ETH A
\N N/
Eidgendssische Technische Hochschule Ziirich N\ N\
Swiss Federal Institute of Technology Zurich \/
N\
D-BSSE

Department of Biosystems
Science and Engineering

Probabilistic Methods for
Biochemical Reaction Networks

Mustafa Khammash
Department of Biosystems Science and Engineering
ETH Zurich

LECTURE |

ETH Zurich



Outline

A gentle introduction to molecular biology

» The biology of gene expression

» Measuring gene expression

» Variability in gene expression and its consequences
» Motivation for using probabilistic models

* Introduction to stochastic modeling and analysis
» The Chemical Master Equation
» Using biological data for model inference

« Controlling gene expression mean and variance



From Stimulus to Response
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Gene Expression

Gene expression uses information in
DNA to synthesize cellular machinery



Gene Expression: Protein
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Regulation of Gene Expression: Activation
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Regulation of Gene
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Modeling Gene Expression
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p = kpr — ypp p(t) — protein concentration at time ¢



Transcription rate depends on transcription factor
concentration

> > >

Activator concentration Activator/repressor Repressor concentration
concentration

positively regulated constitutively requlated negatively regulated
gene gene gene



Common Cell Types Studied in Molecular

Siology

(A) bacterial cell (specifically, E. coli: V=1 pm3;L= 1 um; t= 1 hour)

membrane
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mRNA ribosome DNA

(B) yeast cell (specifically, S. cerevisiae: V = 30 pm3; L=5 pm; t= 3 hours)

107 10°
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6x 10" 108
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3x10* 105 12x107bp

Yeast

~ 5700 genes

(C) mammalian cell (specifically, HeLa: V = 3000 um?; L = 20 um; T = 1 day)

Mammalian

~ 20,000 genes

Cell Biology by the Numbers, 2017



How do we measure cellular proteins?

B 0SAMU SHIMOMURA

Jellyfish Aequorea victoria

Nobel Prize in Chemistry, 2008
Osamu Shimomura, Martin Chalfie and Roger Tsien

“for the discovery and development of the green fluorescent protein, GFP”



Measuring Cellular Proteins
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—xperimental Evidence of Random Variability in Gene
—X[pression

Bacterial Cell Cell Population Single Cells
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Fluorescence intensity
proportional to protein level




Quantifying Variability in Gene Expression

Single Cell Cell Population Quantifying Variability
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wo Types of Time-Resolved Data
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Do Individual Differences within a Population Matter?

Averages hide important information
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Siological Influences of Random Gene Expression

E. coli Salmonella Bacillus subtilis
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Kaper et al., Nature Rev. Microbiol. (2004) Credit: Rocky Mountain Laboratories Credit: Michael Ellowitz




Siological Influences of

Random Gene Expression

Fingerprints of identical twins

Cc, the first cloned cat and Rainbow,
her genetic mother

J. Raser and E. O’Shea, Science, 2005



Origin of Randomness in Gene Expression

The Picture inside a Cell

B Reactants are discrete in nature;
some are scarce

B Chemical reactions are random

Biological Consequences

® Random fluctuations in a cell

protein A

count

m Cell-cell variability cell 1

cell 2
cell 3

deterministic

Modeling Consequences

m A probabilistic approach is needed time



Modeling Gene Expression

Stochastic model

e The number of mRNAs and proteins in a cell
are discrete random variables: X, (¢t) and X, ()

e The probability that a single mRNA is transrcibed
in time A is k.h + o(h)

e The probability that a single mRNA is degraded
in time A is X,.(t)y-h + o(h)

o(h) notation: @%O as h — 0

) ] is a continuous-time discrete-state Markov process




Modeling Gene Expression
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Modeling Gene

—XPression

At stationarity
kpk
E(p) = —— |
v (protein)
1 k
Cv(p) = (14 P y1/2
\/m Yp =+ Yr
]E(’r‘) o &
Yr
MRNA
Cv(r) = 1 ( )
5t
C, = coefficient of variation = Standa::e:i\/iatio”
Mean Dynamics
CE(X,) = ky — 1 E(X,)
dt r) = Rr — Or r
d
—E(X,) = kpE(X,) — vE(X))



Model Allows Heterogeneity in Genetically Identical
Cells

Questions we can ask:

What is the probability of finding N mRNA
molecules in a give cell at time t?

What is the stationary mean and variance of
the protein in a population?

Given measurements of the joint distribution
of protein and mRNA at times Ti,...,Tn, can
.. we infer the gene expression parameters?




Deterministic Model Fails to Capture Mean
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Johan Paulsson , Otto G. Berg , and Mans Ehrenberg, PNAS 2000

- Stochastic mean value different from deterministic steady state
* Noise enhances signal!



Noise Induced Oscillations

Circadian rhythm
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« Oscillations disappear from deterministic model after a small reduction in deg. of repressor
* (Coherence resonance) Regularity of noise induced oscillations can be manipulated
by tuning the level of noise [EI-Samad, Khammash|



The Pap Pili Stochastic Switch

Uropathogenic
E. coli

- Pili enable uropathogenic E. coli to attach to epithelial cell receptors

» Plays an essential role in the pathogenesis of urinary tract infections

- E. coli expresses two states ON (piliated) or OFF (unpiliated)

- Piliation is controlled by a stochastic switch that involves random
molecular events



Stochastic Switching: Identical Genotype
Produces Different Phenotype

/%%%’ Same chemical environment. o%%%

cocoo Same genetic code. cocoo

Random Reactions can lead to | § é
PN vastly different results o

_ Harmless ‘ VlruTent 8
phenotype. phenotype.

26



Stochastic Switching: Identical Genotype
Produces Different Phenotype

For these systems, we need analytical models to answer:

What will happen? — What advantages does
How frequently!? it provide!

Why does it happen! - How can we prevent it!
Under what conditions! - How can we cause it!




A Simplified Pap switch Model

Lro leucine regulatory protein

One gene g

Site 1 Site 2

* Lrp can (un)bind either or both of two binding sites
* A (un)binding reaction is a random event
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State g;
R
e R\
State g,
State g;

State g,




Lrp

State g4 OFF

| g7z R
PapIAA R /" Ry R\\
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State g, ( State g3

ON ~~— ;5\‘% R/A OFF

Piliation takes place
if gene 1s ON at specific
time: T

State g,
OFF
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An Introduction to Stochastic Modeling:
Gene Transcription




A Simple Example

R : b
PN A % & N ¢ MRNA copy number N(t) is a random variable

Transcription: Probability a single mRNA
|k IS transcribed in time dt is k dt

Degradation: Probability a single mRNA
IS degraded in time dt is nvydt




- Queniinn

- 1)y gl (n+1)y

Find p(n,t), the probability that N(t) = n.

P(n,t+dt) = P(n—1,t) - kdt Prob.{N(t) =n — 1 and mRNA created in [t,t+dt)}
+ P(n+1,t) - (n+ 1)~dt Prob.{N(t) =n+ 1 and mRNA degraded in [t,t+dt)]

+ P(n,t) - (1 —kdt)(1 — nvydt) Prob.{N(t) =n and
MRNA not created nor degraded in [t,t+dt)}

P(n,t+dt) — P(n,t) = P(n— 1, )kdt + P(n+ 1,t)(n 4+ 1)~dt — P(n,t)(k + nvy)dt
+O(dt?)

Dividing by dt and taking the limit as dt — O

The Chemical Master Equation

%P(n,t) = kP(n—1,t)+ (n+1)vP(n+1,t) — (k4 nvy)P(n,t)




MRNA Stationary Distribution

We look for the stationary distribution P(n,t) = p(n) Vt
The stationary solution satisfies: %P(n,t) =0

From the Master Equation ...
(k+ny)p(n) = kp(n — 1) + (n+ 1)yp(n + 1)

n=0 kp(0) = vp(1)
n =1 kp(1) = 2vp(2)

n =2 kp(2) = 3vp(3)

[ kp(n— 1) = ny p(n) ]




kp(n —1) = nvy p(n) We can express p(n) as a function of p(0):
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We can solve for p(0) using the fact ) p(n) =1

00 n n=0
1 = Z <k> ip(O)

n=0
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We can compute tnhe mean and variance of the Poisson
density p(n) = e 9%

n!-

@, ©.@,
an

p=E[N]= ) np(n)=e* n—=a
n=0 n=0 n:
The second moment
o0
E[N?] = > n’p(n) = a® + a
n=0

T herefore,
02 = E[N?] — E[N]? = a

mean = variance = a

The coefficient of variation Cy = o/ is

RV N with



Poisson, a = 3
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Using

Data for

Parameter Inference



Parameter Inference from Population Statistics

Lack of identifiability from average protein measurements

It is impossible to identify all model parameters using
average proteins measurements: E[p(t1)], Elp(t2)],. ..

§ Protein Variability Measurements Enables Identifiability
rotein ? If measurements of £[p| and E|[p?] are used, then
P identifiability 1s possible with five time measurements.
kp Explicit formulae in the case of mMRNA measurements
Given mean and standard deviation at two times instances:
Ve
mRNA '4‘5‘\3 N
453-, ¢ (10, 00) :== (u(to), o (to)) and (u1,01) = (u(t1),o(t1))
1 2 - —r
| fer =L og <01 m) ond k, = ~, M1~ P T)Ho
§ 27 o 1 —exp(—,7)
(7' = tl - to)

Identifiability of All Model Parameters

Munsky, Trinh, and Khammash (2009)

T
Nature/EMBO Molecular Systems Biology v(t) = [E r] E [7"2] Elp] E [p2] E [pTH

Suppose the vector of moments v (%) is known at two times to < t; < o0.

Then all four model parameters are identifiable using only v(¢1) and v(t2).



Using pdf Estimates to Identify Parameters

Using Density Measurements:

Suppose we measure P at different times: P(¢y),P(¢1),..., P(tny_1)

) j more informative than
‘ ‘ ‘ mean and variance alone

\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
000000000000000000000000000000

We can use these to identify unknown network parameters \:

Minimum mismatch:
(Chemical Master Equation)

mAinZ P(t:) — P(ts)| subject to P\ = A\P,

Maximum likelihood:

max log L {P(t;)}) = max } _ (P(t;),log Px(t:)) subject to P\ = A(\P,

Bayesian:

PA[{P(t:)}) oc LA{P(E:)}) - P(A)



Controlling Gene Expression Mean and Variance



Actuation with Light

535 nm 670 nm

fluorescent
protein

fluorescent
protein

E. coli strain
labor et. al, JIMB, 2011



Closed-Loop Optogenetic Control
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Pl feedback

t o0 t | :
@& u(t) = kre(t) + kg/ G(T)dT&
desired °

mean

transcription
rate

>

p)(t)

Controlling protein mean with Pl feedback

There always exists control parameters k1 and ks such that the system is locally

stable, and the protein mean tracks asymptotically the desired mean.

Local stability and asymptotic tracking are achieved ift

k2 o Vo Vr

and
Yp T+ Vr kp

ki1 >

Local stability ift global stability

ko > 0

>

protein
mean




A Simulation Example

P| feedback gﬁ 'y
e(t o0 t $ f) "4 Elpl(t
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| A
. I Za—
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Mean and Variance Control

'y

Goal: Control both protein mean and variance

protein g g independently

degradation

control
I @ Obstacle: We can prove that it is impossible to achieve

mRNA % % this goal with transcriptional control alone

@_transeriptional
control

Possible solution: \WWe explore the use of an additional
independent control input: MRNA degradation



Mean and Variance Control

$ g _» W — iy () (8) + 1 (1
% : ___)¢ dt

| d
protein 0 g‘ % _ kp,um(t) B
e
[ kp us () % = Uo (t) (g (t) — 207271(15)) +ug(2)
Qb. da?np 2 2
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Fundamental Limitations

Y

— ¢

protein g‘ g

Fact: Not all desired protein mean and variance are
us (t) achievable.

mRNA % @ . .
% Let p,s be the desired protein mean

Let 0 . be the desired protein variance
w1 (¢)

Fact: The set of achievable protein mean and variance is given by

k
Hop < 0-129* < (1 + _p) Hop
Tp



Fundamental Limitations
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Fact: The set of achievable protein mean and variance is given by

k
fps < Oy < (1 T _p) Hpx
Tp

[op



Feedback Control of Mean and Variance

€1 (t)
desired :

mean

Control system

62(t
desired :

variance |

ul(t) = k181(t) + ko /Om el('r)d'r Ul (t)> | {

Control System

o0

ahaF) e o) Tog /0 eo(r)dr

U2 (t)

protein
mean
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Control system

protein
mean
t o0
4>< >_>61( ) u1(t) = krer(t) + kz/ ey (r)dr | U1 (t); N ‘ ﬂp(t)
0 -
desired l transcription & &>, >
mean - rate t
Control System ,.T 8 V;;rrq;ggwe
|
. 1 2
‘POe:z—(tl uz(t) = kzea(t) + k4/ ea(7)dr U2 (t); S Up (t) >
desired ?
variance | ~ mRNA degradation
rate

Tracking of protein mean and variance with Multivariable Pl feedback

There always exists control parameters kq, ko k3, and k4 such that the system
is locally stable, and

1. the protein mean tracks asymptotically the desired mean pp.; and

2. the protein variance tracks asymptotically the desired mean O'Z%*
provided

k
Tp




Simulation
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Summary

e Gene expression is stochastic; this leads to population variability
e Variability plays an important biological role

e Probabilistic methods are required to model gene expression

e Population data can be used for statistical inference

e |t is possible to control statistical properties of gene expression

using external inputs



