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Part III: Duality and optimality
A. Linear program duality
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Lower bounds in linear programs

Suppose we want to find lower bound on the optimal value in our
convex problem, B ≤ minx f(x)

For example, consider the following simple LP

min
x,y

x+ y

subject to x+ y ≥ 2

x, y ≥ 0

What’s a lower bound? Easy, take B = 2

But didn’t we get “lucky”?
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Try again:

min
x,y

x+ 3y

subject to x+ y ≥ 2

x, y ≥ 0

x+ y ≥ 2

+ 2y ≥ 0

= x+ 3y ≥ 2

Lower bound B = 2

More generally:

min
x,y

px+ qy

subject to x+ y ≥ 2

x, y ≥ 0

a+ b = p

a+ c = q

a, b, c ≥ 0

Lower bound B = 2a, for any
a, b, c satisfying above
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What’s the best we can do? Maximize our lower bound over all
possible a, b, c:

min
x,y

px+ qy

subject to x+ y ≥ 2

x, y ≥ 0

Called primal LP

max
a,b,c

2a

subject to a+ b = p

a+ c = q

a, b, c ≥ 0

Called dual LP

Note: number of dual variables is number of primal constraints
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Try another one:

min
x,y

px+ qy

subject to x ≥ 0

y ≤ 1

3x+ y = 2

Primal LP

max
a,b,c

2c− b

subject to a+ 3c = p

− b+ c = q

a, b ≥ 0

Dual LP

Note: in the dual problem, c is unconstrained
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Duality for general form LP

Given c ∈ Rn, A ∈ Rm×n, b ∈ Rm, G ∈ Rr×n, h ∈ Rr:

min
x

cTx

subject to Ax = b

Gx ≤ h

Primal LP

max
u,v

− bTu− hT v

subject to −ATu−GT v = c

v ≥ 0

Dual LP

Explanation: for any u and v ≥ 0, and x primal feasible,

uT (Ax− b) + vT (Gx− h) ≤ 0, i.e.,

(−ATu−GT v)Tx ≥ −bTu− hT v

So if c = −ATu−GT v, we get a bound on primal optimal value
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Example: max flow and min cut

Soviet railway network (from Schrijver (2002), “On the history of
transportation and maximum flow problems”)
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s

t

fij
cij

Given graph G = (V,E), define flow fij ,
(i, j) ∈ E to satisfy:

• fij ≥ 0, (i, j) ∈ E
• fij ≤ cij , (i, j) ∈ E
•
∑

(i,k)∈E

fik =
∑

(k,j)∈E

fkj , k ∈ V \{s, t}

Max flow problem: find flow that maximizes total value of the flow
from s to t. That is, as an LP:

max
f∈R|E|

∑

(s,j)∈E

fsj

subject to 0 ≤ fij ≤ cij for all (i, j) ∈ E
∑

(i,k)∈E

fik =
∑

(k,j)∈E

fkj for all k ∈ V \ {s, t}
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Derive the dual, in steps:

• Note that

∑

(i,j)∈E

(
− aijfij + bij(fij − cij)

)

+
∑

k∈V \{s,t}

xk

( ∑

(i,k)∈E

fik −
∑

(k,j)∈E

fkj

)
≤ 0

for any aij , bij ≥ 0, (i, j) ∈ E, and xk, k ∈ V \ {s, t}
• Rearrange as

∑

(i,j)∈E

Mij(a, b, x)fij ≤
∑

(i,j)∈E

bijcij

where Mij(a, b, x) collects terms multiplying fij
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• Want to make LHS in previous inequality equal to primal

objective, i.e.,





Msj = bsj − asj + xj want this = 1

Mit = bit − ait − xi want this = 0

Mij = bij − aij + xj − xi want this = 0

• We’ve shown that

primal optimal value ≤
∑

(i,j)∈E

bijcij ,

subject to a, b, x satisfying constraints. Hence dual problem is
(minimize over a, b, x to get best upper bound):

min
b∈R|E|, x∈R|V |

∑

(i,j)∈E

bijcij

subject to bij + xj − xi ≥ 0 for all (i, j) ∈ E
b ≥ 0, xs = 1, xt = 0
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Suppose that at the solution, it just so happened that

xi ∈ {0, 1} for all i ∈ V
Let A = {i : xi = 1}, B = {i : xi = 0}; note s ∈ A, t ∈ B. Then

bij ≥ xi − xj for (i, j) ∈ E, b ≥ 0

imply that bij = 1 if i ∈ A and j ∈ B, and 0 otherwise. Moreover,
the objective

∑
(i,j)∈E bijcij is the capacity of cut defined by A,B

That is, we’ve argued that the
dual is the LP relaxation of the
min cut problem:

min
b∈R|E|, x∈R|V |

∑

(i,j)∈E

bijcij

subject to bij ≥ xi − xj
bij , xi, xj ∈ {0, 1}
for all i, j
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Therefore, from what we know so far:

value of max flow ≤
optimal value for LP relaxed min cut ≤

capacity of min cut

Famous result, called max flow min cut theorem: value of max flow
through a network is exactly the capacity of the min cut

Hence in the above, we get all equalities. In particular, we get that
the primal LP and dual LP have exactly the same optimal values, a
phenomenon called strong duality

How often does this happen? More on this soon
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Part III: Duality and optimality
B. Lagrangian duality
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Another perspective on LP duality

min
x

cTx

subject to Ax = b

Gx ≤ h

Primal LP

max
u,b

− bTu− hT v

subject to −ATu−GT v = c

v ≥ 0

Dual LP

Explanation # 2: for any u and v ≥ 0, and x primal feasible

cTx ≥ cTx+ uT (Ax− b) + vT (Gx− h) := L(x, u, v)

So if C denotes primal feasible set, f? primal optimal value, then
for any u and v ≥ 0,

f? ≥ min
x∈C

L(x, u, v) ≥ min
x

L(x, u, v) := g(u, v)
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In other words, g(u, v) is a lower bound on f? for any u and v ≥ 0

Note that

g(u, v) =

{
−bTu− hT v if c = −ATu−GT v
−∞ otherwise

Now we can maximize g(u, v) over u and v ≥ 0 to get the tightest
bound, and this gives exactly the dual LP as before

This latest perspective is actually completely general and applies to
arbitrary optimization problems
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Lagrangian

Consider general minimization problem

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . . ,m

`j(x) = 0, j = 1, . . . , r

Need not be convex, but of course we will pay special attention to
convex case

We define the Lagrangian as

L(x, u, v) = f(x) +

m∑

i=1

uihi(x) +

r∑

j=1

vj`j(x)

New variables u ∈ Rm, v ∈ Rr, with u ≥ 0 (else L(x, u, v) = −∞)
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Important property: for any u ≥ 0 and v,

f(x) ≥ L(x, u, v) at each feasible x

Why? For feasible x,

L(x, u, v) = f(x) +

m∑

i=1

ui hi(x)︸ ︷︷ ︸
≤0

+

r∑

j=1

vj `j(x)︸ ︷︷ ︸
=0

≤ f(x)
5.1 The Lagrange dual function 217
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Figure 5.1 Lower bound from a dual feasible point. The solid curve shows the
objective function f0, and the dashed curve shows the constraint function f1.
The feasible set is the interval [−0.46, 0.46], which is indicated by the two
dotted vertical lines. The optimal point and value are x⋆ = −0.46, p⋆ = 1.54
(shown as a circle). The dotted curves show L(x,λ) for λ = 0.1, 0.2, . . . , 1.0.
Each of these has a minimum value smaller than p⋆, since on the feasible set
(and for λ ≥ 0) we have L(x,λ) ≤ f0(x).
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Figure 5.2 The dual function g for the problem in figure 5.1. Neither f0 nor
f1 is convex, but the dual function is concave. The horizontal dashed line
shows p⋆, the optimal value of the problem.

• Solid line is f

• Dashed line is h, hence
feasible set ≈ [−0.46, 0.46]

• Each dotted line shows
L(x, u, v) for different
choices of u ≥ 0

(From B & V page 217)
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Lagrange dual function

Let C denote primal feasible set, f? denote primal optimal value.
Minimizing L(x, u, v) over all x gives a lower bound:

f? ≥ min
x∈C

L(x, u, v) ≥ min
x

L(x, u, v) := g(u, v)

We call g(u, v) the Lagrange dual function, and it gives a lower
bound on f? for any u ≥ 0 and v, called dual feasible u, v

• Dashed horizontal line is f?

• Dual variable λ is (our u)

• Solid line shows g(λ)

(From B & V page 217)

5.1 The Lagrange dual function 217
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Figure 5.1 Lower bound from a dual feasible point. The solid curve shows the
objective function f0, and the dashed curve shows the constraint function f1.
The feasible set is the interval [−0.46, 0.46], which is indicated by the two
dotted vertical lines. The optimal point and value are x⋆ = −0.46, p⋆ = 1.54
(shown as a circle). The dotted curves show L(x,λ) for λ = 0.1, 0.2, . . . , 1.0.
Each of these has a minimum value smaller than p⋆, since on the feasible set
(and for λ ≥ 0) we have L(x,λ) ≤ f0(x).
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Figure 5.2 The dual function g for the problem in figure 5.1. Neither f0 nor
f1 is convex, but the dual function is concave. The horizontal dashed line
shows p⋆, the optimal value of the problem. 20



Example: quadratic program

Consider quadratic program:

min
x

1

2
xTQx+ cTx

subject to Ax = b, x ≥ 0

where Q � 0. Lagrangian:

L(x, u, v) =
1

2
xTQx+ cTx− uTx+ vT (Ax− b)

Lagrange dual function:

g(u, v) = min
x

L(x, u, v) = −1

2
(c−u+AT v)TQ−1(c−u+AT v)−bT v

For any u ≥ 0 and any v, this lower bounds primal optimal value f?
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Example: quadratic program in 2D

We choose f(x) to be quadratic in 2 variables, subject to x ≥ 0.
Dual function g(u) is also quadratic in 2 variables, also subject to
u ≥ 0

x1 / u1 x2 / u
2

f / g

●●

primal

dual

Dual function g(u)
provides a bound on
f? for every u ≥ 0

Largest bound this
gives us: turns out
to be exactly f? ...
coincidence?

More on this later,
via KKT conditions
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Lagrange dual problem

Given primal problem

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . . ,m

`j(x) = 0, j = 1, . . . , r

Our dual function g(u, v) satisfies f? ≥ g(u, v) for all u ≥ 0 and v.
Hence best lower bound: maximize g(u, v) over dual feasible u, v,
yielding Lagrange dual problem:

max
u,v

g(u, v)

subject to u ≥ 0

Key property, called weak duality: if dual optimal value is g?, then

f? ≥ g?

Note that this always holds (even if primal problem is nonconvex)
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Another key property: the dual problem is a convex optimization
problem (as written, it is a concave maximization problem)

Again, this is always true (even when primal problem is not convex)

By definition:

g(u, v) = min
x

{
f(x) +

m∑

i=1

uihi(x) +

r∑

j=1

vj`j(x)
}

= −max
x

{
− f(x)−

m∑

i=1

uihi(x)−
r∑

j=1

vj`j(x)
}

︸ ︷︷ ︸
pointwise maximum of convex functions in (u, v)

That is, g is concave in (u, v), and u ≥ 0 is a convex constraint,
hence dual problem is a concave maximization problem
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Example: nonconvex quartic minimization

Define f(x) = x4 − 50x2 + 100x (nonconvex), minimize subject to
constraint x ≥ −4.5
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−
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00
0
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00

30
00

50
00

Primal

x

f

●

0 20 40 60 80 100
−

11
60

−
11

20
−

10
80

Dual

v

g

Dual function g can be derived explicitly, via closed-form equation
for roots of a cubic equation
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Form of g is rather complicated:

g(u) = min
i=1,2,3

{
F 4
i (u)− 50F 2

i (u) + 100Fi(u)
}
,

where for i = 1, 2, 3,

Fi(u) =
−ai

12 · 21/3
(
432(100−u)−

(
4322(100−u)2−4·12003

)1/2)1/3

−100·21/3 1
(
432(100− u)−

(
4322(100− u)2 − 4 · 12003

)1/2)1/3 ,

and a1 = 1, a2 = (−1 + i
√
3)/2, a3 = (−1− i

√
3)/2

Without the context of duality it would be difficult to tell whether
or not g is concave ... but we know it must be!
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Strong duality

Recall that we always have f? ≥ g? (weak duality). On the other
hand, in some problems we have observed that actually

f? = g?

which is called strong duality

Slater’s condition: if the primal is a convex problem (i.e., f and
h1, . . . , hm are convex, `1, . . . , `r are affine), and there exists at
least one strictly feasible x ∈ Rn, meaning

h1(x) < 0, . . . , hm(x) < 0 and `1(x) = 0, . . . , `r(x) = 0

then strong duality holds

Refinement: actually only need strict inequalities for non-affine hi
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LPs: back to where we started

For linear programs:

• Easy to check that the dual of the dual LP is the primal LP

• Refined version of Slater’s condition: strong duality holds for
an LP if it is feasible

• Apply same logic to its dual LP: strong duality holds if it is
feasible

• Hence strong duality holds for LPs, except when both primal
and dual are infeasible

In other words, we nearly always have strong duality for LPs
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Example: mixed strategies for matrix games

Setup: two players, vs. , and a payout matrix P

R

A

1 2 . . . n
1 P11 P12 . . . P1n

2 P21 P22 . . . P2n

. . .
m Pm1 Pm2 . . . Pmn

Game: if A chooses i and
R chooses j, then A must
pay R amount Pij (don’t
feel bad for A—this can be
positive or negative)

They use mixed strategies, i.e., each will first specify a probability
distribution, and then

x : P(A chooses i) = xi, i = 1, . . . ,m

y : P(R chooses j) = yj , j = 1, . . . , n
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The expected payout then, from A to R, is

m∑

i=1

n∑

j=1

xiyjPij = xTPy

Now suppose that, because A is wiser, he will allow R to know his
strategy x ahead of time. In this case, R will choose y to maximize
xTPy, which results in A paying off

max {xTPy : y ≥ 0, 1T y = 1} = max
i=1,...,n

(P Tx)i

A’s best strategy is then to choose his distribution x according to

min
x

max
i=1,...,n

(P Tx)i

subject to x ≥ 0, 1Tx = 1
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In an alternate universe, if R were somehow wiser than A, then he
might allow A to know his strategy y beforehand

By the same logic, R’s best strategy is to choose his distribution y
according to

max
y

min
j=1,...,m

(Py)j

subject to y ≥ 0, 1T y = 1

Call R’s expected payout in first scenario f?1 , and expected payout
in second scenario f?2 . Because it is clearly advantageous to know
the other player’s strategy, f?1 ≥ f?2

But by Von Neumman’s minimax theorem: we know that f?1 = f?2
... which may come as a surprise!
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Recast first problem as an LP:

min
x,t

subject to x ≥ 0, 1Tx = 1

P Tx ≤ t

Now form the Lagrangian:

L(x, t, u, v, y) = t− uTx+ v(1− 1Tx) + yT (P Tx− t1)

and the Lagrange dual function:

g(u, v, y) = min
x,t

L(x, t, u, v, y)

=

{
v if 1− 1T y = 0, Py − u− v1 = 0

−∞ otherwise
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Hence dual problem, after eliminating slack variable u, is

max
y,v

v

subject to y ≥ 0, 1T y = 1

Py ≥ v

This is exactly the second problem

Strong duality holds because both primal and dual are feasible (we
only need one). Thus von Neumann’s minimax theorem is a direct
consequence of LP duality
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Example: support vector machine dual

Given y ∈ {−1, 1}n, X ∈ Rn×p, rows x1, . . . , xn, recall the
support vector machine or SVM problem:

min
β,β0,ξ

1

2
‖β‖22 + C

n∑

i=1

ξi

subject to ξi ≥ 0, i = 1, . . . , n

yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . , n

Introducing dual variables v, w ≥ 0, we form the Lagrangian:

L(β, β0, ξ, v, w) =
1

2
‖β‖22 + C

n∑

i=1

ξi −
n∑

i=1

viξi +

n∑

i=1

wi
(
1− ξi − yi(xTi β + β0)

)
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Minimizing over β, β0, ξ gives Lagrange dual function:

g(v, w) =

{
−1

2w
T X̃X̃Tw + 1Tw if w = C1− v, wT y = 0

−∞ otherwise

for X̃ = diag(y)X. Thus SVM dual, eliminating slack variable v:

max
w

− 1

2
wT X̃X̃Tw + 1Tw

subject to 0 ≤ w ≤ C1, wT y = 0

Check: Slater’s condition is satisfied, and we have strong duality.
Further, from study of SVMs, might recall that at optimality

β = X̃Tw

This is not a coincidence, as we’ll see via the KKT conditions
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Duality gap

Given primal feasible x and dual feasible u, v, the quantity

f(x)− g(u, v)

is called the duality gap between x and u, v. Note that

f(x)− f? ≤ f(x)− g(u, v)

so if the duality gap is zero, then x is primal optimal (and similarly,
u, v are dual optimal)

Also from algorithmic viewpoint, provides a stopping criterion: if
f(x)− g(u, v) ≤ ε, then we are guaranteed that f(x)− f? ≤ ε
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Part III: Duality and optimality
C. KKT optimality conditions
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Karush-Kuhn-Tucker conditions

Given general problem

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . . ,m

`j(x) = 0, j = 1, . . . , r

The Karush-Kuhn-Tucker conditions or KKT conditions are:

• 0 ∈ ∂
(
f(x) +

m∑

i=1

uihi(x) +

r∑

j=1

vj`j(x)

)
(stationarity)

• ui · hi(x) = 0 for all i (complementary slackness)

• hi(x) ≤ 0, `j(x) = 0 for all i, j (primal feasibility)

• ui ≥ 0 for all i (dual feasibility)
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Necessity

Let x? and u?, v? be primal and dual solutions with zero duality
gap (strong duality holds, e.g., under Slater’s condition). Then

f(x?) = g(u?, v?)

= min
x

f(x) +

m∑

i=1

u?ihi(x) +

r∑

j=1

v?j `j(x)

≤ f(x?) +
m∑

i=1

u?ihi(x
?) +

r∑

j=1

v?j `j(x
?)

≤ f(x?)

In other words, all these inequalities are actually equalities
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Two things to learn from this:

• The point x? minimizes L(x, u?, v?) over x ∈ Rn. Hence the
subdifferential of L(x, u?, v?) must contain 0 at x = x?—this
is exactly the stationarity condition

• We must have
∑m

i=1 u
?
ihi(x

?) = 0, and since each term here
is ≤ 0, this implies u?ihi(x

?) = 0 for every i—this is exactly
complementary slackness

Primal and dual feasibility hold by virtue of optimality. Therefore:

If x? and u?, v? are primal and dual solutions, with zero duality
gap, then x?, u?, v? satisfy the KKT conditions

(Note that this statement assumes nothing a priori about convexity
of our problem, i.e., of f, hi, `j)
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Sufficiency

If there exists x?, u?, v? that satisfy the KKT conditions, then

g(u?, v?) = f(x?) +

m∑

i=1

u?ihi(x
?) +

r∑

j=1

v?j `j(x
?)

= f(x?)

where the first equality holds from stationarity, and the second
holds from complementary slackness

Therefore the duality gap is zero (and x? and u?, v? are primal and
dual feasible) so x? and u?, v? are primal and dual optimal. Hence,
we’ve shown:

If x? and u?, v? satisfy the KKT conditions, then x? and u?, v?

are primal and dual solutions
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Putting it together

In summary, KKT conditions are equivalent to zero duality gap:

• always sufficient

• necessary under strong duality

Putting it together:

For a problem with strong duality (e.g., assume Slater’s condi-
tion: convex problem and there exists x strictly satisfying non-
affine inequality contraints),

x? and u?, v? are primal and dual solutions

⇐⇒ x? and u?, v? satisfy the KKT conditions

(Warning, concerning the stationarity condition: for a differentiable
function f , we cannot use ∂f(x) = {∇f(x)} unless f is convex!)
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What’s in a name?

Older folks will know these as the KT (Kuhn-Tucker) conditions:

• First appeared in publication by Kuhn and Tucker in 1951

• Later people found out that Karush had the conditions in his
unpublished master’s thesis of 1939

For unconstrained problems, the KKT conditions are nothing more
than the subgradient optimality condition

For general convex problems, the KKT conditions could have been
derived entirely from studying optimality via subgradients

0 ∈ ∂f(x?) +
m∑

i=1

N{hi≤0}(x?) +
r∑

j=1

N{`j=0}(x
?)

where recall NC(x) is the normal cone of C at x
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Example: quadratic with equality constraints

Consider for Q � 0,

min
x

1

2
xTQx+ cTx

subject to Ax = 0

(For example, this corresponds to Newton step for the constrained
problem minx f(x) subject to Ax = b)

Convex problem, no inequality constraints, so by KKT conditions:
x is a solution if and only if

[
Q AT

A 0

] [
x
u

]
=

[
−c
0

]

for some u. Linear system combines stationarity, primal feasibility
(complementary slackness and dual feasibility are vacuous)
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Example: support vector machines

Given y ∈ {−1, 1}n, and X ∈ Rn×p, back to the SVM problem:

min
β,β0,ξ

1

2
‖β‖22 + C

n∑

i=1

ξi

subject to ξi ≥ 0, i = 1, . . . , n

yi(x
T
i β + β0) ≥ 1− ξi, i = 1, . . . , n

Introduce dual variables v, w ≥ 0. KKT stationarity condition:

0 =

n∑

i=1

wiyi, β =

n∑

i=1

wiyixi, w = C1− v

Complementary slackness:

viξi = 0, wi
(
1− ξi − yi(xTi β + β0)

)
= 0, i = 1, . . . , n
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Hence at optimality we have β =
∑n

i=1wiyixi, and wi is nonzero
only if yi(x

T
i β + β0) = 1− ξi. Such points i are called the support

points

• For support point i, if ξi = 0, then xi lies on edge of margin,
and wi ∈ (0, C];

• For support point i, if ξi 6= 0, then xi lies on wrong side of
margin, and wi = C418 12. Flexible Discriminants
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FIGURE 12.1. Support vector classifiers. The left panel shows the separable
case. The decision boundary is the solid line, while broken lines bound the shaded
maximal margin of width 2M = 2/∥β∥. The right panel shows the nonseparable
(overlap) case. The points labeled ξ∗

j are on the wrong side of their margin by
an amount ξ∗

j = Mξj; points on the correct side have ξ∗
j = 0. The margin is

maximized subject to a total budget
P

ξi ≤ constant. Hence
P

ξ∗
j is the total

distance of points on the wrong side of their margin.

Our training data consists of N pairs (x1, y1), (x2, y2), . . . , (xN , yN ), with
xi ∈ IRp and yi ∈ {−1, 1}. Define a hyperplane by

{x : f(x) = xT β + β0 = 0}, (12.1)

where β is a unit vector: ∥β∥ = 1. A classification rule induced by f(x) is

G(x) = sign[xT β + β0]. (12.2)

The geometry of hyperplanes is reviewed in Section 4.5, where we show that
f(x) in (12.1) gives the signed distance from a point x to the hyperplane
f(x) = xT β+β0 = 0. Since the classes are separable, we can find a function
f(x) = xT β + β0 with yif(xi) > 0 ∀i. Hence we are able to find the
hyperplane that creates the biggest margin between the training points for
class 1 and −1 (see Figure 12.1). The optimization problem

max
β,β0,∥β∥=1

M

subject to yi(x
T
i β + β0) ≥ M, i = 1, . . . , N,

(12.3)

captures this concept. The band in the figure is M units away from the
hyperplane on either side, and hence 2M units wide. It is called the margin.

We showed that this problem can be more conveniently rephrased as

min
β,β0

∥β∥

subject to yi(x
T
i β + β0) ≥ 1, i = 1, . . . , N,

(12.4)

KKT conditions do not really give
us a way to find solution, but gives
a better understanding

In fact, we can use this to screen
away non-support points before
performing optimization
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Constrained and Lagrange forms

Often in statistics and machine learning we’ll switch back and forth
between constrained form, where t ∈ R is a tuning parameter,

min
x

f(x) subject to h(x) ≤ t (C)

and Lagrange form, where λ ≥ 0 is a tuning parameter,

min
x

f(x) + λ · h(x) (L)

and claim these are equivalent. Is this true (assuming convex f, h)?

(C) to (L): if problem (C) is strictly feasible, then strong duality
holds, and there exists some λ ≥ 0 (dual solution) such that any
solution x? in (C) minimizes

f(x) + λ · (h(x)− t)

so x? is also a solution in (L)
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(L) to (C): if x? is a solution in (L), then the KKT conditions for
(C) are satisfied by taking t = h(x?), so x? is a solution in (C)

Conclusion:

⋃

λ≥0
{solutions in (L)} ⊆

⋃

t

{solutions in (C)}
⋃

λ≥0
{solutions in (L)} ⊇

⋃

t such that (C)
is strictly feasible

{solutions in (C)}

This is nearly a perfect equivalence. Note: when the only value of
t that leads to a feasible but not strictly feasible constraint set is
t = 0, then we do get perfect equivalence

So, e.g., if h ≥ 0, and (C), (L) are feasible for all t, λ ≥ 0, then we
do get perfect equivalence
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Uniqueness in `1 penalized problems

Using the KKT conditions and simple probability arguments, we
have the following (perhaps surprising) result:1

Theorem: Let f be differentiable and strictly convex, let X ∈
Rn×p, λ > 0. Consider

min
β

f(Xβ) + λ‖β‖1
If the entries of X are drawn from a continuous probability dis-
tribution (on Rnp), then w.p. 1 there is a unique solution and it
has at most min{n, p} nonzero components

Remark: here f must be strictly convex, but no restrictions on the
dimensions of X (we could have p� n)

1For example, Tibshirani (2013), “The lasso problem and uniqueness”
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Part III: Duality and optimality
D. Duality correspondences
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Back to duality

A key use of duality: under strong duality, can characterize primal
solutions from dual solutions

Recall that under strong duality, the KKT conditions are necessary
for optimality. Given dual solutions u?, v?, any primal solution x?

satisfies the stationarity condition

0 ∈ ∂f(x?) +
m∑

i=1

u?i ∂hi(x
?) +

r∑

j=1

v?i ∂`j(x
?)

In other words, x? solves minx L(x, u
?, v?)

In particular, if this is satisfied uniquely (above problem has unique
minimizer), then corresponding point must be the primal solution
... very useful when dual is easier to solve than primal

51



When is dual easier?

Key facts about primal-dual relationship:

• Dual has complementary number of variables: recall, number
of primal constraints

• Dual involves complementary norms: ‖ · ‖ becomes ‖ · ‖∗
• Dual has “identical” smoothness: L/m (Lipschitz constant of

gradient by strong convexity parameter) is unchanged between
f and its conjugate f∗

• Dual can “shift” linear transformations between terms ... this
leads to key idea: dual decomposition
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Dual norms

Let ‖x‖ be a norm, e.g.,

• `p norm: ‖x‖p = (
∑n

i=1 |xi|p)1/p, for p ≥ 1

• Trace norm: ‖X‖tr =
∑r

i=1 σi(X)

We define its dual norm ‖x‖∗ as

‖x‖∗ = max
‖z‖≤1

zTx

Gives us the inequality |zTx| ≤ ‖z‖‖x‖∗ (like generalized Holder).
Back to our examples,

• `p norm dual: (‖x‖p)∗ = ‖x‖q, where 1/p+ 1/q = 1

• Trace norm dual: (‖X‖tr)∗ = ‖X‖op = σ1(X)

Dual norm of dual norm: can show that ‖x‖∗∗ = ‖x‖
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Conjugate function

Given a function f : Rn → R, define its conjugate f∗ : Rn → R,

f∗(y) = max
x

yTx− f(x)

Note that f∗ is always convex, since it is the pointwise maximum
of convex (affine) functions in y (here f need not be convex)3.3 The conjugate function 91

f(x)

(0, −f∗(y))

xy

x

Figure 3.8 A function f : R → R, and a value y ∈ R. The conjugate
function f∗(y) is the maximum gap between the linear function yx and
f(x), as shown by the dashed line in the figure. If f is differentiable, this
occurs at a point x where f ′(x) = y.

3.3.1 Definition and examples

Let f : Rn → R. The function f∗ : Rn → R, defined as

f∗(y) = sup
x∈dom f

(
yT x − f(x)

)
, (3.18)

is called the conjugate of the function f . The domain of the conjugate function
consists of y ∈ Rn for which the supremum is finite, i.e., for which the difference
yT x − f(x) is bounded above on dom f . This definition is illustrated in figure 3.8.

We see immediately that f∗ is a convex function, since it is the pointwise
supremum of a family of convex (indeed, affine) functions of y. This is true whether
or not f is convex. (Note that when f is convex, the subscript x ∈ dom f is not
necessary since, by convention, yT x − f(x) = −∞ for x ̸∈ dom f .)

We start with some simple examples, and then describe some rules for conjugat-
ing functions. This allows us to derive an analytical expression for the conjugate
of many common convex functions.

Example 3.21 We derive the conjugates of some convex functions on R.

• Affine function. f(x) = ax + b. As a function of x, yx − ax − b is bounded if
and only if y = a, in which case it is constant. Therefore the domain of the
conjugate function f∗ is the singleton {a}, and f∗(a) = −b.

• Negative logarithm. f(x) = − log x, with dom f = R++. The function xy+log x
is unbounded above if y ≥ 0 and reaches its maximum at x = −1/y otherwise.
Therefore, dom f∗ = {y | y < 0} = −R++ and f∗(y) = − log(−y)−1 for y < 0.

• Exponential. f(x) = ex. xy − ex is unbounded if y < 0. For y > 0, xy − ex

reaches its maximum at x = log y, so we have f∗(y) = y log y − y. For y = 0,

f∗(y) : maximum gap between
linear function yTx and f(x)

(From B & V page 91)

For differentiable f , conjugation is called the Legendre transform
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Properties:

• Fenchel’s inequality: for any x, y,

f(x) + f∗(y) ≥ xT y

• Conjugate of conjugate f∗∗ satisfies f∗∗ ≤ f
• If f is closed and convex, then f∗∗ = f

• If f is closed and convex, then for any x, y,

x ∈ ∂f∗(y) ⇐⇒ y ∈ ∂f(x)
⇐⇒ f(x) + f∗(y) = xT y

• If f(u, v) = f1(u) + f2(v), then

f∗(w, z) = f∗1 (w) + f∗2 (z)
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Examples:

• Simple quadratic: let f(x) = 1
2x

TQx, where Q � 0. Then
yTx− 1

2x
TQx is strictly concave in y and is maximized at

y = Q−1x, so

f∗(y) =
1

2
yTQ−1y

• Indicator function: if f(x) = IC(x), then its conjugate is

f∗(y) = I∗C(y) = max
x∈C

yTx

called the support function of C

• Norm: if f(x) = ‖x‖, then its conjugate is

f∗(y) = I{z : ‖z‖∗≤1}(y)

where ‖ · ‖∗ is the dual norm of ‖ · ‖
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Example: lasso dual

Given y ∈ Rn, X ∈ Rn×p, recall the lasso problem:

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1

Its dual function is just a constant (equal to f?). Therefore we
transform the primal to

min
β,z

1

2
‖y − z‖22 + λ‖β‖1 subject to z = Xβ

so dual function is now

g(u) = min
β,z

1

2
‖y − z‖22 + λ‖β‖1 + uT (z −Xβ)

=
1

2
‖y‖22 −

1

2
‖y − u‖22 − I{v : ‖v‖∞≤1}(XTu/λ)
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Therefore the lasso dual problem is

max
u

1

2

(
‖y‖22 − ‖y − u‖22

)
subject to ‖XTu‖∞ ≤ λ

⇐⇒ min
u
‖y − u‖22 subject to ‖XTu‖∞ ≤ λ

Check: Slater’s condition holds, and hence so does strong duality.
But note: the optimal value of the last problem is not the optimal
lasso objective value

Note that given the dual solution u, any lasso solution β satisfies

Xβ = y − u

This is from KKT stationarity condition for z (i.e., z − y + β = 0).
So the lasso fit is just the dual residual2

2See, e.g., Tibshirani and Taylor (2012), “Degrees of freedom in lasso
problems”, for consequences of dual perpsective
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y

C = {u : ‖XT u‖∞ ≤ λ}

Xβ̂

0
0

û

{v : ‖v‖∞ ≤ λ}

A, sA

(XT )−1

Rn Rp

1
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Conjugates and dual problems

Conjugates appear frequently in derivation of dual problems, via

−f∗(u) = min
x

f(x)− uTx

in minimization of the Lagrangian. E.g., consider

min
x

f(x) + g(x)

Equivalently: min
x,z

f(x) + g(z) subject to x = z. Dual function:

g(u) = min
x

f(x) + g(z) + uT (z − x) = −f∗(u)− g∗(−u)

Hence dual problem is

max
u
−f∗(u)− g∗(−u)
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Examples of this last calculation:

• Indicator function:

Primal : min
x

f(x) + IC(x)

Dual : max
u
−f∗(u)− I∗C(−u)

where I∗C is the support function of C

• Norms: the dual of

Primal : min
x

f(x) + ‖x‖
Dual : max

u
−f∗(u) subject to ‖u‖∗ ≤ 1

where ‖ · ‖∗ is the dual norm of ‖ · ‖
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Shifting linear transformations

Dual formulations can help us by “shifting” a linear transformation
between one part of the objective and another. Consider

min
x

f(x) + g(Ax)

Equivalently: min
x,z

f(x) + g(z) subject to Ax = z. Like before,
dual is:

max
u
−f∗(ATu)− g∗(−u)

Example: for a norm and its dual norm, ‖ · ‖, ‖ · ‖∗:

Primal : min
x

f(x) + ‖Ax‖

Dual : max
u
−f(ATu) subject to ‖u‖∗ ≤ 1

The dual can often be a helpful transformation here
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Dual cones

For a cone K ⊆ Rn (recall this means x ∈ K, t ≥ 0 =⇒ tx ∈ K),

K∗ = {y : yTx ≥ 0 for all x ∈ K}

is called its dual cone. This is always a convex cone (even if K is
not convex)

52 2 Convex sets

K Ky

z

Figure 2.22 Left. The halfspace with inward normal y contains the cone K,
so y ∈ K∗. Right. The halfspace with inward normal z does not contain K,
so z ̸∈ K∗.

Example 2.23 Nonnegative orthant. The cone Rn
+ is its own dual:

xT y ≥ 0 for all x ≽ 0 ⇐⇒ y ≽ 0.

We call such a cone self-dual.

Example 2.24 Positive semidefinite cone. On the set of symmetric n × n matrices
Sn, we use the standard inner product tr(XY ) =

∑n

i,j=1
XijYij (see §A.1.1). The

positive semidefinite cone Sn
+ is self-dual, i.e., for X, Y ∈ Sn,

tr(XY ) ≥ 0 for all X ≽ 0 ⇐⇒ Y ≽ 0.

We will establish this fact.

Suppose Y ̸∈ Sn
+. Then there exists q ∈ Rn with

qT Y q = tr(qqT Y ) < 0.

Hence the positive semidefinite matrix X = qqT satisfies tr(XY ) < 0; it follows that
Y ̸∈ (Sn

+)∗.

Now suppose X, Y ∈ Sn
+. We can express X in terms of its eigenvalue decomposition

as X =
∑n

i=1
λiqiq

T
i , where (the eigenvalues) λi ≥ 0, i = 1, . . . , n. Then we have

tr(Y X) = tr

(
Y

n∑

i=1

λiqiq
T
i

)
=

n∑

i=1

λiq
T
i Y qi ≥ 0.

This shows that Y ∈ (Sn
+)∗.

Example 2.25 Dual of a norm cone. Let ∥ · ∥ be a norm on Rn. The dual of the
associated cone K = {(x, t) ∈ Rn+1 | ∥x∥ ≤ t} is the cone defined by the dual norm,
i.e.,

K∗ = {(u, v) ∈ Rn+1 | ∥u∥∗ ≤ v},

Notice that y ∈ K∗

⇐⇒ the halfspace {x :
yTx ≥ 0} contains K

(From B & V page 52)

Important property: if K is a closed convex cone, then K∗∗ = K
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Examples:

• Linear subspace: the dual cone of a linear subspace V is V ⊥,
its orthogonal complement. E.g., (row(A))∗ = null(A)

• Norm cone: the dual cone of the norm cone

K = {(x, t) ∈ Rn+1 : ‖x‖ ≤ t}

is the norm cone of its dual norm

K∗ = {(y, s) ∈ Rn+1 : ‖y‖∗ ≤ s}

• Positive semidefinite cone: the convex cone Sn+ is self-dual,
meaning (Sn+)∗ = Sn+. Why? Check that

Y � 0 ⇐⇒ tr(Y X) ≥ 0 for all X � 0

by looking at the eigendecomposition of X
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Dual cones and dual problems

Consider the cone constrained problem

min
x

f(x) subject to Ax ∈ K

Recall that its dual problem is

max
u
−f∗(ATu)− I∗K(−u)

where recall I∗K(y) = maxz∈K zT y, the support function of K. If
K is a cone, then this is simply

max
u
−f∗(ATu) subject to u ∈ K∗

where K∗ is the dual cone of K, because I∗K(−u) = IK∗(u)

This is quite a useful observation, because many different types of
constraints can be posed as cone constraints
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Dual subtleties

• Often, we will transform the dual into an equivalent problem
and still call this the dual. Under strong duality, we can use
solutions of the (transformed) dual problem to characterize or
compute primal solutions

Warning: the optimal value of this transformed dual problem
is not necessarily the optimal primal value

• A common trick in deriving duals for unconstrained problems
is to first transform the primal by adding a dummy variable
and an equality constraint

Usually there is ambiguity in how to do this. Different choices
can lead to different dual problems!
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