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Part IV: Advanced methods
A. Newton’s method
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Newton’s method

Given unconstrained, smooth convex optimization

min
x

f(x)

where f is convex, twice differentable, and dom(f) = Rn. Recall
that gradient descent chooses initial x(0) ∈ Rn, and repeats

x(k) = x(k−1) − tk · ∇f(x(k−1)), k = 1, 2, 3, . . .

In comparison, Newton’s method repeats

x(k) = x(k−1) −
(
∇2f(x(k−1))

)−1∇f(x(k−1)), k = 1, 2, 3, . . .

Here ∇2f(x(k−1)) is the Hessian matrix of f at x(k−1)
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Newton’s method interpretation

Recall the motivation for gradient descent step at x: we minimize
the quadratic approximation

f(y) ≈ f(x) +∇f(x)T (y − x) +
1

2t
‖y − x‖22

over y, and this yields the update x+ = x− t∇f(x)

Newton’s method uses in a sense a better quadratic approximation

f(y) ≈ f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(x)(y − x)

and minimizes over y to yield x+ = x− (∇2f(x))−1∇f(x)
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Consider minimizing f(x) = (10x2
1 + x2

2)/2 + 5 log(1 + e−x1−x2)
(this must be a nonquadratic ... why?)

We compare gradient de-
scent (black) to Newton’s
method (blue), where both
take steps of roughly same
length
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Linearized optimality condition

Aternative interpretation of Newton step at x: we seek a direction
v so that ∇f(x+ v) = 0. Let F (x) = ∇f(x). Consider linearizing
F around x, via approximation F (y) ≈ F (x) +DF (x)(y − x), i.e.,

0 = ∇f(x+ v) ≈ ∇f(x) +∇2f(x)v

Solving for v yields v = −(∇2f(x))−1∇f(x)486 9 Unconstrained minimization

f ′

f̂ ′

(x, f ′(x))

(x + ∆xnt, f
′(x + ∆xnt))

Figure 9.18 The solid curve is the derivative f ′ of the function f shown in

figure 9.16. f̂ ′ is the linear approximation of f ′ at x. The Newton step ∆xnt

is the difference between the root of f̂ ′ and the point x.

the zero-crossing of the derivative f ′, which is monotonically increasing since f is
convex. Given our current approximation x of the solution, we form a first-order
Taylor approximation of f ′ at x. The zero-crossing of this affine approximation is
then x + ∆xnt. This interpretation is illustrated in figure 9.18.

Affine invariance of the Newton step

An important feature of the Newton step is that it is independent of linear (or
affine) changes of coordinates. Suppose T ∈ Rn×n is nonsingular, and define
f̄(y) = f(Ty). Then we have

∇f̄(y) = TT ∇f(x), ∇2f̄(y) = TT ∇2f(x)T,

where x = Ty. The Newton step for f̄ at y is therefore

∆ynt = −
(
TT ∇2f(x)T

)−1 (
TT ∇f(x)

)

= −T−1∇2f(x)−1∇f(x)

= T−1∆xnt,

where ∆xnt is the Newton step for f at x. Hence the Newton steps of f and f̄ are
related by the same linear transformation, and

x + ∆xnt = T (y + ∆ynt).

The Newton decrement

The quantity

λ(x) =
(
∇f(x)T ∇2f(x)−1∇f(x)

)1/2

is called the Newton decrement at x. We will see that the Newton decrement
plays an important role in the analysis of Newton’s method, and is also useful

(From B & V page 486)

History: work of Newton (1685)
and Raphson (1690) originally fo-
cused on finding roots of poly-
nomials. Simpson (1740) ap-
plied this idea to general nonlin-
ear equations, and minimization
by setting the gradient to zero
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Affine invariance of Newton’s method

Important property Newton’s method: affine invariance. Given f ,
nonsingular A ∈ Rn×n. Let x = Ay, and g(y) = f(Ay). Newton
steps on g are

y+ = y −
(
∇2g(y)

)−1∇g(y)

= y −
(
AT∇2f(Ay)A

)−1
AT∇f(Ay)

= y −A−1
(
∇2f(Ay)

)−1∇f(Ay)

Hence
Ay+ = Ay −

(
∇2f(Ay)

)−1∇f(Ay)

i.e.,
x+ = x−

(
∇2f(x)

)−1
f(x)

So progress is independent of problem scaling. This is not true of
gradient descent!
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Backtracking line search

So far we’ve seen pure Newton’s method. This need not converge.
In practice, we use damped Newton’s method (typically just called
Newton’s method), which repeats

x+ = x− t
(
∇2f(x)

)−1∇f(x)

Note that the pure method uses t = 1

Step sizes here are chosen by backtracking search, with parameters
0 < α ≤ 1/2, 0 < β < 1. At each iteration, start with t = 1, while

f(x+ tv) > f(x) + αt∇f(x)T v

we shrink t = βt, else we perform the Newton update
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Example: logistic regression

Logistic regression example, with n = 500, p = 100: we compare
gradient descent and Newton’s method, both with backtracking
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Newton’s method: in a totally different regime of convergence...!
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Iteratively reweighted least squares

Given y ∈ Yn, X ∈ Rn×p, and a convex function b, consider fitting
a generalized linear model:

min
β
−yTXβ + b(Xβ)

where b is applied componentwise. Examples include:

• Linear regression: b(u) = u2/2

• Logistic regression: b(u) = log(1 + eu)

• Poisson regression: b(u) = eu

Recall b the is cumulant generating function, hence

µ = b′(Xβ) and V = diag(b′′(Xβ))

are the mean vector and diagonal matrix of variances
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Gradient calculation:

∇f(β) = XT
(
y − b′(Xβ)︸ ︷︷ ︸

µ

)

Hessian calculation:

∇2f(β) = XT diag(b′′(Xβ))︸ ︷︷ ︸
V

X

Note the similarities to the linear model case! Moreover, Newton’s
method becomes iteratively reweighted least squares:

β+ = β −
(
∇2f(β)

)−1∇f(β) ⇐⇒ β+ = (XTV X)−1XTV z

where z = Xβ − V −1(y − µ). (These iterations are also central to
classical statistical inference in GLMs)
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Convergence analysis

Assume that f convex, twice differentiable, having dom(f) = Rn,
and additionally

• ∇f is Lipschitz with parameter L

• f is strongly convex with parameter m

• ∇2f is Lipschitz with parameter M

Theorem: Newton’s method with backtracking line search sat-
isfies the following two-stage convergence bounds

f(x(k))− f? ≤





(f(x(0))− f?)− γk if k ≤ k0

2m3

M2

(1

2

)2k−k0+1

if k > k0

Here γ = αβ2η2m/L2, η = min{1, 3(1− 2α)}m2/M , and k0 is
the number of steps until ‖∇f(x(k0+1))‖2 < η
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In more detail, convergence analysis reveals γ > 0, 0 < η ≤ m2/M
such that convergence follows two stages

• Damped phase: ‖∇f(x(k))‖2 ≥ η, and

f(x(k+1))− f(x(k)) ≤ −γ

• Pure phase: ‖∇f(x(k))‖2 < η, backtracking selects t = 1, and

M

2m2
‖∇f(x(k+1))‖2 ≤

( M

2m2
‖∇f(x(k))‖2

)2

Note that once we enter pure phase, we won’t leave, because

2m2

M

( M

2m2
η
)2
≤ η

when η ≤ m2/M
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Unraveling this result, what does it say? To get f(x(k))− f? ≤ ε,
we need at most

f(x(0))− f?
γ

+ log log(ε0/ε)

iterations, where ε0 = 2m3/M2

• This is called quadratic convergence. Compare this to linear
convergence (which, recall, is what gradient descent achieves
under strong convexity)

• The above result is a local convergence rate, i.e., we are only
guaranteed quadratic convergence after some number of steps
k0, where k0 ≤ f(x(0))−f?

γ

• Somewhat bothersome may be the fact that the above bound
depends on L,m,M , and yet the algorithm itself does not ...
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Self-concordance

A scale-free analysis is possible for self-concordant functions: on R,
a convex function f is called self-concordant if

|f ′′′(x)| ≤ 2f ′′(x)3/2 for all x

and on Rn is called self-concordant if its projection onto every line
segment is so

Theorem (Nesterov and Nemirovskii): Newton’s method
with backtracking line search requires at most

C(α, β)
(
f(x(0))− f?

)
+ log log(1/ε)

iterations to reach f(x(k))−f? ≤ ε, where C(α, β) is a constant
that only depends on α, β
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What kind of functions are self-concordant?

• Linear and quadratic functions

• f(x) = −∑n
i=1 log(xi) on Rn++

• f(X) = − log(det(X)) on Sn++

• If g is self-concordant, then so is f(x) = g(Ax+ b)

• In the definition of self-concordance, we can replace factor of
2 by a general κ > 0

• If g is κ-self-concordant, then we can rescale: f(x) = κ2

4 g(x)
is self-concordant (2-self-concordant)
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Comparison to first-order methods

At a high-level:

• Memory: each iteration of Newton’s method requires O(n2)
storage (n× n Hessian); each gradient iteration requires O(n)
storage (n-dimensional gradient)

• Computation: each Newton iteration requires O(n3) flops
(solving a dense n× n linear system); each gradient iteration
requires O(n) flops (scaling/adding n-dimensional vectors)

• Backtracking: backtracking line search has roughly the same
cost, both use O(n) flops per inner backtracking step

• Conditioning: Newton’s method is not affected by a problem’s
conditioning, but gradient descent can seriously degrade
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Back to logistic regression example: now x-axis is parametrized in
terms of time taken per iteration
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Each gradient descent step is O(p), but each Newton step is O(p3)
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Equality-constrained Newton’s method

Consider now:

min
x

f(x) subject to Ax = b

Equality-constrained Newton: start with Ax(0) = b, and repeat

x+ = x+ tv, where

v = argmin
Az=0

∇f(x)T (z − x) +
1

2
(z − x)T∇2f(x)(z − x)

This keeps x+ in feasible set, since Ax+ = Ax+ tAv = b+ 0 = b.
Furthermore, v is the solution to minimizing a quadratic subject to
equality constraints. KKT conditions:

[
∇2f(x) AT

A 0

] [
v
w

]
=

[
−∇f(x)

0

]

for some w. Direction v is again given by solving a linear system
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Quasi-Newton methods

If the Hessian is too expensive (or singular), then a quasi-Newton
method can be used to approximate ∇2f(x) with H � 0, and we
update according to

x+ = x− tH−1∇f(x)

• Approximate Hessian H is recomputed at each step. Goal is
to make H−1 cheap to apply (possibly, cheap storage too)

• Convergence is fast: superlinear, but not the same as Newton.
Roughly n steps of quasi-Newton make same progress as one
Newton step

• Very wide variety of quasi-Newton methods; common theme
is to “propogate” computation of H across iterations
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Davidon-Fletcher-Powell or DFP:

• Update H,H−1 via rank 2 updates from previous iterations;
cost is O(n2) for these updates

• Since it is being stored, applying H−1 is simply O(n2) flops

• Can be motivated by Taylor series expansion

Broyden-Fletcher-Goldfarb-Shanno or BFGS:

• Came after DFP, but BFGS is now much more widely used

• Again, updates H,H−1 via rank 2 updates, but does so in a
“dual” fashion to DFP; cost is still O(n2)

• Also has a limited-memory version, L-BFGS: instead of letting
updates propogate over all iterations, only keeps updates from
last m iterations; storage is now O(mn) instead of O(n2)

22



Part IV: Advanced methods
B. Interior-point methods
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Hierarchy of second-order methods

Assuming all problems are convex, you can think of the following
hierarchy that we’ve worked through:

• Quadratic problems are the easiest: closed-form solution

• Equality-constrained quadratic problems are still easy: we use
KKT conditions to derive closed-form solution

• Equality-constrained smooth problems are next: use Newton’s
method to reduce this to a sequence of equality-constrained
quadratic problems

• Inequality-constrained (and also equality-constrained) smooth
problems are what we cover now: use interior-point methods
to reduce this to a sequence of equality-constrained problems
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Log barrier function

Consider the convex optimization problem

min
x

f(x)

subject to hi(x) ≤ 0, i = 1, . . . ,m

Ax = b

We will assume that f , h1, . . . , hm are convex, twice differentiable,
each with domain Rn. The function

φ(x) = −
m∑

i=1

log(−hi(x))

is called the log barrier for the above problem. Its domain is the
set of strictly feasible points, {x : hi(x) < 0, i = 1, . . . ,m}, which
we assume is nonempty. (Note this implies strong duality holds)
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Ignoring equality constraints for now, our problem can be written as

min
x

f(x) +

m∑

i=1

I{hi(x)≤0}(x)

11.2 Logarithmic barrier function and central path 563

u
−3 −2 −1 0 1

−5

0

5

10

Figure 11.1 The dashed lines show the function I−(u), and the solid curves

show Î−(u) = −(1/t) log(−u), for t = 0.5, 1, 2. The curve for t = 2 gives
the best approximation.

The problem (11.3) has no inequality constraints, but its objective function is not
(in general) differentiable, so Newton’s method cannot be applied.

11.2.1 Logarithmic barrier

The basic idea of the barrier method is to approximate the indicator function I−
by the function

Î−(u) = −(1/t) log(−u), dom Î− = −R++,

where t > 0 is a parameter that sets the accuracy of the approximation. Like
I−, the function Î− is convex and nondecreasing, and (by our convention) takes

on the value ∞ for u > 0. Unlike I−, however, Î− is differentiable and closed:
it increases to ∞ as u increases to 0. Figure 11.1 shows the function I−, and

the approximation Î−, for several values of t. As t increases, the approximation
becomes more accurate.

Substituting Î− for I− in (11.3) gives the approximation

minimize f0(x) +
∑m

i=1 −(1/t) log(−fi(x))
subject to Ax = b.

(11.4)

The objective here is convex, since −(1/t) log(−u) is convex and increasing in u,
and differentiable. Assuming an appropriate closedness condition holds, Newton’s
method can be used to solve it.

The function

φ(x) = −
m∑

i=1

log(−fi(x)), (11.5)

We can approximate the sum of indi-
cators by the log barrier:

min
x

f(x)− 1

t

m∑

i=1

log(−hi(x))

where t > 0 is a large number

This approximation is more accurate for larger t. But for any value
of t, the log barrier approaches ∞ if any hi(x)→ 0
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Log barrier calculus

For the log barrier function

φ(x) = −
m∑

i=1

log(−hi(x))

we have for its gradient:

∇φ(x) = −
m∑

i=1

1

hi(x)
∇hi(x)

and for its Hessian:

∇2φ(x) =

m∑

i=1

1

hi(x)2
∇hi(x)∇hi(x)T −

m∑

i=1

1

hi(x)
∇2hi(x)
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Central path

Consider barrier problem:

min
x

tf(x) + φ(x)

subject to Ax = b

The central path is defined by solution x?(t) with respect to t > 0

• Hope is that, as t→∞, we will have x?(t)→ x?, solution to
our original problem

• Why don’t we just set t to be some huge value, and solve the
above problem? Directly seek solution at end of central path?

• Problem is that this is seriously inefficient in practice

• Much more efficient to traverse the central path, as we will see
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An important special case: barrier problem for a linear program:

min
x

tcTx−
m∑

i=1

log(ei − dTi x)

The barrier function corresponds to polyhedral constraint Dx ≤ e

Gradient optimality condition:

0 = tc−
m∑

i=1

1

ei − dTi x?(t)
di

This means that gradient ∇φ(x?(t))
must be parallel to −c, i.e., hyper-
plane {x : cTx = cTx?(t)} lies tan-
gent to contour of φ at x?(t)

566 11 Interior-point methods

c

x⋆ x⋆(10)

Figure 11.2 Central path for an LP with n = 2 and m = 6. The dashed
curves show three contour lines of the logarithmic barrier function φ. The
central path converges to the optimal point x⋆ as t → ∞. Also shown is the
point on the central path with t = 10. The optimality condition (11.9) at
this point can be verified geometrically: The line cT x = cT x⋆(10) is tangent
to the contour line of φ through x⋆(10).

we see that x⋆(t) minimizes the Lagrangian

L(x,λ, ν) = f0(x) +

m∑

i=1

λifi(x) + νT (Ax − b),

for λ = λ⋆(t) and ν = ν⋆(t), which means that λ⋆(t), ν⋆(t) is a dual feasible pair.
Therefore the dual function g(λ⋆(t), ν⋆(t)) is finite, and

g(λ⋆(t), ν⋆(t)) = f0(x
⋆(t)) +

m∑

i=1

λ⋆
i (t)fi(x

⋆(t)) + ν⋆(t)
T
(Ax⋆(t) − b)

= f0(x
⋆(t)) − m/t.

In particular, the duality gap associated with x⋆(t) and the dual feasible pair λ⋆(t),
ν⋆(t) is simply m/t. As an important consequence, we have

f0(x
⋆(t)) − p⋆ ≤ m/t,

i.e., x⋆(t) is no more than m/t-suboptimal. This confirms the intuitive idea that
x⋆(t) converges to an optimal point as t → ∞.

Example 11.2 Inequality form linear programming. The dual of the inequality form
LP (11.8) is

maximize −bTλ
subject to ATλ+ c = 0

λ ≽ 0.

From the optimality conditions (11.9), it is clear that

λ⋆
i (t) =

1

t(bi − aT
i x⋆(t))

, i = 1, . . . , m,

(From B & V page 565)
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KKT conditions and duality

Central path is characterized by its KKT conditions:

t∇f(x?(t))−
m∑

i=1

1

hi(x?(t))
∇hi(x?(t)) +ATw = 0,

Ax?(t) = b, hi(x
?(t)) < 0, i = 1, . . . ,m

for some w ∈ Rm. But we don’t really care about dual variable for
barrier problem ...

From central path points, we can derive feasible dual points for our
original problem. Given x?(t) and corresponding w, we define

u?i (t) = − 1

thi(x?(t))
, i = 1, . . . ,m, v?(t) = w/t
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We claim u?(t), v?(t) are dual feasible for original problem, whose
Lagrangian is

L(x, u, v) = f(x) +

m∑

i=1

uihi(x) + vT (Ax− b)

Why?

• Note that u?i (t) > 0 since hi(x
?(t)) < 0 for all i = 1, . . . ,m

• Further, the point (u?(t), v?(t)) lies in domain of Lagrange
dual function g(u, v), since by definition

∇f(x?(t)) +

m∑

i=1

ui(x
?(t))∇hi(x?(t)) +AT v?(t) = 0

I.e., x?(t) minimizes Lagrangian L(x, u?(t), v?(t)) over x, so
g(u?(t), v?(t)) > −∞
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Duality gap

This allows us to bound suboptimality of f(x?(t)), with respect to
original problem, via the duality gap. We compute

g(u?(t), v?(t)) = f(x?(t)) +

m∑

i=1

u?i (t)hi(x
?(t)) +

v?(t)T (Ax?(t)− b)
= f(x?(t))−m/t

That is, we know that f(x?(t))− f? ≤ m/t

This will be very useful as a stopping criterion; it also confirms the
hope that x?(t)→ x? as t→∞
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Barrier method

The barrier method solves a sequence of problems

min
x

tf(x) + φ(x)

subject to Ax = b

for increasing values of t > 0, until duality gap satisfies m/t ≤ ε

We fix t(0) > 0, µ > 1. We use Newton to compute x(0) = x?(t), a
solution to barrier problem at t = t(0). For k = 1, 2, 3, . . .

• Solve the barrier problem at t = t(k), using Newton initialized
at x(k−1), to yield x(k) = x?(t)

• Stop if m/t ≤ ε, else update t(k+1) = µt

The first step above is called a centering step (since it brings x(k)

onto the central path)
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Example of a small LP in n = 50 dimensions, m = 100 inequality
constraints (from B & V page 571):572 11 Interior-point methods

Newton iterations
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Figure 11.4 Progress of barrier method for a small LP, showing duality
gap versus cumulative number of Newton steps. Three plots are shown,
corresponding to three values of the parameter µ: 2, 50, and 150. In each
case, we have approximately linear convergence of duality gap.

Newton’s method is λ(x)2/2 ≤ 10−5, where λ(x) is the Newton decrement of the
function tcT x + φ(x).

The progress of the barrier method, for three values of the parameter µ, is
shown in figure 11.4. The vertical axis shows the duality gap on a log scale. The
horizontal axis shows the cumulative total number of inner iterations, i.e., Newton
steps, which is the natural measure of computational effort. Each of the plots has
a staircase shape, with each stair associated with one outer iteration. The width of
each stair tread (i.e., horizontal portion) is the number of Newton steps required
for that outer iteration. The height of each stair riser (i.e., the vertical portion) is
exactly equal to (a factor of) µ, since the duality gap is reduced by the factor µ at
the end of each outer iteration.

The plots illustrate several typical features of the barrier method. First of all,
the method works very well, with approximately linear convergence of the duality
gap. This is a consequence of the approximately constant number of Newton steps
required to re-center, for each value of µ. For µ = 50 and µ = 150, the barrier
method solves the problem with a total number of Newton steps between 35 and 40.

The plots in figure 11.4 clearly show the trade-off in the choice of µ. For µ = 2,
the treads are short; the number of Newton steps required to re-center is around 2
or 3. But the risers are also short, since the duality gap reduction per outer iteration
is only a factor of 2. At the other extreme, when µ = 150, the treads are longer,
typically around 7 Newton steps, but the risers are also much larger, since the
duality gap is reduced by the factor 150 in each outer iteration.

The trade-off in choice of µ is further examined in figure 11.5. We use the
barrier method to solve the LP, terminating when the duality gap is smaller than
10−3, for 25 values of µ between 1.2 and 200. The plot shows the total number
of Newton steps required to solve the problem, as a function of the parameter µ.
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Convergence analysis

Assume that we solve the centering steps exactly. The following
result is immediate

Theorem: The barrier method after k centering steps satisfies

f(x(k))− f? ≤ m

µkt(0)

In other words, to reach a desired accuracy level of ε, we require

log(m/(t(0)ε))

logµ

centering steps with the barrier method (plus initial centering step)
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Example of barrier method progress for an LP with m constraints
(from B & V page 575):

576 11 Interior-point methods

Newton iterations
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Figure 11.7 Progress of barrier method for three randomly generated stan-
dard form LPs of different dimensions, showing duality gap versus cumula-
tive number of Newton steps. The number of variables in each problem is
n = 2m. Here too we see approximately linear convergence of the duality
gap, with a slight increase in the number of Newton steps required for the
larger problems.
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Figure 11.8 Average number of Newton steps required to solve 100 randomly
generated LPs of different dimensions, with n = 2m. Error bars show stan-
dard deviation, around the average value, for each value of m. The growth
in the number of Newton steps required, as the problem dimensions range
over a 100:1 ratio, is very small.

Can see roughly linear convergence in each case, and logarithmic
scaling with m
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How many Newton iterations?

Informally, due to careful central path traversal, in each centering
step, Newton is already in quadratic convergence phase, so takes
nearly constant number of iterations

This can be formalized under self-concordance. Suppose:

• The function tf + φ is self-concordant

• Our original problem has bounded sublevel sets

Then we can terminate each Newton solve at appropriate accuracy,
and the total number of Newton iterations is still O(log(m/(t(0)ε))
(where constants do not depend on problem-specific conditioning).
See Chapter 11.5 of B & V

Importantly, tf + φ = tf −∑m
i=1 log(−hi) is self-concordant when

f, hi are all linear or quadratic. So this covers LPs, QPs, QCQPs
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Primal-dual interior-point methods

Centering step in the barrier method: can interpret as Newton’s
method for nonlinear system of “perturbed” KKT conditions

Primal-dual interior-point methods are defined similarly. Overview:

• Both can be motivated in terms of perturbed KKT conditions,
primal-dual is more direct

• Primal-dual interior-point methods take one Newton step, and
move on (no separate inner and outer loops)

• Primal-dual interior-point iterates are not dual feasible

• Primal-dual interior-point methods are often more efficient, as
they can exhibit better than linear convergence

• Primal-dual interior-point methods are less intuitive ...
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Part IV: Advanced methods
C. Coordinate descent
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Coordinatewise optimality

Let’s start with a motivating question (apparently has been around
since the “birth” of optimization as a discipline)

Q: Given convex, differentiable f : Rn → R, if we are at a point x
such that f(x) is minimized along each coordinate axis, then have
we found a global minimizer?

That is, does f(x+ vei) ≥ f(x) for all v, i ⇒ f(x) = minz f(z)?

(Here ei = (0, . . . , 1, . . . , 0) ∈ Rn is the ith standard basis vector)
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x1 x2

f

A: Yes! Proof:

0 = ∇f(x) =

(
∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)

Q: Same question, but now for f convex, and not differentiable?
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x1

x2

f

x1

x2
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●

A: No! Look at the above counterexample

Q: Same, now f(x) = g(x) +
∑n

i=1 hi(xi), with g convex, smooth,
and each hi convex? (Here the nonsmooth part is called separable)
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A: Yes! Intuition is that separability condition “rotates the difficult
parts” to be parallel to the coordinate axes
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Proof: recall f(x) = g(x) +
∑n

i=1 hi(xi). Using convexity of g and
subgradient optimality

f(y)− f(x) ≥ ∇g(x)T (y − x) +

n∑

i=1

[hi(yi)− hi(xi)]

=

n∑

i=1

[∇ig(x)(yi − xi) + hi(yi)− hi(xi)]︸ ︷︷ ︸
ai

However, because each xi is coordinatewise optimal, we must have
0 ∈ ∂if(x) = ∂i(g(x) +

∑n
i=1 hi(xi)), i.e.,

−∇ig(x) ∈ ∂hi(xi)

By definition of a subgradient, for any yi,

hi(yi) ≥ hi(xi)−∇gi(xi)(yi − xi)

and so each ai ≥ 0, therefore f(y) ≥ f(x)

44



Coordinate descent

This suggests that for the problem

min
x

f(x)

where f(x) = g(x) +
∑n

i=1 hi(xi), with g convex and differentiable
and each hi convex, we can use coordinate descent: let x(0) ∈ Rn,
and repeat

x
(k)
i = argmin

xi
f
(
x

(k)
1 , . . . , x

(k)
i−1, xi, x

(k−1)
i+1 , . . . , x(k−1)

n

)
,

i = 1, . . . , n

for k = 1, 2, 3, . . .

Important note: we always use most recent information possible
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Tseng (2001) showed that for such f (provided f is continuous on
compact set {x : f(x) ≤ f(x(0))} and f attains its minimum), any
limit point of x(k), k = 1, 2, 3, . . . is a minimizer of f1

Notes:

• Order of cycle through coordinates is arbitrary, can use any
permutation of {1, 2, . . . , n}

• Can everywhere replace individual coordinates with blocks of
coordinates

• “One-at-a-time” update scheme is critical, and “all-at-once”
scheme does not necessarily converge

• The analogy for solving linear systems: Gauss-Seidel versus
Jacobi method

1Using basic real analysis, we know x(k) has subsequence converging to x?

(Bolzano-Weierstrass), and f(x(k)) converges to f? (monotone convergence)
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Example: linear regression

Given y ∈ Rn, and X ∈ Rn×p with columns X1, . . . , Xp, consider
the linear regression problem:

min
β

1

2
‖y −Xβ‖22

Minimizing over βi, with all βj , j 6= i fixed:

0 = ∇if(β) = XT
i (Xβ − y) = XT

i (Xiβi +X−iβ−i − y)

i.e., we take

βi =
XT
i (y −X−iβ−i)

XT
i Xi

Coordinate descent repeats this update for i = 1, 2, . . . , p, 1, 2, . . ..
Note that this is exactly Gauss-Seidl for the system XTXβ = XT y
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Coordinate descent vs gradient descent for linear regression: 100
random instances with n = 100, p = 20

0 10 20 30 40

1e
−

12
1e

−
09

1e
−

06
1e

−
03

1e
+

00

Iteration k

S
ub

op
tim

al
ity

 fk
−

fs
ta

r

Coordinate desc
Grad desc (exact)
Conj grad (exact)
Grad desc (1/L)
Accel grad (1/L)

48



Is it fair to compare 1 cycle of coordinate descent to 1 iteration of
gradient descent? Yes, if we’re clever

• Gradient descent: β ← β + tXT (y −Xβ), costs O(np) flops

• Coordinate descent, one coordinate update:

βi ←
XT
i (y −X−iβ−i)

XT
i Xi

=
XT
i r

‖Xi‖22
+ βi

where r = y −Xβ
• Each coordinate costs O(n) flops: O(n) to update r, O(n) to

compute XT
i r

• One cycle of coordinate descent costs O(np) operations, same
as gradient descent

49



Example: lasso regression

Consider the lasso problem:

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1

Note that nonsmooth part here is separable: ‖β‖1 =
∑p

i=1 |βi|.
Minimizing over βi, with βj , j 6= i fixed:

0 = XT
i Xiβi +XT

i (X−iβ−i − y) + λsi

where si ∈ ∂|βi|. Solution is simply given by soft-thresholding

βi = Sλ/‖Xi‖22

(
XT
i (y −X−iβ−i)

XT
i Xi

)

Repeat this for i = 1, 2, . . . , p, 1, 2, . . .

50



Coordinate descent vs proximal gradient for lasso regression: 100
random instances with n = 200, p = 50 (all methods cost O(np)
per iter)
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Example: box-constrained QP

Given b ∈ Rn, Q ∈ Sn+, consider a box-constrained QP:

min
x

1

2
xTQx+ bTx subject to l ≤ x ≤ u

Fits into our framework, as I{l ≤ x ≤ u} =
∑n

i=1 I{li ≤ xi ≤ ui}

Minimizing over xi with all xj , j 6= i fixed: same basic steps give

xi = T[li,ui]

(
bi −

∑
j 6=iQijxj

Qii

)

where T[li,ui] is the truncation (projection) operator onto [li, ui]:

T[li,ui](z) =





ui if z > ui

z if li ≤ z ≤ ui
li if z < li
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Example: support vector machines

A coordinate descent strategy can be applied to the SVM dual:

min
α

1

2
αT X̃X̃Tα− 1Tα subject to 0 ≤ α ≤ C1, αT y = 0

Sequential minimal optimization or SMO (Platt 1998) is basically
blockwise coordinate descent in blocks of 2. Instead of cycling, it
chooses the next block greedily

Recall the complementary slackness conditions

αi
(
1− ξi − (X̃β)i − yiβ0

)
= 0, i = 1, . . . , n (1)

(C − αi)ξi = 0, i = 1, . . . , n (2)

where β, β0, ξ are the primal coefficients, intercept, and slacks.
Recall that β = X̃Tα, β0 is computed from (1) using any i such
that 0 < αi < C, and ξ is computed from (1), (2)
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SMO repeats the following two steps:

• Choose αi, αj that violate complementary slackness, greedily
(using heuristics)

• Minimize over αi, αj exactly, keeping all other variables fixed

Using equality constraint,
reduces to minimizing uni-
variate quadratic over an
interval (From Platt 1998)

Note this does not meet separability assumptions for convergence
from Tseng (2001), and a different treatment is required

Many further developments on coordinate descent for SVMs have
been made; e.g., a recent one is Hsiesh et al. (2008)
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Coordinate descent in statistics and ML

History in statistics/ML:

• Idea appeared in Fu (1998), and then again in Daubechies et
al. (2004), but was inexplicably ignored

• Later, three papers in 2007, especially Friedman et al. (2007),
really sparked interest in statistics and ML communities

Why is it used?

• Very simple and easy to implement

• Careful implementations can achieve state-of-the-art

• Scalable, e.g., don’t need to keep full data in memory

Examples: lasso regression, lasso GLMs (under proximal Newton),
SVMs, group lasso, graphical lasso (applied to the dual), additive
modeling, matrix completion, regression with nonconvex penalties
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Pathwise coordinate descent for lasso

Structure for pathwise coordinate descent, Friedman et al. (2009):

Outer loop (pathwise strategy):

• Compute the solution over a sequence λ1 > λ2 > . . . > λr of
tuning parameter values

• For tuning parameter value λk, initialize coordinate descent
algorithm at the computed solution for λk+1 (warm start)

Inner loop (active set strategy):

• Perform one coordinate cycle (or small number of cycles), and
record active set A of coefficients that are nonzero

• Cycle over only the coefficients in A until convergence

• Check KKT conditions over all coefficients; if not all satisfied,
add offending coefficients to A, go back one step
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Coordinate gradient descent

For a smooth function f , the iterations

x
(k)
i = x

(k−1)
i − tki · ∇if

(
x

(k)
1 , . . . , x

(k)
i−1, xi, x

(k−1)
i+1 , . . . , x(k−1)

n

)
,

i = 1, . . . , n

for k = 1, 2, 3, . . . are called coordinate gradient descent, and when
f = g + h, with g smooth and h =

∑n
i=1 hi, the iterations

x
(k)
i = proxhi,tki

(
x

(k−1)
i −tki·∇ig

(
x

(k)
1 , . . . , x

(k−1)
i , . . . , x(k−1)

n

))
,

i = 1, . . . , n

for k = 1, 2, 3, . . . are called coordinate proximal gradient descent

When g is quadratic, (proximal) coordinate gradient descent is the
same as coordinate descent under proper step sizes
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Convergence analyses

Theory for coordinate descent moves quickly. Each combination of
the following cases has (probably) been analyzed:

• Coordinate descent or (proximal) coordinate gradient descent?

• Cyclic rule, permuted cyclic, or greedy rule, randomized rule?

Roughly speaking, results are similar to those for proximal gradient
descent: under standard conditions, get standard rates

But constants differ and this matters! Much recent work is focused
on improving them

Some references are Beck and Tetruashvili (2013), Wright (2015),
Sun and Hong (2015), Li et al. (2016)
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Graphical lasso

Consider X ∈ Rn×p, with rows xi ∼ N(0,Σ), i = 1, . . . , n, drawn
independently. Suppose Σ is unknown. It is often reasonable (for
large p) to seek a sparse estimate of Σ−1

Why? For z ∼ N(0,Σ), normality theory tells us

Σ−1
ij = 0 ⇐⇒ zi, zj conditionally independent given z`, ` 6= i, j

Graphical lasso (Banerjee et al. 2007, Friedman et al. 2007):

min
Θ∈Sp+

− log det Θ + tr(SΘ) + λ‖Θ‖1

where S = XTX/n, and ‖Θ‖1 =
∑p

i,j=1 |Θij |. Observe that this

is a convex problem. Solution Θ̂ serves as estimate for Σ−1
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Glasso algorithm

Graphical lasso KKT conditions (stationarity):

−Θ−1 + S + λΓ = 0

where Γij ∈ ∂|Θij |. Let W = Θ−1. Note Wii = Sii + λ, because
Θii > 0 at solution. Now partition:

W = Θ = S = Γ =[
W11 w12

w21 w22

] [
Θ11 θ12

θ21 θ22

] [
S11 s12

s21 s22

] [
Γ11 γ12

γ21 γ22

]

where W11 ∈ R(p−1)×(p−1), w12 ∈ R(p−1)×1, and w21 ∈ R1×(p−1),
w22 ∈ R; same with others

Glasso algorithm (Friedman et al., 2007): solve for w12 (recall that
w22 is known), with all other columns fixed; then solve for second-
to-last column, etc., and cycle around until convergence
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Glasso block update

Consider (1, 2)-block of KKT conditions:

−w12 + s12 + λγ12 = 0

Because

[
W11 w12

w21 w22

] [
Θ11 θ12

θ21 θ22

]
=

[
I 0
0 1

]
, we know that

w12 = −W11θ12/θ22. Substituting this into the above,

W11
θ12

θ22
+ s12 + λγ12 = 0

Letting β = θ12/θ22 and recalling that θ22 > 0 at solution, this is

W11β + s12 + λρ = 0

where ρ ∈ ∂‖β‖1. What does this condition look like?
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Hidden lasso problem

These are exactly the KKT conditions for

min
β

βTW11β + sT12β + λ‖β‖1

which is (basically) a lasso problem and can be itself solved quickly
via coordinate descent

From β we get w12 = −W11β, and set w21 = wT12. Then θ12, θ22

are obtained from

[
W11 w12

w21 w22

] [
Θ11 θ12

θ21 θ22

]
=

[
I 0
0 1

]
, and

we set θ21 = θT12

The next step moves on to a different column of W , and so on;
hence we have reduced the graphical lasso problem to a repeated
sequence of lasso problems
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Coordinate descent?

The glasso algorithm is efficient and scales well. It also has the feel
of coordinate descent. But, people have noticed that the criterion
doesn’t decrease monotonically—so it can’t be coordinate descent?

The glasso algorithm makes a variable transformation and solves in
terms of coordinate blocks of W ; these are not coordinate blocks
of original variable Θ, so strictly speaking it is not a coordinate
descent algorithm

However, it can be shown that
glasso is doing coordinate ascent
on the dual problem! (Mazumder
et al. 2011)
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Part IV: Advanced methods
D. ADMM
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Reminder: conjugate functions

Recall that given f : Rn → R, the function

f∗(y) = max
x

yTx− f(x)

is called its conjugate

• Conjugates appear frequently in dual programs, since

−f∗(y) = min
x

f(x)− yTx

• If f is closed and convex, then f∗∗ = f . Also,

x ∈ ∂f∗(y) ⇐⇒ y ∈ ∂f(x) ⇐⇒ x ∈ argmin
z

f(z)− yT z

• If f is strictly convex, then ∇f∗(y) = argmin
z

f(z)− yT z
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Dual ascent

Even if we can’t derive dual (conjugate) in closed form, we can still
use dual-based gradient or subgradient methods

Consider the problem

min
x

f(x) subject to Ax = b

Its dual problem is

max
u
−f∗(−ATu)− bTu

where f∗ is conjugate of f . Defining g(u) = −f∗(−ATu)− bTu,
note that

∂g(u) = A∂f∗(−ATu)− b
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Therefore, using what we know about conjugates

∂g(u) = Ax− b where x ∈ argmin
z

f(z) + uTAz

The dual subgradient method (for maximizing the dual objective)
starts with an initial dual guess u(0), and repeats for k = 1, 2, 3, . . .

x(k) ∈ argmin
x

f(x) + (u(k−1))TAx

u(k) = u(k−1) + tk(Ax
(k) − b)

Step sizes tk, k = 1, 2, 3, . . . , are chosen in standard ways
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Recall that if f is strictly convex, then f∗ is differentiable, and so
this becomes dual gradient ascent, which repeats for k = 1, 2, 3, . . .

x(k) = argmin
x

f(x) + (u(k−1))TAx

u(k) = u(k−1) + tk(Ax
(k) − b)

(Difference is that each x(k) is unique, here.) Again, step sizes tk,
k = 1, 2, 3, . . . are chosen in standard ways

Lastly, proximal gradients and acceleration can be applied as they
would usually
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Dual decomposition

Consider

min
x

B∑

i=1

fi(xi) subject to Ax = b

Here x = (x1, . . . , xB) ∈ Rn divides into B blocks of variables,
with each xi ∈ Rni . We can also partition A accordingly

A = [A1 . . . , AB], where Ai ∈ Rm×ni

Simple but powerful observation, in calculation of (sub)gradient, is
that the minimization decomposes into B separate problems:

x+ ∈ argmin
x

B∑

i=1

fi(xi) + uTAx

⇐⇒ x+
i ∈ argmin

xi
fi(xi) + uTAixi, i = 1, . . . , B
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Dual decomposition algorithm: repeat for k = 1, 2, 3, . . .

x
(k)
i ∈ argmin

xi
fi(xi) + (u(k−1))TAixi, i = 1, . . . , B

u(k) = u(k−1) + tk

( B∑

i=1

Aix
(k)
i − b

)

Can think of these steps as:

• Broadcast: send u to each of
the B processors, each
optimizes in parallel to find xi

• Gather: collect Aixi from
each processor, update the
global dual variable u

ux1

u x2 u x3
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Dual decomposition with inequality constraints

Consider

min
x

B∑

i=1

fi(xi) subject to

B∑

i=1

Aixi ≤ b

Dual decomposition, i.e., projected subgradient method:

x
(k)
i ∈ argmin

xi
fi(xi) + (u(k−1))TAixi, i = 1, . . . , B

u(k) =

(
u(k−1) + tk

( B∑

i=1

Aix
(k)
i − b

))

+

where u+ denotes the positive part of u, i.e., (u+)i = max{0, ui},
i = 1, . . . ,m
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Price coordination interpretation (Vandenberghe):

• Have B units in a system, each unit chooses its own decision
variable xi (how to allocate its goods)

• Constraints are limits on shared resources (rows of A), each
component of dual variable uj is price of resource j

• Dual update:

u+
j = (uj − tsj)+, j = 1, . . . ,m

where s = b−∑B
i=1Aixi are slacks

I Increase price uj if resource j is over-utilized, sj < 0

I Decrease price uj if resource j is under-utilized, sj > 0

I Never let prices get negative
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Augmented Lagrangian method
(also known as: method of multipliers)

Disadvantage of dual ascent: require strong conditions to ensure
convergence. Improved by augmented Lagrangian method, also
called method of multipliers. We transform the primal problem:

min
x

f(x) +
ρ

2
‖Ax− b‖22

subject to Ax = b

where ρ > 0 is a parameter. Clearly equivalent to original problem,
and objective is strongly convex when A has full column rank. Use
dual gradient ascent:

x(k) = argmin
x

f(x) + (u(k−1))TAx+
ρ

2
‖Ax− b‖22

u(k) = u(k−1) + ρ(Ax(k) − b)
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Notice step size choice tk = ρ in dual algorithm. Why? Since x(k)

minimizes f(x) + (u(k−1))TAx+ ρ
2‖Ax− b‖22 over x, we have

0 ∈ ∂f(x(k)) +AT
(
u(k−1) + ρ(Ax(k) − b)

)

= ∂f(x(k)) +ATu(k)

This is the stationarity condition for original primal problem; under
mild conditions Ax(k) − b→ 0 as k →∞ (primal iterates become
feasible), so KKT conditions are satisfied in the limit and x(k), u(k)

converge to solutions

• Advantage: much better convergence properties

• Disadvantage: lose decomposability! (Separability is ruined by
augmented Lagrangian ...)
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Alternating direction method of multipliers

Alternating direction method of multipliers or ADMM: try for best
of both worlds. Consider the problem

min
x,z

f(x) + g(z) subject to Ax+Bz = c

As before, we augment the objective

min
x

f(x) + g(z) +
ρ

2
‖Ax+Bz − c‖22

subject to Ax+Bz = c

for a parameter ρ > 0. We define augmented Lagrangian

Lρ(x, z, u) = f(x) + g(z) + uT (Ax+Bz − c) +
ρ

2
‖Ax+Bz − c‖22
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ADMM repeats the steps, for k = 1, 2, 3, . . .

x(k) = argmin
x

Lρ(x, z
(k−1), u(k−1))

z(k) = argmin
z

Lρ(x
(k), z, u(k−1))

u(k) = u(k−1) + ρ(Ax(k) +Bz(k) − c)

Note that the usual method of multipliers would have replaced the
first two steps by a joint minimization

(x(k), z(k)) = argmin
x,z

Lρ(x, z, u
(k−1))
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Convergence guarantees

Under modest assumptions on f, g (these do not require A,B to
be full rank), the ADMM iterates satisfy, for any ρ > 0:

• Residual convergence: r(k) = Ax(k) −Bz(k) − c→ 0 as
k →∞, i.e., primal iterates approach feasibility

• Objective convergence: f(x(k)) + g(z(k))→ f? + g?, where
f? + g? is the optimal primal objective value

• Dual convergence: u(k) → u?, where u? is a dual solution

For details, see Boyd et al. (2010). Note that we do not generically
get primal convergence, but this is true under more assumptions

Convergence rate: roughly, ADMM behaves like first-order method.
Theory still being developed, see, e.g., in Hong and Luo (2012),
Deng and Yin (2012), Iutzeler et al. (2014), Nishihara et al. (2015)
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Scaled form ADMM

Scaled form: denote w = u/ρ, so augmented Lagrangian becomes

Lρ(x, z, w) = f(x) + g(z) +
ρ

2
‖Ax−Bx+ c+ w‖22 −

ρ

2
‖w‖22

and ADMM updates become

x(k) = argmin
x

f(x) +
ρ

2
‖Ax+Bz(k−1) − c+ w(k−1)‖22

z(k) = argmin
z

g(z) +
ρ

2
‖Ax(k) +Bz − c+ w(k−1)‖22

w(k) = w(k−1) +Ax(k) +Bz(k) − c

Note that here kth iterate w(k) is just a running sum of residuals:

w(k) = w(0) +

k∑

i=1

(
Ax(i) +Bz(i) − c

)
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Practicalities

In practice, ADMM usually obtains a relatively accurate solution in
a handful of iterations, but it requires a large number of iterations
for a highly accurate solution (like a first-order method)

Choice of ρ can greatly influence practical convergence of ADMM:

• ρ too large → not enough emphasis on minimizing f + g

• ρ too small → not enough emphasis on feasibility

Boyd et al. (2010) give a strategy for varying ρ; it can work well in
practice, but does not have convergence guarantees

Like deriving duals, transforming a problem into one that ADMM
can handle is sometimes a bit subtle, since different forms can lead
to different algorithms
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Example: lasso regression

Given y ∈ Rn, X ∈ Rn×p, recall the lasso problem:

min
β

1

2
‖y −Xβ‖22 + λ‖β‖1

We can rewrite this as:

min
β,α

1

2
‖y −Xβ‖22 + λ‖α‖1 subject to β − α = 0

ADMM steps:

β(k) = (XTX + ρI)−1
(
XT y + ρ(α(k−1) − w(k−1))

)

α(k) = Sλ/ρ(β
(k) + w(k−1))

w(k) = w(k−1) + β(k) − α(k)
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Notes:

• The matrix XTX + ρI is always invertible, regardless of X

• If we compute a factorization (say Cholesky) in O(p3) flops,
then each β update takes O(p2) flops

• The α update applies the soft-thresolding operator St, which
recall is defined as

[St(x)]j =





xj − t x > t

0 −t ≤ x ≤ t
xj + t x < −t

, j = 1, . . . , p

• ADMM steps are “almost” like repeated soft-thresholding of
ridge regression coefficients

81



Comparison of various algorithms for lasso regression: 100 random
instances with n = 200, p = 50
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Example: group lasso regression

Given y ∈ Rn, X ∈ Rn×p, recall the group lasso problem:

min
β

1

2
‖y −Xβ‖22 + λ

G∑

g=1

cg‖βg‖2

Rewrite as:

min
β,α

1

2
‖y −Xβ‖22 + λ

G∑

g=1

cg‖αg‖2 subject to β − α = 0

ADMM steps:

β(k) = (XTX + ρI)−1
(
XT y + ρ(α(k−1) − w(k−1))

)

α(k)
g = Rcgλ/ρ

(
β(k)
g + w(k−1)

g

)
, g = 1, . . . , G

w(k) = w(k−1) + β(k) − α(k)
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Notes:

• The matrix XTX + ρI is always invertible, regardless of X

• If we compute a factorization (say Cholesky) in O(p3) flops,
then each β update takes O(p2) flops

• The α update applies the group soft-thresolding operator Rt,
which recall is defined as

Rt(x) =

(
1− t

‖x‖2

)

+

x

• Similar ADMM steps follow for a sum of arbitrary norms of as
regularizer, provided we know prox operator of each norm

• ADMM algorithm can be rederived when groups have overlap
(hard problem to optimize in general!). See Boyd et al. (2010)
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Example: sparse subspace estimation

Given S ∈ Sp (typically S � 0 is a covariance matrix), consider the
sparse subspace estimation problem (Vu et al., 2013):

max
Y

tr(SY )− λ‖Y ‖1 subject to Y ∈ Fk

where Fk is the Fantope of order k, namely

Fk = {Y ∈ Sp : 0 � Y � I, tr(Y ) = k}

Note that when λ = 0, the above problem is equivalent to ordinary
principal component analysis (PCA)

This above is an SDP and in principle solveable with interior-point
methods, though these can be complicated to implement and quite
slow for large problem sizes
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Rewrite as:

min
Y,Z
−tr(SY ) + IFk

(Y ) + λ‖Z‖1 subject to Y = Z

ADMM steps are:

Y (k) = PFk
(Z(k−1) −W (k−1) + S/ρ)

Z(k) = Sλ/ρ(Y
(k) +W (k−1))

W (k) = W (k−1) + Y (k) − Z(k)

Here PFk
is Fantope projection operator, computed by clipping the

eigendecomposition A = UΣUT , Σ = diag(σ1, . . . , σp):

PFk
(A) = UΣθU

T , Σθ = diag(σ1(θ), . . . , σp(θ))

where each σi(θ) = min{max{σi − θ, 0}, 1}, and
∑p

i=1 σi(θ) = k
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Example: sparse + low rank decomposition

Given M ∈ Rn×m, consider the sparse plus low rank decomposition
problem (Candes et al., 2009):

min
L,S

‖L‖tr + λ‖S‖1

subject to L+ S = M

ADMM steps:

L(k) = Str
1/ρ(M − S(k−1) +W (k−1))

S(k) = S`1λ/ρ(M − L
(k) +W (k−1))

W (k) = W (k−1) +M − L(k) − S(k)

where, to distinguish them, we use Str
λ/ρ for matrix soft-thresolding

and S`1λ/ρ for elementwise soft-thresolding
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Example from Candes et al. (2009):

(a) Original frames (b) Low-rank L̂ (c) Sparse Ŝ (d) Low-rank L̂ (e) Sparse Ŝ

Convex optimization (this work) Alternating minimization [47]

Figure 2: Background modeling from video. Three frames from a 200 frame video sequence
taken in an airport [32]. (a) Frames of original video M . (b)-(c) Low-rank L̂ and sparse
components Ŝ obtained by PCP, (d)-(e) competing approach based on alternating minimization
of an m-estimator [47]. PCP yields a much more appealing result despite using less prior
knowledge.

Figure 2 (d) and (e) compares the result obtained by Principal Component Pursuit to a state-of-
the-art technique from the computer vision literature, [47].12 That approach also aims at robustly
recovering a good low-rank approximation, but uses a more complicated, nonconvex m-estimator,
which incorporates a local scale estimate that implicitly exploits the spatial characteristics of natural
images. This leads to a highly nonconvex optimization, which is solved locally via alternating
minimization. Interestingly, despite using more prior information about the signal to be recovered,
this approach does not perform as well as the convex programming heuristic: notice the large
artifacts in the top and bottom rows of Figure 2 (d).

In Figure 3, we consider 250 frames of a sequence with several drastic illumination changes.
Here, the resolution is 168 ⇥ 120, and so M is a 20, 160 ⇥ 250 matrix. For simplicity, and to
illustrate the theoretical results obtained above, we again choose � = 1/

p
n1.

13 For this example,
on the same 2.66 GHz Core 2 Duo machine, the algorithm requires a total of 561 iterations and 36
minutes to converge.

Figure 3 (a) shows three frames taken from the original video, while (b) and (c) show the
recovered low-rank and sparse components, respectively. Notice that the low-rank component
correctly identifies the main illuminations as background, while the sparse part corresponds to the

12We use the code package downloaded from http://www.salleurl.edu/~ftorre/papers/rpca/rpca.zip, modi-
fied to choose the rank of the approximation as suggested in [47].

13For this example, slightly more appealing results can actually be obtained by choosing larger � (say, 2/
p

n1).
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Consensus ADMM

Consider a problem of the form: min
x

B∑

i=1

fi(x)

The consensus ADMM approach begins by reparametrizing:

min
x1,...,xB ,x

B∑

i=1

fi(xi) subject to xi = x, i = 1, . . . B

This yields the decomposable ADMM steps:

x
(k)
i = argmin

xi
fi(xi) +

ρ

2
‖xi − x(k−1) + w

(k−1)
i ‖22, i = 1, . . . , B

x(k) =
1

B

B∑

i=1

(
x

(k)
i + w

(k−1)
i

)

w
(k)
i = w

(k−1)
i + x

(k)
i − x(k), i = 1, . . . , B
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Write x̄ = 1
B

∑B
i=1 xi and similarly for other variables. Not hard to

see that w̄(k) = 0 for all iterations k ≥ 1

Hence ADMM steps can be simplified, by taking x(k) = x̄(k):

x
(k)
i = argmin

xi
fi(xi) +

ρ

2
‖xi − x̄(k−1) + w

(k−1)
i ‖22, i = 1, . . . , B

w
(k)
i = w

(k−1)
i + x

(k)
i − x̄(k), i = 1, . . . , B

To reiterate, the xi, i = 1, . . . , B updates here are done in parallel

Intuition:

• Try to minimize each fi(xi), use (squared) `2 regularization to
pull each xi towards the average x̄

• If a variable xi is bigger than the average, then wi is increased

• So the regularization in the next step pulls xi even closer
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General consensus ADMM

Consider a problem of the form: min
x

B∑

i=1

fi(a
T
i x+ bi) + g(x)

For consensus ADMM, we again reparametrize:

min
x1,...,xB ,x

B∑

i=1

fi(a
T
i xi + bi) + g(x) subject to xi = x, i = 1, . . . B

This yields the decomposable ADMM updates:

x
(k)
i = argmin

xi
fi(a

T
i xi + bi) +

ρ

2
‖xi − x(k−1) + w

(k−1)
i ‖22,

i = 1, . . . , B

x(k) = argmin
x

Bρ

2
‖x− x̄(k) − w̄(k−1)‖22 + g(x)

w
(k)
i = w

(k−1)
i + x

(k)
i − x(k), i = 1, . . . , B
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Notes:

• It is no longer true that w̄(k) = 0 at a general iteration k, so
ADMM steps do not simplify as before

• To reiterate, the xi, i = 1, . . . , B updates are done in parallel

• Each xi update can be thought of as a loss minimization on
part of the data, with `2 regularization

• The x update is a proximal operation in regularizer g

• The w update drives the individual variables into consensus

• A different initial reparametrization will give rise to a different
ADMM algorithm

See Boyd et al. (2010), Parikh and Boyd (2013) for more details
on consensus ADMM, strategies for splitting up into subproblems,
and implementation tips
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