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Outline

A probabilistic modeling framework for chemical kinetics

» Generating sample paths: Monte Carlo methods

- Computing the probability density: the Chemical Master Equation
- Computing statistical moments

- Stochastic differential equation approximations



Stochastic Chemical Kinetics



A General Formulation of Stochastic Chemical
KiInetics

Reaction volume=X?

Key Assumptions

(Well-Mixed) The probability of finding any molecule in a region dS2 is
given by %.

(Thermal Equilibrium) The molecules move due to the thermal energy.
The reaction volume is at a constant temperature 7. The velocity of a
molecule is determined according to a Boltzman distribution:

m 2

For(0) = fu,0) = fou(0) = | 5o e 2T




Stochastic Chemical Kinetics

e (N-species) Start with a chemically reacting system containig N
distinct reacting species {S1,...,SNn}-

e [ he state of the system is described by the integer random variable
X)) =[X10),...,. Xny®)]; X;(t) is the popultation of S; at time ¢.

A

population of S5

population of S4



population of S5
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Sequence: > Ry Ry Ho Rz Ho Ho

e (M-reactions) The system’s state

can change through any one of
M reaction: Ry : ke {1,2,...,M}.

Example: Rj ¢ — Sq
Ro  S1+ 85— 5
Rz 51— ¢

e (State transition) An R,

reaction causes a state transition
from X to X + s;..

REHRES

Stoichiometry matrix:

S={31 S ... sM}



e (Transition Probability) Suppose the system is in state
X(t) = x.

The probability that R is the next reaction and that it occurs

within the next dt time units is given by wy(X)dt.
N——

propensity
function

If R;. is the zeroth order reaction ¢ — products, then
wi(X) = ¢, for some constant c¢;..

If R, is the monomolecular reaction S; — products, then
wi(X) = ¢X;, for some constant ¢.

If Ry is the bimolecular reaction S; + Sj — products, then
[ CEXiXy, i ]
wi(X) = | >, for some constant c;..

X:(X; —1) . .
\%Z(E >,Z=J,




Sample Path Representations

X (t) is Continuous-time countable-state Markov Chain

Counting Process Representation:

M
X(t)=X0)4+ > spNp(t)
K=1

Ni(t) is a counting process representing # of firings of Ry in [0, t].

N, has a state-dependent intensity:

P{Np(t + At) — Ni(t) = 1} m wi(X(t)) - At



Sample Path Representation

If the counting process N(t) has intensity w(t), there exists a unit Pois-
son process Y (-) such that

N(t)=Y [/tw(s)d8] .

O
M

Applying to the counting process representation: X (t) = X(0)+ )  siN;

k=1
we get

Random Time Change Representation:

M t
X(0) = X0+ 3 sV | [ wp(X(5)ds
k=1

Y.[-] are independent unit Poisson



Generator of X(t)
Generator: The generator of a stochastic process is defined as:

(AN(@) = lim B (X(s+1) — F(X() [X(s) = 2}

A is an operator that maps functions f : RY — R in its domain
into functions Af : RY — R.

The generator of a stochastic process encodes a great deal of
information about the process.

For the Markov process describing our chemical system:

N

(Af) (@) = > wp(x)(f(z+ ) — f(2))

k=0



From Stochastic to Deterministic

Given N species S1,...,Sy and M elementary reactions. Let &, := [S;].

A deterministic description can be obtained from mass-action Kinetics:

dd
— = Sf(P
ph f(P)
where f(-) is at most a second order monomial. It depends on the type

of reactions and their rates.

Example:
k1
A+ B —(C
Ak p
dd dd
&4 p— —]{;1CDACDB — kQCDA — = Sf(cb) where
dt dt
dPp
7 = —k1PPp ko® 4 1 —1]
ddc o sS=1-1 1|, f(®)= k1k¢$¢3
T = k1PpPp 1 0] 27 A




From Stochastic to Deterministic

- X
Define X$2(¢) = %

Question: How does X%2(t) relate to ®(t)7?

Fact: Let ®(¢) be the deterministic solution to the reaction rate equa-

tions
dP

d— = Sf(P), P(0) = Po.
t
Let XQ(t) be the stochastic representation of the same chemical sys-
tems with X$2(0) = ®y. Then for every ¢t > 0:
im sup \XQ(S) - @(s)\ =0 a.s.

Q—o00 SSt

1. Kurtz




Simulating Sample Paths

Monte Carlo Methods



Generating Sample Paths

Gillespie’s Stochastic Simulation Algorithm:

To each of the reactions {R1,..., Ry} we associate a RV ;.

7; 1S the time to the next firing of reaction R;

Fact O: 7, is exponentially distributed with parameter w;

We define two new RVs:
T =min{7;} (Time to the next reaction)

pw=arg min{r;} (Index of the next reaction)

Fact 1: 7 is exponentially distributed with parameter ZZ w;
Wy,

Zz’ Wi

Fact 2: P(u=k) =




Stochastic Simulation Algorithm

e Step O Initialize time t and state population x

e Step 1 Draw a sample v from the distribution of

r1 € U(]O, 1])—

e Step 2 Draw a sample pu from the distribution of u

Cumulative distribution of 7: F(t) = 1 —exp(— ), wyt)

1

1

/ T S wy o9 1—ry

Cumulative distribution of u

time (s)

To € U([O, 1]) —>

e Step 3 Update time: ¢t — t + 7. Update state: = < = + s,,.

reaction index

(w1 +wo + w3 +wa)/ X wy
(w1 + w2 +w3)/ Xk wi

(w1 4+ w2)/ Yk wy

w1/ Yok Wk



Stochastic Simulation Algorithm: Matlab code

clear all

t=0;tstop = 2000;

x = [0; 0];

S=[1-10 0; 0 01-17;

w = inline('[10, 1*x(1), 10*x(1), 1*x(2)]1','x");
while t<tstop

a = w(x); % compute the prop. functions

specify initial and final times
Specify initial conditions
Specify stoichiometry

Specify Propensity functions

o0 o° o0 o©
o0 o o0 o©

w0 = sum(a); % compute the sum of the prop. functions
t = t+1/wO0*log(1l/rand); % update time of next reaction
if t<=tstop
r2wO0=rand*w0; % generate second random number and multiply by prop. sum
i=1; % initialize reaction counter
while sum(a(l:1i))<r2w0 % increment counter until sum(a(l:1i)) exceeds r2w0
i=i+1;
end
X = x+S(:,1); %

3 update the configuration
end

end



Generating Sample Paths

Gibson-Bruck Next Reaction Method

The Gibson-Bruck method is an exact stochastic simulation algorithm

It is based on the random time change representation:
M t
X(1) = X(0)+ 3 s,V UO wi (X (5))ds
k=1

It is more efficient that Gillespie’s SSA

Uses one random number per reaction event



Generating Sample Paths

Example: Birth-Death Process X = Species § count

V'
I3
Jump times of Y;[-]
i
— >
t (real time)

in® 1‘2_
o a:

[ wa(X(s)ds (internal time)
s 70 N :

Jump times of Y5[']

.
. 1 (real time)

X (1)

X<t>=x<o>+k§lskvk[/0 w(X(ds| b




The Probabillity Density Function of X

The Chemical Master Equation



The Chemical Master Equation

Given a system state x, we would like to find P(X(¢t) = z)

population of Sy

Notation: p(z,t) :(= P(X(t) = x)



The Chemical Master Equation

Prob. that no reactions fire in [¢t,t + dt] = 1 — 3 wi(x)dt + O(dt?)
Prob. that reaction R, fires once in [t,t + dt] = wi(z)dt + O(dt?)
Prob. that more than one reaction fires in [t, t + dt] =O(dt?)

at x No reaction fires

p(z,t+dt) = pa,t) (1= wi(x)dt + O(dt?)
k

+ 3 plx—sp,t) [ Y wi(x)dt + O(dt?) | + O(dt?)
k k

R;. reaction _ more than one
R;. fires once L
away from x reaction in dt

p(z,t 4+ dt) —p(z,t) = —p(z,t) ) wi(z)dt+ > plz — sg, Hwi(x)dt + O(c
k k
The Chemical Master Equation
dp(x,t
POD e, t) Y ) + Y p(e — s, D (a)
k k




Dynkins Formula

Dynkins Formula

Given f:RY 5 R and ¢ > 0. Then

B(f(X(0)) = EFX0) +E [ AFCX()ds )

Can be thought of as a stochastic generalization of the Fundamental
Theorem of Calculus.



Using

For a state z € Név, let f(y) = l{x}(y) be the indicator function of {x}.

Dynkin's Formula to

Note that for any ¢ : RY — R we have

E (g(X () f(X (1)) = g(z)p(x,t)
and E (g(X(2))f(X (1) 4 s)) = g(z — sg)p(x — g, 1),

Derive the CM

Applying the Dynkin's formula on f we obtain

M
P, D) =p(@,0) + 3 [ E (X)) + 55— FOX())) ds
k=1

Using (1) and (2) we get

M t
p(e.) = p(,0) + 3 wi(e —s) [ pls,o — s)ds -
k=1

M

k=1

Z wi. () /Otp(s,:zt)ds.




Statistical Moments




Using Dynkin’s Formula to Derive the Statistical
Moments

We derive the differential equations for the first and second moment.

Let f: RN — R be given by f(z1,...,zx) = z;. By Dynkin’s formula

M
B (X)) =EFXO)) + 3 B( [ wp(XIFOS) + 55— FOS))
k=1

But E (f(X(#))) = E(X;(¢)) and (f(X(s) + si) — f(X(s))) = si-

Hence we get

M ¢
E(X;(8) = E(X;(0)) + 3 sin /O E (wy,(X(s))) ds.
k=1



Using Dynkin’s Formula to Derive the Statistical
Moments (cont.)

M t
E(Xi(1) = E(X,(0)) + 3 s [ E(wi(X(s)) ds 3)
k=1

Let S be the stoichiometry matrix and let w(xz) be the propensity vector

w(z) = (wi(=),...,wy(x))".
Since (3) holds for each 7, we can write the equation for the first moment
E(X(¢)) = (E(X1(¢)),...,E(XN(¥))) as

B(X (1) = B(X(0) + [ | SE(w(X(s)))ds.

T his equation in differential form becomes

dE(X (%))
dt

= SE(w(X(?))).




Using Dynkin’s Formula to Derive the Statistical
Moments (cont.)

Now consider the function f:RY — R given by f(z) = z;z;.

For any = € N/ we get

M M
> wp(@) (f(z 4 ) = f(@) = > wi(@) (@ + si) (5 + sj3) — zizy)
= k=1
k=1 =
= > w(x) (%‘Sjk + zjsik + Siijk)
k=1
= [zw’ (2)S1];; + [Sw(x)z’];; + [SW(x)ST]
where W(x) is M x M diagonal matrix with entries wy(x),...,wy(x).

Applying the Dynkin's formula with f we get
E (X;(1)X;(®)) = E (X;(0)X;(0)) +



Using Dynkin’s Formula to Derive the Statistical
Moments (cont.)

E (X,,;(t)Xj(t)) =E (Xi(O)Xj(O)) +

/OtIE ([X(s)wT(X(s))ST]ij + [Sw(X () XT(s)]s; + [SW(X(s))ST]Z-j) gs

Since this holds for each 7 and 5, we can write the equation for the
second moment (covariance matrix) E(X(¢t) X1 (t)) as

D (X(t)XT(t)) —F (X(O)XT(O)) +
/Ot (E(X (9)wT (X (5))8T) + E(Sw(X ()X (5)) + E(SW (X (5))ST)) ds.

This equation in differential form becomes

dE(X (£) X' (2))

it = E(X(O)wT (X(#))ST) + E(Sw(X ()X (£)) + E(SW (X (£))ST).




To Sum Up

w(x) = [wi(zx),...,wy(x)]!’ be the vector of propensity functions

Moment Dynamics

dE[X]

dt
dE[X X 1]

dt

S Elw(X)]

SE[w(X)X'] + E[Xw! (X)]S* + S E[W(X)]) S*




Affine Propensity

Suppose the propensity function is affine:

w(x) = Wozx + wo, (Wois N x N, wg is N x 1)
Then E[w(X)] = WoE[X]4+wq, and E[w(X)X1] = WHE[X XL ]4+woE[X1].

This gives us the moment equations:

d
a]E[X] = SWHE[X] + Swq First Moment
d
SEXXT] = SWoEXXT] +EXXTIWG ST 4§ diag(WoELX] + wo)S”
+ SwoE[X!] +E[X]wd ST Second Moment

These are linear ordinary differential equations and can be easily solved!



Affine Propensity (cont.)

Define the covariance matrix ¥ = E[(X — E[X])(X — E(X)]{].
We can also compute covariance equations:

d

T =SWX + SWo 8" + S diag(WoE[X] 4 wg)S"

Stationary Case

T he steady-state moments and covariances can be obtained by solving
linear algebraic equations:

Let X = lim E[X ()] and ~ = Iim X(¢).
t—00 t—00

T hen

SWpX = —Swo

SWoE + Wi ST + S diag(WoX 4+ wg)St =0




Fluctuations Arise from Noise Driven Dynamics

Define A = SWy, and B = S\/diag(WoX + wp).
T he steady-state covariances equation

SWE +SWisl + 8 diag(WX +wg)ST =0

becomes

A +5AT + BBT =0 Lyapunov Equation

The Lyapunov equation characterizes the steady-state covariance of a
output of the linear dynamical system

y = Ay + Bw

where w IS a unit intensity white Gaussian noise!

More precisely, the solution of the vector SDE:

dy = Ay dt + B dW}

where W; is Brownian motion. This is also called Ornstein-Uhlenbeck




Application to Gene Expression

Reactants
X1(t) is # of MRNA; X5(t) is # of protein

a

Reactions
g\ ? Ry:¢ . mRNA
protein g Ro - mRN A, —5
ky

R3 : mRNA —b protein + mRN A

Fop Ry : proteinv—%qs
mERNA % & T S ¢ Stoichiometry and Propensity
1 -1
g O O
O 0 1 -1
Ky . : -
Er O O Er
X X
w(X) = | = | 0 1l 4 |
YpX2] [0 p) 0]




Steady-State Moments

— O k
A=SWo= | | Swo = |
° kp  —p ° !O]
ko
— ’Y/r
X =—-A"18wy =
kpky
YpYr
Steady-State Covariance ] )
T . _ T 2k O
BB+ = 8 diag(WpX 4+ wg)S* = o 2kpkr
Yr

T he steady-state covariances equation

A +5AT + BB =0 Lyapunov Equation
can be solved algebraically for X.

kr kpkr
B Yr ’YT(’YT"”Yp)
> =
kpkr ok q 4 ko
(e t+p) et



Coefficients of Variation

1 1
2
Cvr:E:)—(—
Yr 1
c2 = * <1: i >=_1<1: o )
v v+ Xo Y 4+ Y
rIp

Question: Does a large X5 imply a small Cyp7

1 k
2 p
= (e )

Yr =+ Yp
YrYp
> 1 ( kp ) _ ,y’rfyp . 1
- krkp Yr ‘l‘ Yp k?‘ Yr + Tp
Yrp
e — krkp

X5 ! which can be chosen independently from Chyp.

Large mean does not imply small fluctuations!



Application: Noise Suppression




Noise Attenuation through Negative Feedback

protein

MRNA

} |k0 — k1 - (# protein)

Reactants

X1(t) is # of MRNA; X5(t) is # of protein

Reactions
Ri:¢9 — mRNA

k

Ro : mRNA s

R3 : mRNA —b protein + mRN A

R4 . protein Jp, o

k

kr = kg — k1 - (# protein)

Stoichiometry and Propensity

1 —1
o O O
O 0 1 -1
ko — k1 X>o|
X
’U)(X)z Yral
X2

o oo

wo




Steady-State Moments

A= SWp = [_k';"“ :’;; , Swo = [%0]

ko
T
1_|_1p

_ 1 Ypyr ,Ufl“
X =—A" "Swg = =
kokp
Yryp
kikp
1+W’p%°_

Steady-State Covariance

ko + vyritr — k1pp 0

BBl = 8 diag(WaX + wp)St =
9(Wo 0) 0 kpur + Yplp

The steady-state covariances equation
A +5AT + BBT =0 Lyapunov Equation
can be solved algebraically for X.

_ : [1—¢ b

k k
14+b0 147

1]/,Lp Where¢:7—,b:7—,7’]:7—
P T T




Feedback vs. No Feedback

In order to compare the noise in the two cases, we must ensure that
both configuations have the same mean!

Impose the constraint: p)f = puJ

NFB __. | x

This may be achieved by choosing ko = ki + kipub 5.

g i Tp
( QI
protein P

no feedback T b

r
Mean oy

b
| X
Variance [1 +n 1] Hp

T “ feedback

kp
€n =

—| Tkzo — kq - (# protein)

*

Hp

1_¢. b 11 %
1 fbe 14n M2

<1

k
where ¢ = e

Tp

Protein variance is always smaller with negative feedback!



protein

MENA

—| Iko — k1 - (# protein)

o

o

=
I

probability

0.02

015

0.01

.005

50 100
protein molecules

more feedback

‘-
-~
---

150

20(



SDE Approximations of X

he Linear Noise Approximation (LNA)



Linear Noise Approximation (LNA)

. X(1)

Write X2 = &g(t) + %VQ where ®(t) solves the deterministic RRE

dP
S = S(®)

Linear Noise Approximation

V1) - V() as Q — oo, Wwhere dV (t) = A(t)V (t)dt + B(t)dW,;

aw =PI w01, B = 9\diaglf (@)

Linear Noise Approximation: X 2(t) ~ ®(t) \/%V(t)




Linear Noise Approximation: Stationary Case
Let X2(t) := 21

We look at the LNA around a stationary solution: 0 = Sf(®).

Linear Noise Approximation

XS2(t) ~ & \/%V(t)

dV(t) = A V(t)dt + B dW;

o dISF(®))

o (@), Bi=58\/diaglf(®)]




Linear Noise Approximation: Stationary Case

Multiplying X$2(t) ~ ® 4+ LV (¢) by ©, we get
V2

X(t) = QP+ VOV (1)

Zero mean

deterministic )
stochastic

E[X ()] = Q&

Let > be the steady-state covariance matrix of v -V (¢t). Then

AS +35AT + BB =0



A
WWWW W (white gaussian noise)
T l

Qo (mean)




Summary

Random Time-Change Represenation

M
X(() = X(0)+ Z Sk Y7 [/Ot wi. (X (s))ds Y.[-] independent unit Poisson
k=1

Statistical Moments

dE[X]

- = S Flw(X)]
T
dE[iz(tX - SE[w(X)X'] + E[Xw! (X)]ST + S diag(E[w(X)]) S*

Density Dynamics (Chemical Master Equation)

d t
POD) — e, ) S wn(e) + Y p(e — s wn(e —s) 90 = PrX© =)
k k

Stochastic Diff. Eqn. Approximation

X(t) = QP(t) + VRV (1) where dV (t) = A®)V (t)dt + B(t)dW;



