1 t

2
i

2
∑k

i=1 ti

With fixed step size t, this gives

f(x
(k)
best)− f? ≤

R2

2kt
+
G2t

2

For this to be ≤ ε, let’s make each term ≤ ε/2. So we can choose
t = ε/G2, and k = R2/t · 1/ε = R2G2/ε2

That is, subgradient method has convergence rate O(1/ε2) ... this
is slower than O(1/ε) rate of gradient descent
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Example: regularized logistic regression

Given (xi, yi) ∈ Rp × {0, 1} for i = 1, . . . , n, the logistic regression
loss is

f(β) =

n∑

i=1

(
− yixTi β + log(1 + exp(xTi β))

)

This is a smooth and convex, with

∇f(β) =

n∑

i=1

(
yi − pi(β)

)
xi

where pi(β) = exp(xTi β)/(1 + exp(xTi β)), i = 1, . . . , n. Consider
the regularized problem:

min
β

f(β) + λ · P (β)

where P (β) = ‖β‖22, ridge penalty; or P (β) = ‖β‖1, lasso penalty
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Ridge: use gradients; lasso: use subgradients. Example here has
n = 1000, p = 20:
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Step sizes hand-tuned to be favorable for each method (of course
comparison is imperfect, but it reveals the convergence behaviors)
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Can we do better?

Nonsmooth first-order methods: iterative methods updating x(k) in

x(0) + span{g(0), g(1), . . . , g(k−1)}

where subgradients g(0), g(1), . . . , g(k−1) come from weak oracle

Theorem (Nesterov): For any k ≤ n−1 and starting point x(0),
there is a function in the problem class such that any nonsmooth
first-order method satisfies

f(x(k))− f? ≥ RG

2(1 +
√
k + 1)

In words, we cannot do better than the O(1/ε2) rate of subgradient
method (unless we go beyond nonsmooth first-order methods) ...
so we will focus on f = g+ h, where g is smooth and h is “simple”
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Part II: First-order methods
C. Proximal methods
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Composite functions

Suppose
f(x) = g(x) + h(x)

• g is convex, differentiable, dom(g) = Rn

• h is convex, not necessarily differentiable

If f were differentiable, then gradient descent update would be:

x+ = x− t · ∇f(x)

Recall motivation: minimize quadratic approximation to f around
x, replace ∇2f(x) by 1

t I,

x+ = argmin
z

f(x) +∇f(x)T (z − x) +
1

2t
‖z − x‖22

︸ ︷︷ ︸
f̃t(z)

49



In our case f is not differentiable, but f = g + h, g differentiable.
Why don’t we make quadratic approximation to g, leave h alone?

That is, update

x+ = argmin
z

g̃t(z) + h(z)

= argmin
z

g(x) +∇g(x)T (z − x) +
1

2t
‖z − x‖22 + h(z)

= argmin
z

1

2t

∥∥z −
(
x− t∇g(x)

)∥∥2

2
+ h(z)

︸ ︷︷ ︸
proxt(x)

We call proxt(·) the proximal mapping
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Proximal gradient descent

Proximal gradient descent: choose initialize x(0), repeat:

x(k) = proxtk
(
x(k−1) − tk∇g(x(k−1))

)
, k = 1, 2, 3, . . .

To make this update step look familiar, can rewrite it as

x(k) = x(k−1) − tk ·Gtk(x(k−1))

where Gt(x) = x−proxt(x−t∇g(x))
t is called the generalized gradient

Notes:

• Mapping proxt(·) doesn’t depend on g at all, only on h

• Smooth part g can be complicated, we only need to compute
its gradients
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Example: ISTA

Given y ∈ Rn, X ∈ Rn×p, recall lasso criterion:

f(β) =
1

2
‖y −Xβ‖22
︸ ︷︷ ︸

g(β)

+
.

.
λ‖β‖1
︸ ︷︷ ︸
h(β)

Prox mapping is now

proxt(β) = argmin
z

1

2t
‖β − z‖22 + λ‖z‖1

= Sλt(β)

where Sλ(β) is the soft-thresholding operator,

[Sλ(β)]i =





βi − λ if βi > λ

0 if − λ ≤ βi ≤ λ
βi + λ if βi < −λ

, i = 1, . . . , n
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Recall ∇g(β) = −XT (y−Xβ), hence proximal gradient update is:

β+ = Sλt
(
β + tXT (y −Xβ)

)

Often called the iterative soft-thresholding algorithm (ISTA).3 Very
simple algorithm

Example of proximal
gradient (ISTA) vs.
subgradient method
convergence rates
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3Beck and Teboulle (2008), “A fast iterative shrinkage-thresholding
algorithm for linear inverse problems”
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Backtracking line search

Backtracking for prox gradient descent works similar as before (in
gradient descent), but operates on g and not f

Choose parameter 0 < β < 1. At each iteration, start at t = tinit,
and while

g
(
x− tGt(x)

)
> g(x)− t∇g(x)TGt(x) +

t

2
‖Gt(x)‖22

shrink t = βt, for some 0 < β < 1. Else perform proximal gradient
update

(Alternative formulations exist that require less computation, i.e.,
fewer calls to prox)
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Convergence analysis

For criterion f(x) = g(x) + h(x), we assume:

• g is convex, differentiable, dom(g) = Rn, and ∇g is Lipschitz
continuous with constant L > 0

• h is convex, proxt(x) = argminz{‖x− z‖22/(2t) + h(z)} can
be evaluated

Theorem: Proximal gradient descent with fixed step size t ≤
1/L satisfies

f(x(k))− f? ≤ ‖x
(0) − x?‖22

2tk

and same result holds for backtracking, with t replaced by β/L

Proximal gradient descent has convergence rate O(1/k) or O(1/ε).
Same as gradient descent! (But remember, prox cost matters ...)
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Example: matrix completion

Given a matrix Y ∈ Rm×n, and only observe entries Yij , (i, j) ∈ Ω.
Suppose we want to fill in missing entries (e.g., for a recommender
system), so we solve a matrix completion problem:

min
B

1

2

∑

(i,j)∈Ω

(Yij −Bij)2 + λ‖B‖tr

Here ‖B‖tr is the trace (or nuclear) norm of B,

‖B‖tr =

r∑

i=1

σi(B)

where r = rank(B) and σ1(X) ≥ . . . ≥ σr(X) ≥ 0 are the singular
values
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Define PΩ, projection operator onto observed set:

[PΩ(B)]ij =

{
Bij (i, j) ∈ Ω

0 (i, j) /∈ Ω

Then the criterion is

f(B) =
1

2
‖PΩ(Y )− PΩ(B)‖2F
︸ ︷︷ ︸

g(B)

+
.

.
λ‖B‖tr
︸ ︷︷ ︸
h(B)

Two ingredients needed for proximal gradient descent:

• Gradient calculation: ∇g(B) = −(PΩ(Y )− PΩ(B))

• Prox function:

proxt(B) = argmin
Z

1

2t
‖B − Z‖2F + λ‖Z‖tr
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Fact: proxt(B) = Sλt(B), matrix soft-thresholding at the level λ.
Here Sλ(B) is defined by

Sλ(B) = UΣλV
T

where B = UΣV T is an SVD, and (Σλ)ii = max{Σii − λ, 0}

Hence proximal gradient update step is:

B+ = Sλt

(
B + t

(
PΩ(Y )− PΩ(B)

))

Note that ∇g(B) is Lipschitz with L = 1, so we can take t = 1:

B+ = Sλ
(
PΩ(Y ) + P⊥Ω (B)

)

where PΩ(B) + P⊥Ω (B) = B. This is the soft-impute algorithm4

4Mazumder et al. (2011), “Spectral regularization algorithms for learning
large incomplete matrices”
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Special cases

Proximal gradient descent also called composite gradient descent,
or generalized gradient descent

Why “generalized”? This refers to the several special cases, when
minimizing f = g + h:

• h = 0: gradient descent

• h = IC : projected gradient descent

• g = 0: proximal minimization algorithm

Therefore these algorithms all have O(1/ε) convergence rate
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Projected gradient descent

Given closed, convex set C ∈ Rn,

min
x∈C

g(x) ⇐⇒ min
x

g(x) + IC(x)

where IC(x) =

{
0 x ∈ C
∞ x /∈ C

is the indicator function of C

Hence

proxt(x) = argmin
z

1

2t
‖x− z‖22 + IC(z)

= argmin
z∈C

‖x− z‖22

That is, proxt(x) = PC(x), projection operator onto C
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Therefore proximal gradient update step is:

x+ = PC
(
x− t∇g(x)

)

That is, perform usual gradient update and then project back onto
C. Called projected gradient descent
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Acceleration

Turns out we can accelerate proximal gradient descent in order to
achieve the optimal O(1/

√
ε) convergence rate. Four ideas (three

acceleration methods) by Nesterov:

• 1983: original acceleration idea for smooth functions

• 1988: another acceleration idea for smooth functions

• 2005: smoothing techniques for nonsmooth functions, coupled
with original acceleration idea

• 2007: acceleration idea for composite functions5

We will follow Beck and Teboulle (2008), an extension of Nesterov
(1983) to composite functions6

5Each step uses entire history of previous steps and makes two prox calls
6Each step uses information from two last steps and makes one prox call
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Accelerated proximal gradient method

As before, consider:
min
x

g(x) + h(x)

where g convex, differentiable, and h convex. Accelerated proximal
gradient method: choose initial point x(0) = x(−1) ∈ Rn, repeat:

v = x(k−1) +
k − 2

k + 1
(x(k−1) − x(k−2))

x(k) = proxtk
(
v − tk∇g(v)

)

for k = 1, 2, 3, . . .

• First step k = 1 is just usual proximal gradient update

• After that, v = x(k−1) + k−2
k+1(x(k−1) − x(k−2)) carries some

“momentum” from previous iterations

• h = 0 gives accelerated gradient method
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Momentum weights:
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Back to lasso example: acceleration can really help!
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Note: accelerated proximal gradient is not a descent method
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Convergence analysis

For criterion f(x) = g(x) + h(x), we assume as before:

• g is convex, differentiable, dom(g) = Rn, and ∇g is Lipschitz
continuous with constant L > 0

• h is convex, proxt(x) = argminz{‖x− z‖22/(2t) + h(z)} can
be evaluated

Theorem: Accelerated proximal gradient method with fixed step
size t ≤ 1/L satisfies

f(x(k))− f? ≤ 2‖x(0) − x?‖22
t(k + 1)2

and same result holds for backtracking, with t replaced by β/L

Achieves optimal rate O(1/k2) or O(1/
√
ε) for first-order methods
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FISTA

Back to lasso problem:

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1

Recall ISTA (Iterative Soft-thresholding Algorithm):

β(k) = Sλtk(β(k−1) + tkX
T (y −Xβ(k−1))

)
, k = 1, 2, 3, . . .

Sλ(·) being vector soft-thresholding. Applying acceleration gives us
FISTA (F is for Fast):7 for k = 1, 2, 3, . . .,

v = β(k−1) +
k − 2

k + 1
(β(k−1) − β(k−2))

β(k) = Sλtk
(
v + tkX

T (y −Xv)
)
,

7Beck and Teboulle (2008) actually call their general acceleration technique
(for general g, h) FISTA, which may be somewhat confusing
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Lasso regression: 100 instances (with n = 100, p = 500):
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Lasso logistic regression: 100 instances (n = 100, p = 500):
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Part II: First-order methods
D. Stochastic methods
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Stochastic gradient descent

Consider minimizing an average of functions

min
x

1

m

m∑

i=1

fi(x)

As ∇∑m
i=1 fi(x) =

∑m
i=1∇fi(x), gradient descent would repeat:

x(k) = x(k−1) − tk ·
1

m

m∑

i=1

∇fi(x(k−1)), k = 1, 2, 3, . . .

In comparison, stochastic gradient descent or SGD (or incremental
gradient descent) repeats:

x(k) = x(k−1) − tk · ∇fik(x(k−1)), k = 1, 2, 3, . . .

where ik ∈ {1, . . . ,m} is some chosen index at iteration k
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Two rules for choosing index ik at iteration k:

• Randomized rule: choose ik ∈ {1, . . . ,m} uniformly at
random

• Cyclic rule: choose ik = 1, 2, . . . ,m, 1, 2, . . . ,m, . . .

Randomized rule is more common in practice. For randomized rule,
note that

E[∇fik(x)] = ∇f(x)

so we can view SGD as using an unbiased estimate of the gradient
at each step

Main appeal of SGD:

• Iteration cost is independent of m (number of functions)

• Can also be a big savings in terms of memory useage
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Example: stochastic logistic regression

Given (xi, yi) ∈ Rp × {0, 1}, i = 1, . . . , n, recall logistic regression:

min
β

f(β) =
1

n

n∑

i=1

(
− yixTi β + log(1 + exp(xTi β))

)

︸ ︷︷ ︸
fi(β)

Gradient computation ∇f(β) = 1
n

∑n
i=1

(
yi − pi(β)

)
xi is doable

when n is moderate, but not when n is huge

Full gradient (also called batch) versus stochastic gradient:

• One batch update costs O(np)

• One stochastic update costs O(p)

Clearly, e.g., 10K stochastic steps are much more affordable
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Small example with n = 10, p = 2 to show the “classic picture” for
batch versus stochastic methods:
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Blue: batch steps, O(np)
Red: stochastic steps, O(p)

Rule of thumb for stochastic
methods:

• generally thrive far
from optimum

• generally struggle close
to optimum
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Step sizes

Standard in SGD is to use diminishing step sizes, e.g., tk = 1/k

Why not fixed step sizes? Here’s some intuition. Suppose we take
cyclic rule for simplicity. Set tk = t for m updates in a row, we get:

x(k+m) = x(k) − t
m∑

i=1

∇fi(x(k+i−1))

Meanwhile, full gradient with step size mt would give:

x(k+1) = x(k) − t
m∑

i=1

∇fi(x(k))

The difference here: t
∑m

i=1[∇fi(x(k+i−1))−∇fi(x(k))], and if we
hold t constant, this difference will not generally be going to zero
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Convergence rates

Recall: for convex f , gradient descent with diminishing step sizes
satisfies

f(x(k))− f? = O(1/
√
k)

When f is differentiable with Lipschitz gradient, we get for suitable
fixed step sizes

f(x(k))− f? = O(1/k)

What about SGD? For convex f , SGD with diminishing step sizes
satisfies8

E[f(x(k))]− f? = O(1/
√
k)

Unfortunately this does not improve when we further assume f has
Lipschitz gradient

8For example, Nemirosvki et al. (2009), “Robust stochastic optimization
approach to stochastic programming”
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Even worse is the following discrepancy!

When f is strongly convex and has a Lipschitz gradient, gradient
descent satisfies

f(x(k))− f? = O(γk)

where 0 < γ < 1. But under same conditions, SGD gives us9

E[f(x(k))]− f? = O(1/k)

So stochastic methods do not enjoy the linear convergence rate of
gradient descent under strong convexity

What can we do to improve SGD?

9For example, Nemirosvki et al. (2009), “Robust stochastic optimization
approach to stochastic programming”
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Mini-batches

Also common is mini-batch stochastic gradient descent, where we
choose a random subset Ik ⊆ {1, . . . ,m}, |Ik| = b� m, repeat:

x(k) = x(k−1) − tk ·
1

b

∑

i∈Ik

∇fi(x(k−1)), k = 1, 2, 3, . . .

Again, we are approximating full gradient by an unbiased estimate:

E
[

1

b

∑

i∈Ik

∇fi(x)

]
= ∇f(x)

Using mini-batches reduces variance by a factor 1/b, but is also b
times more expensive. Theory justifies this, but only to an extent:
under Lipschitz gradient, rate goes from O(1/

√
k) to O(1/

√
bk)10

10For example, Dekel et al. (2012), “Optimal distributed online prediction
using mini-batches”
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Back to logistic regression, let’s now consider a regularized version:

min
β

1

n

n∑

i=1

(
− yixTi β + log(1 + ex

T
i β)
)

+
λ

2
‖β‖22

Write the criterion as

f(β) =
1

n

n∑

i=1

fi(β), fi(β) = −yixTi β + log(1 + ex
T
i β) +

λ

2
‖β‖22

Full gradient computation is ∇f(β) = 1
n

∑n
i=1

(
yi− pi(β)

)
xi +λβ.

Comparison between methods:

• One batch update costs O(np)

• One mini-batch update costs O(bp)

• One stochastic update costs O(p)
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Example with n = 10, 000, p = 20, all methods use fixed step sizes:
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What’s happening? Now let’s parametrize by flops:
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Finally, looking at suboptimality gap (on log scale):
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End of the story?

Short story:

• SGD can be super effective in terms of iteration cost, memory

• But SGD is slow to converge to high accuracy solutions, can’t
adapt to strong convexity

• And mini-batches seem to be a wash in terms of flops (though
they can still be useful in practice)

Is this the end of the story for SGD?

For a while, the answer was believed to be yes. Slow convergence
for strongly convex functions was believed inevitable, as Nemirovski
and others established matching lower bounds ... but this was for a
more general stochastic problem, where f(x) =

∫
F (x, ξ) dP (ξ)
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Variance reduction

New wave of “variance reduction” work shows we can modify SGD
to converge much faster for finite sums, f(x) = 1

m

∑m
i=1 fi(x): see

SAG, SDCA, SVRG, S2GD, SAGA, etc. Here we describe SAGA:11

• Maintain table, containing gradient gi of fi, i = 1, . . . , n

• At steps k = 1, 2, 3, . . ., pick random ik ∈ {1, . . . n}, then let

g
(k)
ik

= ∇fik(x(k−1)) (most recent gradient of fik )

Set all other g
(k)
i = g

(k−1)
i , i 6= ik, i.e., these stay the same

• Update

x(k) = x(k−1) − tk ·
(
g

(k)
ik
− g(k−1)

ik
+

1

n

n∑

i=1

g
(k−1)
i

)

11Defasio et al. (2014), “SAGA: A fast incremental gradient method with
support for non-strongly convex composite objectives”. This paper also gives a
nice literature review on variance reduction
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Notes on SAGA

• SAGA uses gradient estimate: g
(k)
ik
− g(k−1)

ik
+ 1

n

∑n
i=1 g

(k−1)
i

• Its predecessor, SAG, uses: 1
ng

(k)
ik
− 1

ng
(k−1)
ik

+ 1
n

∑n
i=1 g

(k−1)
i

• Common footing for both: consider family of estimators

θα = α(X − Y ) + E(Y )

for E(X), where α ∈ [0, 1], and X,Y are correlated. We have

E(θα) = αE(X) + (1− α)E(Y )

Var(θα) = α2
(
Var(X) + Var(Y )− 2Cov(X,Y )

)

SAGA uses α = 1: unbiased, SAG uses α = 1/n: biased

• Remarkably, both SAG and SAGA restore convergence rates of
full gradient! For Lipschitz gradient: O(1/k), and additionally
strong convexity: O(γk)
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Our logistic regression example with 30 runs of SGD, SAG, SAGA:
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SGD in large-scale ML

SGD has really taken off in large-scale machine learning

• In many ML problems we don’t care about optimizing to high
accuracy, it doesn’t pay off in terms of statistical performance

• Thus (in contrast to what classic theory says) fixed step sizes
are commonly used in ML applications

• One trick is to experiment with step sizes using small fraction
of training before running SGD on full data set ... many other
heuristics are common12

• SGD in the continuous, nonconvex world is extremely popular
but poorly undestood

• Many variants currently being explored: momentum, adaptive
step sizes, averaging, early stopping, etc.

12For example, Bottou (2012), “Stochastic gradient descent tricks”
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