

Probabilistic Methods for Biochemical Reaction Networks

Mustafa Khammash

Department of Biosystems Science and Engineering ETH Zürich

LECTURE II

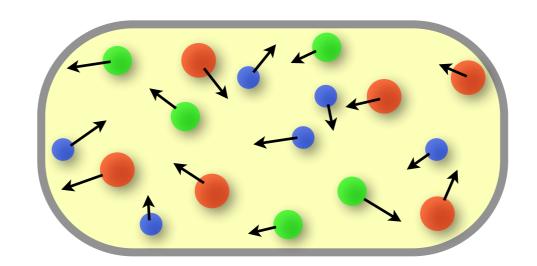
Outline

- A probabilistic modeling framework for chemical kinetics
- Generating sample paths: Monte Carlo methods
- Computing the probability density: the Chemical Master Equation
- Computing statistical moments
- Stochastic differential equation approximations

Stochastic Chemical Kinetics

A General Formulation of Stochastic Chemical Kinetics

Reaction volume= Ω



Key Assumptions

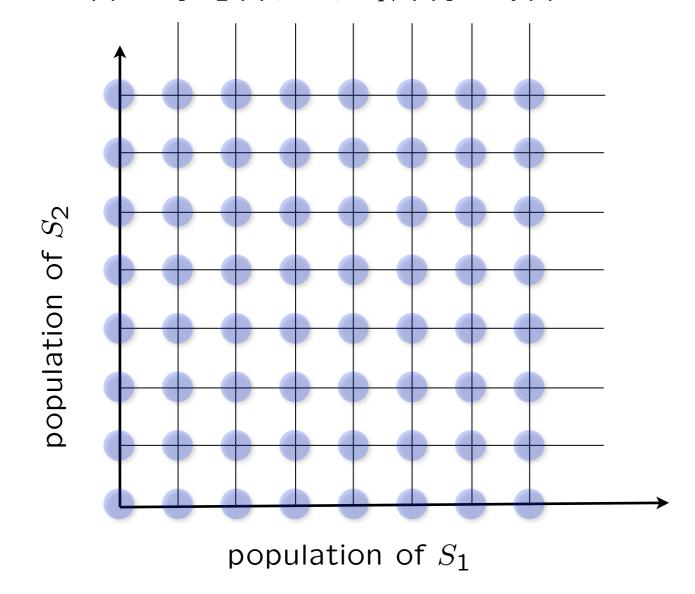
(**Well-Mixed**) The probability of finding any molecule in a region $d\Omega$ is given by $\frac{d\Omega}{\Omega}$.

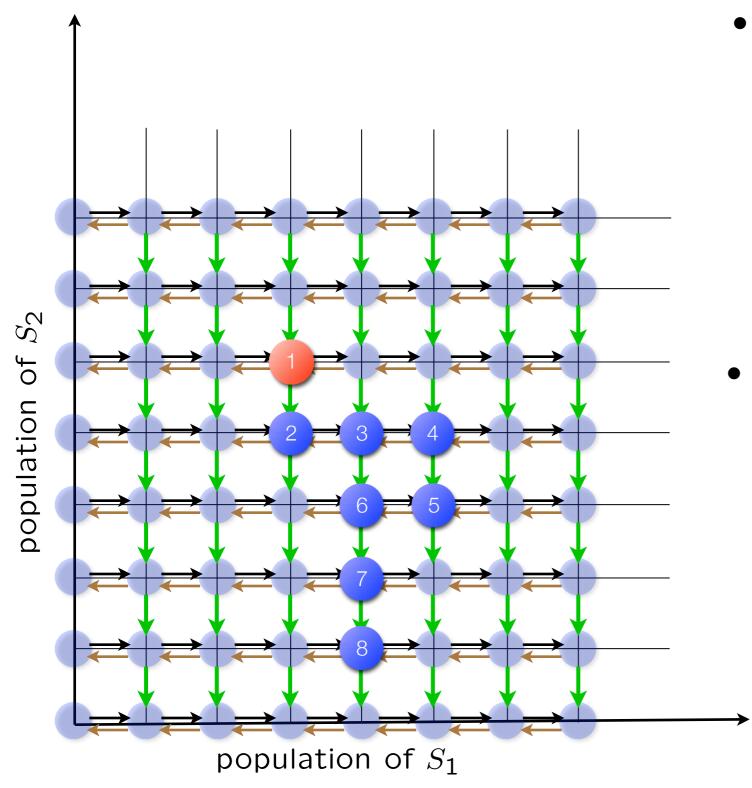
(**Thermal Equilibrium**) The molecules move due to the thermal energy. The reaction volume is at a constant temperature T. The velocity of a molecule is determined according to a Boltzman distribution:

$$f_{v_x}(v) = f_{v_y}(v) = f_{v_z}(v) = \sqrt{\frac{m}{2\pi k_B T}} e^{-\frac{m}{2k_B T}v^2}$$

Stochastic Chemical Kinetics

- (N-species) Start with a chemically reacting system containig N distinct reacting species $\{S_1, \dots, S_N\}$.
- The state of the system is described by the integer random variable $X(t) = [X_1(t), \dots, X_N(t)]; X_i(t)$ is the popultation of S_i at time t.





• (M-reactions) The system's state can change through any one of M reaction: $R_k: k \in \{1, 2, ..., M\}$.

Example:
$$R_1$$
 $\phi \to S_1$
$$R_2$$
 $S_1 + S_2 \to S_1$
$$R_3$$
 $S_1 \to \phi$

• (State transition) An R_k reaction causes a state transition from ${\bf x}$ to ${\bf x}+s_k$.

$$s_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}; \quad s_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}; \quad s_3 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

Stoichiometry matrix:

Sequence: R_2 R_1 R_1 R_2 R_3 R_2 R_2

• (Transition Probability) Suppose the system is in state $X(t) = \mathbf{x}$.

The probability that R_k is the next reaction and that it occurs within the next dt time units is given by $w_k(\mathbf{x})dt$.

propensity function

If R_k is the zeroth order reaction $\phi \to$ products, then $w_k(\mathbf{x}) = c_k$, for some constant c_k .

If R_k is the monomolecular reaction $S_i \to \text{products}$, then $w_k(\mathbf{x}) = c_k \mathbf{x}_i$, for some constant c_k .

If R_k is the bimolecular reaction $S_i + S_j \rightarrow$ products, then

$$w_k(\mathbf{x}) = \left\{ egin{array}{ll} c_k \mathbf{x}_i \mathbf{x}_j, & i
eq j \\ c_k rac{\mathbf{x}_i (\mathbf{x}_i - 1)}{2}, & i = j \end{array}
ight\}$$
 , for some constant c_k .

Sample Path Representations

X(t) is Continuous-time countable-state Markov Chain

Counting Process Representation:

$$X(t) = X(0) + \sum_{K=1}^{M} s_k N_k(t)$$

 $N_k(t)$ is a counting process representing # of firings of R_k in [0,t].

 N_k has a state-dependent intensity:

$$P\{N_k(t + \Delta t) - N_k(t) = 1\} \approx w_k(X(t)) \cdot \Delta t$$

Sample Path Representation

If the counting process N(t) has intensity w(t), there exists a unit Poisson process $Y(\cdot)$ such that

$$N(t) = Y \left[\int_0^t w(s) ds \right].$$

Applying to the counting process representation: $X(t) = X(0) + \sum_{k=1}^{M} s_k N_k$ we get

Random Time Change Representation:

$$X(t) = X(0) + \sum_{k=1}^{M} s_k Y_k \left[\int_0^t w_k(X(s)) ds \right]$$

 $Y_k[\cdot]$ are independent unit Poisson

Generator of X(t)

Generator: The generator of a stochastic process is defined as:

$$(\mathcal{A}f)(x) \equiv \lim_{t\downarrow 0} \frac{1}{t} E\{f(X(s+t) - f(X(s)) | X(s) = x\}$$

 \mathcal{A} is an operator that maps functions $f: \mathbb{R}^N \to \mathbb{R}$ in its domain into functions $\mathcal{A}f: \mathbb{R}^N \to \mathbb{R}$.

The generator of a stochastic process encodes a great deal of information about the process.

For the Markov process describing our chemical system:

$$(\mathcal{A}f)(x) = \sum_{k=0}^{N} w_k(x)(f(x+s_k) - f(x))$$

From Stochastic to Deterministic

Given N species S_1, \ldots, S_N and M elementary reactions. Let $\Phi_i := [S_i]$.

A deterministic description can be obtained from mass-action kinetics:

$$\frac{d\Phi}{dt} = Sf(\Phi)$$

where $f(\cdot)$ is at most a second order monomial. It depends on the type of reactions and their rates.

Example:

$$A + B \xrightarrow{k_1} C$$

$$A \xrightarrow{k_2} B$$

$$\frac{d\Phi_A}{dt} = -k_1 \Phi_A \Phi_B - k_2 \Phi_A$$

$$\frac{d\Phi_B}{dt} = -k_1 \Phi_A \Phi_B + k_2 \Phi_A$$

$$\frac{d\Phi_C}{dt} = k_1 \Phi_A \Phi_B$$
or
$$S = \begin{bmatrix} -1 & -1 \\ -1 & 1 \\ 1 & 0 \end{bmatrix}, f(\Phi) = \begin{bmatrix} k_1 \Phi_A \Phi_B \\ k_2 \Phi_A \end{bmatrix}$$

From Stochastic to Deterministic

Define
$$X^{\Omega}(t) = \frac{X(t)}{\Omega}$$
.

Question: How does $X^{\Omega}(t)$ relate to $\Phi(t)$?

Fact: Let $\Phi(t)$ be the deterministic solution to the reaction rate equations

$$\frac{d\Phi}{dt} = Sf(\Phi), \ \Phi(0) = \Phi_0.$$

Let $X^{\Omega}(t)$ be the stochastic representation of the same chemical systems with $X^{\Omega}(0) = \Phi_0$. Then for every $t \geq 0$:

$$\lim_{\Omega \to \infty} \sup_{s \le t} |X^{\Omega}(s) - \Phi(s)| = 0 \ a.s.$$

T. Kurtz

Simulating Sample Paths

Monte Carlo Methods

Generating Sample Paths

Gillespie's Stochastic Simulation Algorithm:

To each of the reactions $\{R_1, \ldots, R_M\}$ we associate a RV τ_i : τ_i is the time to the next firing of reaction R_i

Fact 0: τ_i is exponentially distributed with parameter w_i

We define two new RVs:

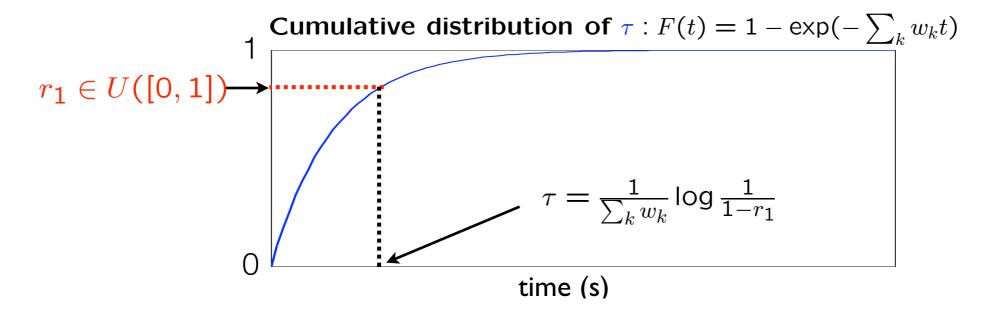
$$au = \min_i \{ au_i\}$$
 (Time to the next reaction)
$$\mu = \arg\min_i \{ au_i\}$$
 (Index of the next reaction)

Fact 1: au is exponentially distributed with parameter $\sum_i w_i$

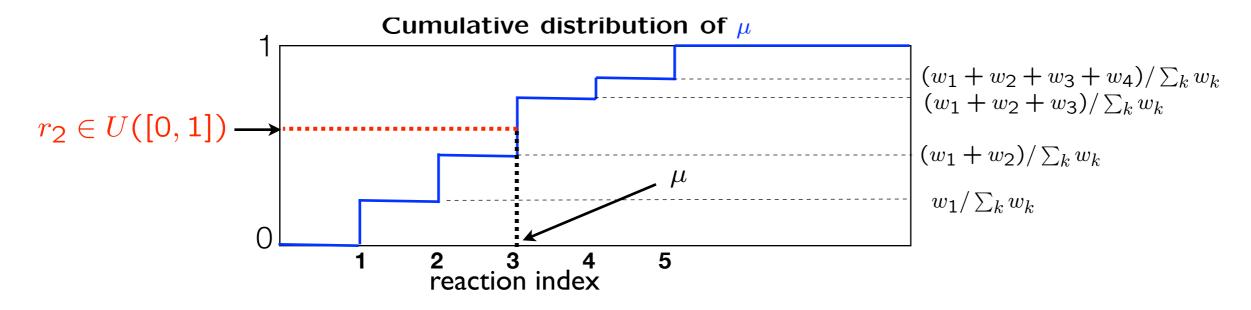
Fact 2:
$$P(\mu = k) = \frac{w_k}{\sum_i w_i}$$

Stochastic Simulation Algorithm

- Step 0 Initialize time t and state population x
- Step 1 Draw a sample τ from the distribution of τ



• Step 2 Draw a sample μ from the distribution of μ



• Step 3 Update time: $t \leftarrow t + \tau$. Update state: $x \leftarrow x + s_{\mu}$.

Stochastic Simulation Algorithm: Matlab code

end

```
clear all
t=0;tstop = 2000;
                                                     %%specify initial and final times
                                                     %% Specify initial conditions
x = [0; 0];
S = [1 -1 0 0; 0 0 1 -1];
                                                     %% Specify stoichiometry
w = inline('[10, 1*x(1), 10*x(1), 1*x(2)]', 'x');
                                                     %% Specify Propensity functions
while t<tstop</pre>
    a = w(x);
                                                      % compute the prop. functions
                                                   % compute the sum of the prop. functions
    w0 = sum(a);
    t = t+1/w0*log(1/rand);
                                                      % update time of next reaction
    if t<=tstop</pre>
                                  % generate second random number and multiply by prop. sum
      r2w0=rand*w0;
                                                      % initialize reaction counter
      i=1;
      while sum(a(1:i))<r2w0</pre>
                                         % increment counter until sum(a(1:i)) exceeds r2w0
         i=i+1;
      end
      x = x+S(:,i);
                                                       % update the configuration
   end
```

Generating Sample Paths

Gibson-Bruck Next Reaction Method

The Gibson-Bruck method is an exact stochastic simulation algorithm

It is based on the random time change representation:

$$X(t) = X(0) + \sum_{k=1}^{M} s_k Y_k \left[\int_0^t w_k(X(s)) ds \right]$$

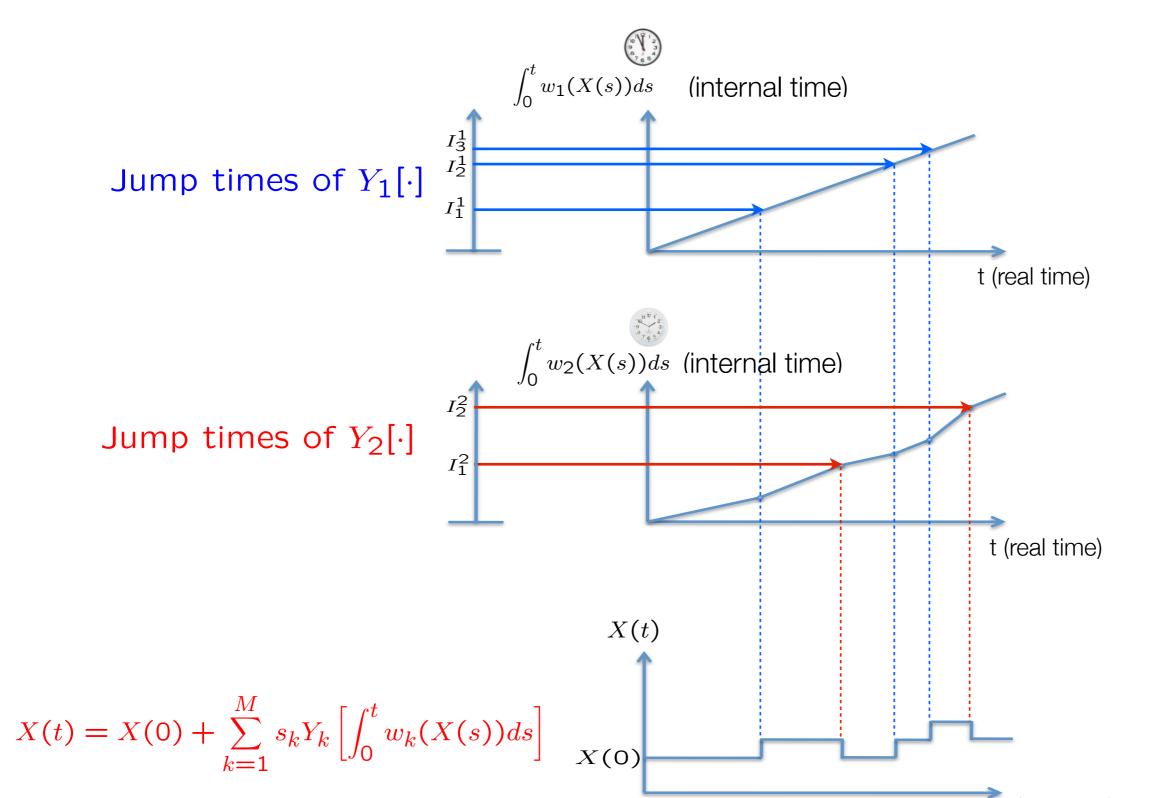
It is more efficient that Gillespie's SSA

Uses one random number per reaction event

Generating Sample Paths

Example: Birth-Death Process $\phi \xrightarrow{c_1} \mathcal{S} \xrightarrow{c_2 X} \phi$ $X = \text{Species } \mathcal{S} \text{ count}$

$$\phi \xrightarrow{c_1} \mathcal{S} \xrightarrow{c_2 X} \phi$$

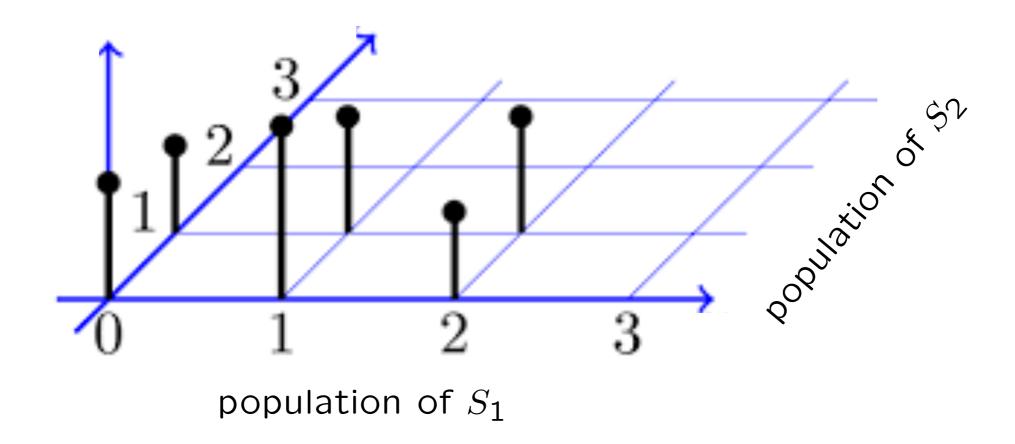


The Probability Density Function of X

The Chemical Master Equation

The Chemical Master Equation

Given a system state x, we would like to find P(X(t) = x)



Notation: p(x,t) := P(X(t) = x)

The Chemical Master Equation

Prob. that no reactions fire in $[t, t+dt] = 1 - \sum_k w_k(x)dt + \mathcal{O}(dt^2)$

Prob. that reaction R_k fires once in $[t, t + dt] = w_k(x)dt + \mathcal{O}(dt^2)$

Prob. that more than one reaction fires in $[t, t + dt] = \mathcal{O}(dt^2)$

$$p(x,t+dt) = p(x,t) \left(1 - \sum_k w_k(x)dt + \mathcal{O}(dt^2)\right)$$

$$+ \sum_k p(x - s_k,t) \left(\sum_k w_k(x)dt + \mathcal{O}(dt^2)\right) + \mathcal{O}(dt^2)$$
 more than one away from x

$$p(x,t+dt) - p(x,t) = -p(x,t) \sum_{k} w_k(x)dt + \sum_{k} p(x-s_k,t)w_k(x)dt + \mathcal{O}(\epsilon)$$

The Chemical Master Equation

$$\frac{dp(x,t)}{dt} = -p(x,t)\sum_{k} w_k(x) + \sum_{k} p(x-s_k,t)w_k(x)$$

Dynkins Formula

Dynkins Formula

Given $f: \mathbb{R}^N \to \mathbb{R}$ and $t \geq 0$. Then

$$\mathbb{E}(f(X(t))) = \mathbb{E}(f(X(0))) + \mathbb{E}\left(\int_0^t \mathcal{A}f(X(s))ds\right).$$

Can be thought of as a stochastic generalization of the Fundamental Theorem of Calculus.

Using Dynkin's Formula to Derive the CME

For a state $x \in \mathbb{N}_0^N$, let $f(y) = \mathbb{I}_{\{x\}}(y)$ be the indicator function of $\{x\}$.

Note that for any $g: \mathbb{R}^N \to \mathbb{R}$ we have

$$\mathbb{E}\left(g(X(t))f(X(t))\right) = g(x)p(x,t) \tag{1}$$

and
$$\mathbb{E}(g(X(t))f(X(t) + s_k)) = g(x - s_k)p(x - s_k, t),$$
 (2)

Applying the Dynkin's formula on f we obtain

$$p(x,t) = p(x,0) + \sum_{k=1}^{M} \int_{0}^{t} \mathbb{E}\left(w_{k}(X(s))(f(X(s) + s_{k}) - f(X(s)))\right) ds$$

Using (1) and (2) we get

$$p(x,t) = p(x,0) + \sum_{k=1}^{M} w_k(x - s_k) \int_0^t p(s, x - s_k) ds - \sum_{k=1}^{M} w_k(x) \int_0^t p(s, x) ds.$$

Statistical Moments

Using Dynkin's Formula to Derive the Statistical Moments

We derive the differential equations for the first and second moment.

Let $f: \mathbb{R}^N \to \mathbb{R}$ be given by $f(x_1, \dots, x_N) = x_i$. By Dynkin's formula

$$\mathbb{E}(f(X(t))) = \mathbb{E}(f(X(0))) + \sum_{k=1}^{M} \mathbb{E}\left(\int_{0}^{t} w_{k}(X(s))(f(X(s) + s_{k}) - f(X(s)))\right)$$

But $\mathbb{E}(f(X(t))) = \mathbb{E}(X_i(t))$ and $(f(X(s) + s_k) - f(X(s))) = s_{ik}$.

Hence we get

$$\mathbb{E}(X_i(t)) = \mathbb{E}(X_i(0)) + \sum_{k=1}^{M} s_{ik} \int_0^t \mathbb{E}(w_k(X(s))) ds.$$

Using Dynkin's Formula to Derive the Statistical Moments (cont.)

$$\mathbb{E}(X_i(t)) = \mathbb{E}(X_i(0)) + \sum_{k=1}^{M} s_{ik} \int_0^t \mathbb{E}(w_k(X(s))) ds$$
 (3)

Let S be the stoichiometry matrix and let w(x) be the propensity vector

$$w(x) = (w_1(x), \dots, w_M(x))^T$$
.

Since (3) holds for each i, we can write the equation for the first moment $\mathbb{E}(X(t)) = (\mathbb{E}(X_1(t)), \dots, \mathbb{E}(X_N(t)))$ as

$$\mathbb{E}(X(t)) = \mathbb{E}(X(0)) + \int_0^t S\mathbb{E}(w(X(s)))ds.$$

This equation in differential form becomes

$$\frac{d\mathbb{E}(X(t))}{dt} = S\mathbb{E}(w(X(t))).$$

Using Dynkin's Formula to Derive the Statistical Moments (cont.)

Now consider the function $f: \mathbb{R}^N \to \mathbb{R}$ given by $f(x) = x_i x_j$.

For any $x \in \mathbb{N}_0^N$ we get

$$\sum_{k=1}^{M} w_k(x) \left(f(x+s_k) - f(x) \right) = \sum_{k=1}^{M} w_k(x) \left((x_i + s_{ik})(x_j + s_{jk}) - x_i x_j \right)$$

$$= \sum_{k=1}^{M} w_k(x) \left(x_i s_{jk} + x_j s_{ik} + s_{ik} s_{jk} \right)$$

$$= \left[x w^T(x) S^T \right]_{ij} + \left[S w(x) x^T \right]_{ij} + \left[S W(x) S^T \right]_{ij}$$

where W(x) is $M \times M$ diagonal matrix with entries $w_1(x), \ldots, w_M(x)$.

Applying the Dynkin's formula with f we get

$$\mathbb{E}\left(X_i(t)X_j(t)\right) = \mathbb{E}\left(X_i(0)X_j(0)\right) +$$

$$\int_0^t \mathbb{E}\left([X(s)w^T(X(s))S^T]_{ij} + [Sw(X(s))X^T(s)]_{ij} + [SW(X(s))S^T]_{ij}\right) ds.$$

Using Dynkin's Formula to Derive the Statistical Moments (cont.)

$$\mathbb{E}\left(X_i(t)X_j(t)\right) = \mathbb{E}\left(X_i(0)X_j(0)\right) +$$

$$\int_0^t \mathbb{E}\left([X(s)w^T(X(s))S^T]_{ij} + [Sw(X(s))X^T(s)]_{ij} + [SW(X(s))S^T]_{ij}\right) ds.$$

Since this holds for each i and j, we can write the equation for the second moment (covariance matrix) $\mathbb{E}(X(t)X^T(t))$ as

$$\mathbb{E}\left(X(t)X^{T}(t)\right) = \mathbb{E}\left(X(0)X^{T}(0)\right) +$$

$$\int_{0}^{t} \left(\mathbb{E}(X(s)w^{T}(X(s))S^{T}) + \mathbb{E}(Sw(X(s))X^{T}(s)) + \mathbb{E}(SW(X(s))S^{T})\right) ds.$$

This equation in differential form becomes

$$\frac{d\mathbb{E}(X(t)X^T(t))}{dt} = \mathbb{E}(X(t)w^T(X(t))S^T) + \mathbb{E}(Sw(X(t))X^T(t)) + \mathbb{E}(SW(X(t))S^T).$$

To Sum Up

$$w(x) = [w_1(x), \dots, w_M(x)]^T$$
 be the vector of propensity functions

Moment Dynamics

$$\frac{d\mathbb{E}[X]}{dt} = S \mathbb{E}[w(X)]$$

$$\frac{d\mathbb{E}[XX^T]}{dt} = S\mathbb{E}[w(X)X^T] + \mathbb{E}[Xw^T(X)]S^T + S \mathbb{E}[W(X)]) S^T$$

Affine Propensity

Suppose the propensity function is affine:

$$w(x) = W_0 x + w_0, \qquad (W_0 \text{ is } N \times N, w_0 \text{ is } N \times 1)$$

Then
$$\mathbb{E}[w(X)] = W_0\mathbb{E}[X] + w_0$$
, and $\mathbb{E}[w(X)X^T] = W_0\mathbb{E}[XX^T] + w_0\mathbb{E}[X^T]$.

This gives us the moment equations:

$$\frac{d}{dt}\mathbb{E}[X] = SW_0\mathbb{E}[X] + Sw_0 \qquad \text{First Moment}$$

$$\frac{d}{dt}\mathbb{E}[XX^T] = SW_0\mathbb{E}[XX^T] + \mathbb{E}[XX^T]W_0^TS^T + S \operatorname{diag}(W_0\mathbb{E}[X] + w_0)S^T$$

$$+ Sw_0\mathbb{E}[X^T] + \mathbb{E}[X]w_0^TS^T \qquad \text{Second Moment}$$

These are linear ordinary differential equations and can be easily solved!

Affine Propensity (cont.)

Define the covariance matrix $\Sigma = \mathbb{E}[(X - \mathbb{E}[X])(X - \mathbb{E}(X)]^T]$.

We can also compute covariance equations:

$$\frac{d}{dt}\Sigma = SW\Sigma + \Sigma W_0^T S^T + S \operatorname{diag}(W_0 \mathbb{E}[X] + w_0) S^T$$

Stationary Case

The steady-state moments and covariances can be obtained by solving linear algebraic equations:

Let
$$\bar{X} = \lim_{t \to \infty} \mathbb{E}[X(t)]$$
 and $\bar{\Sigma} = \lim_{t \to \infty} \Sigma(t)$.

Then

$$SW_0\bar{X} = -Sw_0$$

$$SW_0\bar{\Sigma} + \bar{\Sigma}W_0^TS^T + S \operatorname{diag}(W_0\bar{X} + w_0)S^T = 0$$

Fluctuations Arise from Noise Driven Dynamics

Define $A = SW_0$, and $B = S\sqrt{diag(W_0\bar{X} + w_0)}$.

The steady-state covariances equation

$$SW\bar{\Sigma} + \bar{\Sigma}W^TS^T + S \operatorname{diag}(W\bar{X} + w_0)S^T = 0$$

becomes

$$A\bar{\Sigma} + \bar{\Sigma}A^T + BB^T = 0$$
 Lyapunov Equation

The Lyapunov equation characterizes the steady-state covariance of a output of the linear dynamical system

$$\dot{y} = Ay + B\omega$$

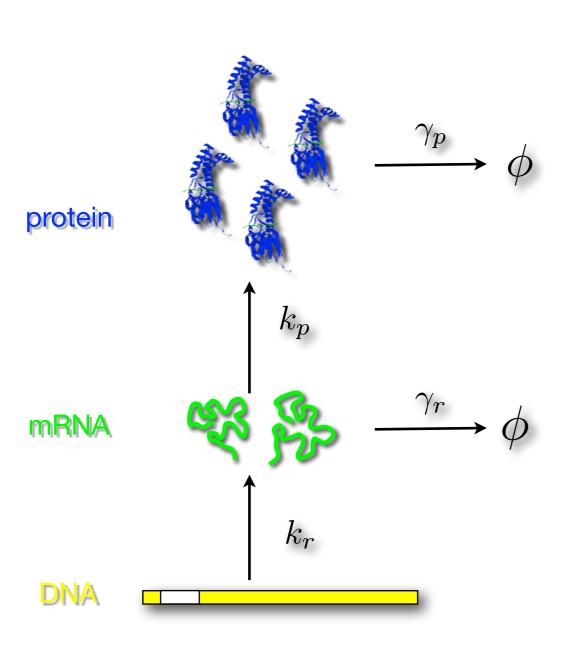
where ω is a unit intensity white Gaussian noise!

More precisely, the solution of the vector SDE:

$$dy = Ay \ dt + B \ dW_t$$

where W_t is Brownian motion. This is also called **Ornstein-Uhlenbeck**

Application to Gene Expression



Reactants

 $X_1(t)$ is # of mRNA; $X_2(t)$ is # of protein

Reactions

 $\xrightarrow{\gamma_p} \phi \qquad R_1 : \phi \xrightarrow{k_r} mRNA$

 $R_2: mRNA \xrightarrow{\gamma_r} \phi$

 $R_3: mRNA \xrightarrow{k_p} protein + mRNA$

 R_4 : protein $\xrightarrow{\gamma_p} \phi$

Stoichiometry and Propensity

$$S = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$w(X) = \begin{bmatrix} k_r \\ \gamma_r X_1 \\ k_p X_1 \\ \gamma_p X_2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ \gamma_r & 0 \\ k_p & 0 \\ 0 & \gamma_p \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} k_r \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$W_0$$

Steady-State Moments

$$A = SW_0 = \begin{bmatrix} -\gamma_r & 0 \\ k_p & -\gamma_p \end{bmatrix}, \qquad Sw_0 = \begin{bmatrix} k_r \\ 0 \end{bmatrix}$$

$$\bar{X} = -A^{-1}Sw_0 = \begin{bmatrix} \frac{k_r}{\gamma_r} \\ \frac{k_p k_r}{\gamma_p \gamma_r} \end{bmatrix}$$

Steady-State Covariance

$$BB^{T} = S \operatorname{diag}(W_{0}\bar{X} + w_{0})S^{T} = \begin{bmatrix} 2k_{r} & 0\\ 0 & \frac{2k_{p}k_{r}}{\gamma_{r}} \end{bmatrix}$$

The steady-state covariances equation

$$A\bar{\Sigma} + \bar{\Sigma}A^T + BB^T = 0$$
 Lyapunov Equation

can be solved algebraically for $\bar{\Sigma}$.

$$ar{ar{\Sigma}} = egin{bmatrix} rac{k_p k_r}{\gamma_r} & rac{k_p k_r}{\gamma_r (\gamma_r + \gamma_p)} \ rac{k_p k_r}{\gamma_r (\gamma_r + \gamma_p)} & rac{k_p k_r}{\gamma_p \gamma_r} (1 + rac{k_p}{\gamma_r + \gamma_p}) \end{bmatrix}$$

Coefficients of Variation

$$C_{vr}^2 = \frac{1}{\frac{k_r}{\gamma_r}} = \frac{1}{\bar{X}_1}$$

$$C_{vp}^{2} = \frac{1}{\frac{k_{r}k_{p}}{\gamma_{r}\gamma_{p}}} \left(1 + \frac{k_{p}}{\gamma_{r} + \gamma_{p}} \right) = \frac{1}{\bar{X}_{2}} \left(1 + \frac{k_{p}}{\gamma_{r} + \gamma_{p}} \right)$$

Question: Does a large \bar{X}_2 imply a small C_{vp} ?

$$C_{vp}^{2} = \frac{1}{\frac{k_{r}k_{p}}{\gamma_{r}\gamma_{p}}} \left(1 + \frac{k_{p}}{\gamma_{r} + \gamma_{p}} \right)$$

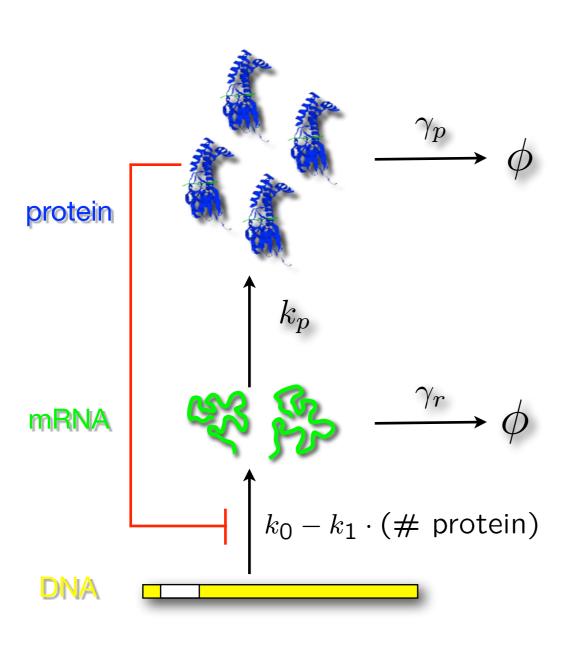
$$\geq \frac{1}{\frac{k_{r}k_{p}}{\gamma_{r}\gamma_{p}}} \left(\frac{k_{p}}{\gamma_{r} + \gamma_{p}} \right) = \frac{\gamma_{r}\gamma_{p}}{k_{r}} \cdot \frac{1}{\gamma_{r} + \gamma_{p}}$$

 $\bar{X}_2 = \frac{k_r k_p}{\gamma_r \gamma_p}$, which can be chosen *independently* from C_{vp} .

Large mean does not imply small fluctuations!

Application: Noise Suppression

Noise Attenuation through Negative Feedback



Reactants

 $X_1(t)$ is # of mRNA; $X_2(t)$ is # of protein

Reactions

$$R_1: \phi \xrightarrow{k_r} mRNA$$
 $k_r = k_0 - k_1 \cdot (\# \text{ protein})$

$$R_2: mRNA \xrightarrow{\gamma_r} \phi$$

$$R_3: mRNA \xrightarrow{k_p} protein + mRNA$$

$$R_4: protein \xrightarrow{\gamma_p} \phi$$

Stoichiometry and Propensity

$$S = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$w(X) = \begin{bmatrix} k_0 - k_1 X_2 \\ \gamma_r X_1 \\ k_p X_1 \\ \gamma_p X_2 \end{bmatrix} = \begin{bmatrix} 0 & -k_1 \\ \gamma_r & 0 \\ k_p & 0 \\ 0 & \gamma_p \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} k_0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Steady-State Moments

$$A = SW_0 = \begin{bmatrix} -\gamma_r & -k_1 \\ k_p & -\gamma_p \end{bmatrix}, \qquad Sw_0 = \begin{bmatrix} k_0 \\ 0 \end{bmatrix}$$

$$\bar{X} = -A^{-1}Sw_0 = \begin{bmatrix} \frac{\frac{k_0}{\gamma_r}}{1 + \frac{k_1 k_p}{\gamma_p \gamma_r}} \\ \frac{\frac{k_0 k_p}{\gamma_r \gamma_p}}{1 + \frac{k_1 k_p}{\gamma_p \gamma_r}} \end{bmatrix} =: \begin{bmatrix} \mu_r \\ \mu_p \end{bmatrix}$$

Steady-State Covariance

$$BB^{T} = S \ diag(W_{0}\bar{X} + w_{0})S^{T} = \begin{bmatrix} k_{0} + \gamma_{r}\mu_{r} - k_{1}\mu_{p} & 0\\ 0 & k_{p}\mu_{r} + \gamma_{p}\mu_{p} \end{bmatrix}$$

The steady-state covariances equation

$$A\bar{\Sigma} + \bar{\Sigma}A^T + BB^T = 0$$
 Lyapunov Equation

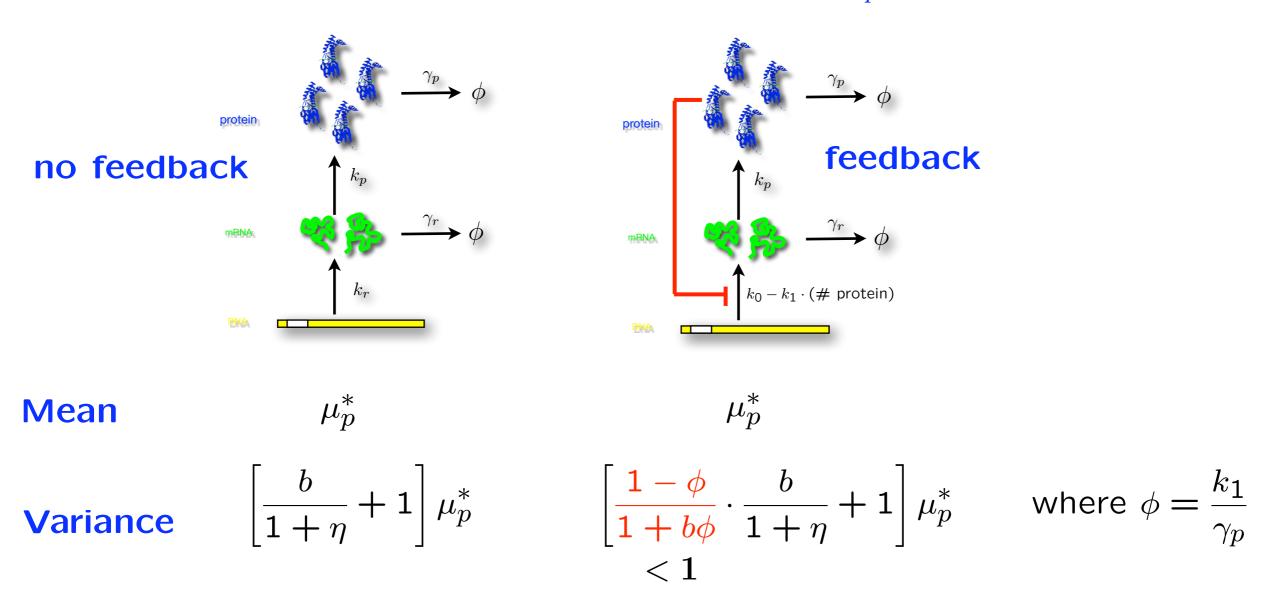
can be solved algebraically for $\bar{\Sigma}$.

$$\bar{\Sigma}_{22} = \sigma_p^2 = \left[\frac{1 - \phi}{1 + b\phi} \cdot \frac{b}{1 + \eta} + 1 \right] \mu_p \qquad \text{where } \phi = \frac{k_1}{\gamma_p}, \ b = \frac{k_p}{\gamma_r}, \ \eta = \frac{\gamma_p}{\gamma_r}$$

Feedback vs. No Feedback

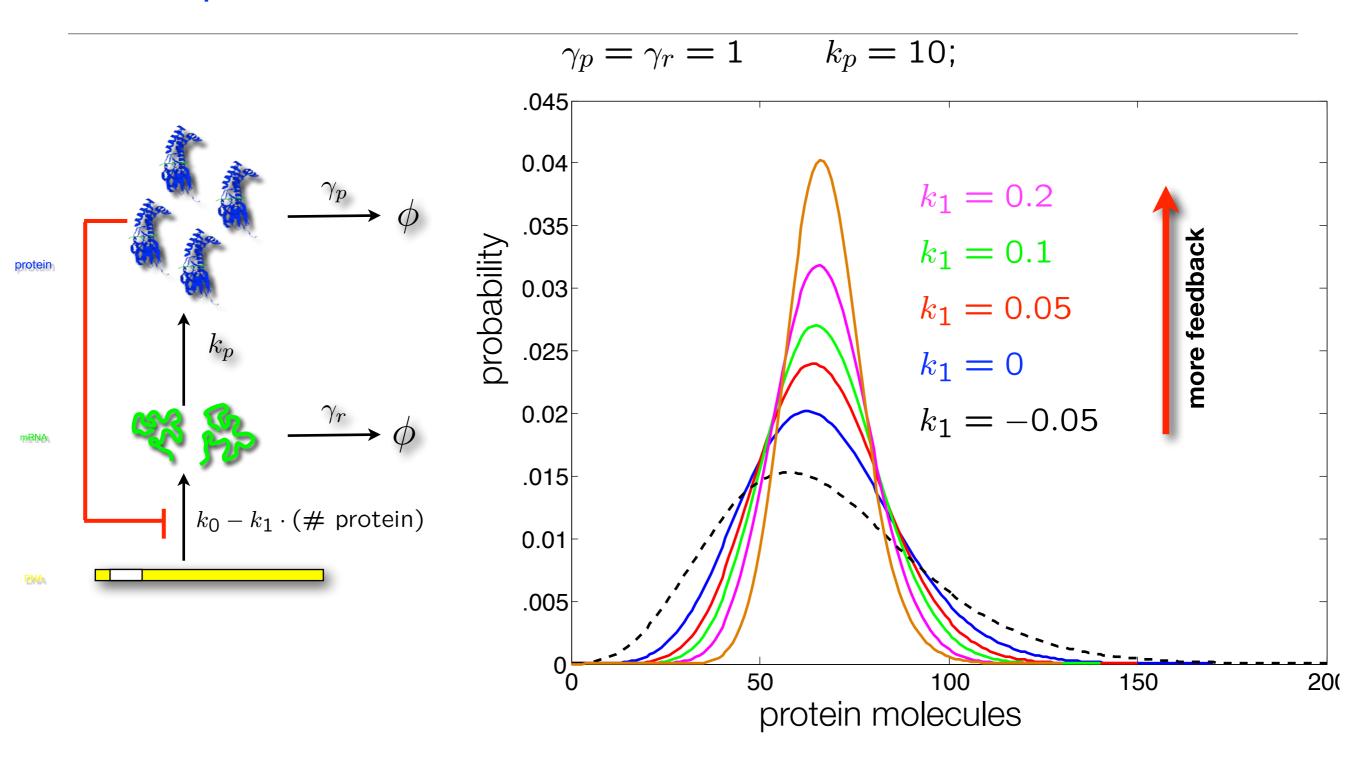
In order to compare the noise in the two cases, we must ensure that both configuations have the same mean!

Impose the constraint: $\mu_p^{FB}=\mu_p^{NFB}=:\mu_p^*$ This may be achieved by choosing $k_0=k_r+k_1\mu_p^{NFB}$.



Protein variance is always smaller with negative feedback!

Example



SDE Approximations of X

The Linear Noise Approximation (LNA)

Linear Noise Approximation (LNA)

Let
$$X^{\Omega}(t) := \frac{X(t)}{\Omega}$$

Write $X^{\Omega} = \Phi_0(t) + \frac{1}{\sqrt{\Omega}}V^{\Omega}$ where $\Phi_0(t)$ solves the deterministic RRE

$$\frac{d\Phi}{dt} = Sf(\Phi)$$

Linear Noise Approximation

$$V^{\Omega}(t) \to V(t)$$
 as $\Omega \to \infty$, where $dV(t) = A(t)V(t)dt + B(t)dW_t$

$$A(t) = \frac{d[Sf(\Phi)]}{d\Phi}(\Phi_0(t)), \qquad B(t) := S\sqrt{diag[f(\Phi_0(t))]}$$

Linear Noise Approximation: $X^{\Omega}(t) \approx \Phi(t) + \frac{1}{\sqrt{\Omega}}V(t)$

Linear Noise Approximation: Stationary Case

Let
$$X^{\Omega}(t) := \frac{X(t)}{\Omega}$$

We look at the LNA around a stationary solution: $0 = Sf(\bar{\Phi})$.

Linear Noise Approximation

$$X^{\Omega}(t) \approx \bar{\Phi} + \frac{1}{\sqrt{\Omega}} V(t)$$

$$dV(t) = A V(t)dt + B dW_t$$

$$A = \frac{d[Sf(\Phi)]}{d\Phi}(\bar{\Phi}), \qquad B := S\sqrt{diag[f(\bar{\Phi})]}$$

Linear Noise Approximation: Stationary Case

Multiplying $X^{\Omega}(t) \approx \bar{\Phi} + \frac{1}{\sqrt{\Omega}}V(t)$ by Ω , we get

$$X(t) \approx \Omega \bar{\Phi} + \sqrt{\Omega} V(t)$$

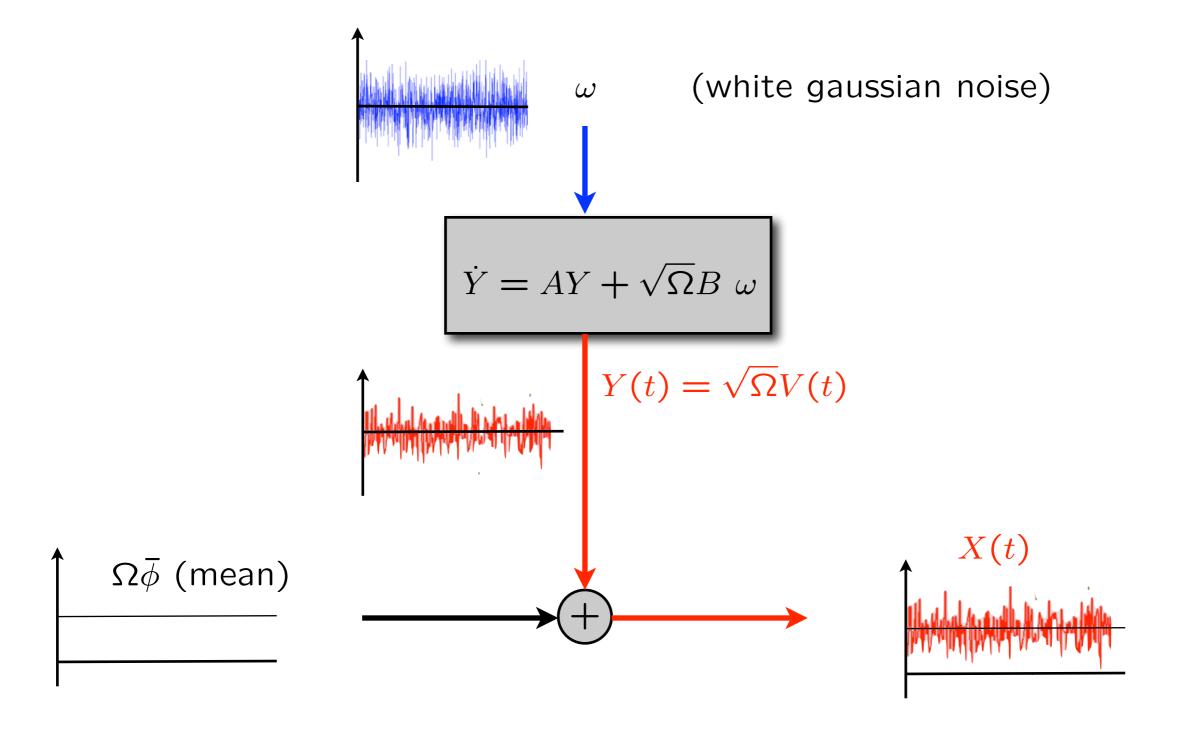
deterministic

zero mean stochastic

$$\mathbb{E}[X(t)] = \Omega \bar{\Phi}$$

Let Σ be the steady-state covariance matrix of $\sqrt{\Omega} \cdot V(t)$. Then

$$A\overline{\Sigma} + \overline{\Sigma}A^T + \Omega BB^T = 0$$



Summary

Random Time-Change Represenation

$$X(t) = X(0) + \sum_{k=1}^{M} s_k Y_k \left[\int_0^t w_k(X(s)) ds \right] \qquad Y_k[\cdot] \text{ independent unit Poisson}$$

Statistical Moments

$$\frac{dE[X]}{dt} = S E[w(X)]$$

$$\frac{dE[XX^T]}{dt} = SE[w(X)X^T] + E[Xw^T(X)]S^T + S \operatorname{diag}(E[w(X)]) S^T$$

Density Dynamics (Chemical Master Equation)

$$\frac{dp(x,t)}{dt} = -p(x,t) \sum_{k} w_k(x) + \sum_{k} p(x-s_k,t) w_k(x-s_k) \qquad p(x,t) = \Pr\{X(t) = x\}$$

Stochastic Diff. Eqn. Approximation

$$X(t) \approx \Omega \Phi(t) + \sqrt{\Omega} V(t)$$
 where $dV(t) = A(t)V(t)dt + B(t)dW_t$