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Forecast and observation classes
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What is a good probabilistic forecast?

There should be consistency between the forecaster’s judgement and the forecast, there should
be correspondence between the forecast and the observation, and the forecast should be
informative for the user.

Murphy (WAF, 1993)

We propose a diagnostic approach to the evaluation of predictive performance that is based on
the paradigm of maximizing the sharpness of the predictive distribution subject to calibration.

Gneiting, Balabdaoui and Raftery (JRSSB, 2007)
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Outline for this lecture

Assume we have a prediction p ∈ P and an observation o ∈ O where we wish to measure the
skill of the prediction by applying a function

s : P ×O −→ R

with a lower function value indicating a better skill.

What are good theoretical properties for s?
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General framework without any formulas...

Assume G is Nature’s distribution of some event y and denote our forecast for y by F .
For forecast evaluation, we should use performance metrics that follow the principle

in the long run, we will obtain the optimal performance for F = G

where “in the long run” means “over very many pairs (yi ,F )”.
Note that this is an abstract quality which is checked theoretically for general classes of
distributions F and G .
If we agree that this is a sensible framework, we can then, in many cases, just pick a (few)
such metric(s) and perform our forecast evaluation using those.
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Deterministic vs. probabilistic forecasts
(a) Forecast
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Which deterministic value to choose?

In the absence of explicit guideance, forecasters may report different distributional features as
their point predictions.

Engelberg, Manski and Williams (JBES, 2009)

A decision-theoretic approach provides a unifying framework for the evaluation of both
probabilistic and deterministic forecasts.
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Scoring functions apply to deterministic forecasts
The forecast x is evaluated against the observation y using scoring functions such as

Squared Error (SE) S(x , y) = (x − y)2

Absolute Error (AE) S(x , y) = |x − y |

Generally, we assume that

S : R× R→ [0,∞) or S : (0,∞)× (0,∞)→ [0,∞),

with the regularity conditions

(S0) S(x , y) ≥ 0 with equality if x = y
(S1) S(x , y) is continuous in x
(S2) The partial derivative ∂x S(x , y) exists and is continuous if y 6= x
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Average scores facilitate comparison across methods

Assume various forecasting methods m = 1, . . . ,M compete

They issue point forecasts xmn with observed values yn, at a finite set of times, locations or
instances n = 1, . . . ,N

The methods are assessed and ranked by the mean score

S̄m
N =

1
N

N∑
n=1

S(xmn, yn) for m = 1, . . . ,M.
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Testing equal predictive performance: Diebold-Mariano test

If the forecast cases are indpendent, a test of equal predictive performance can be based on the
statistic

tN =
√
N

S̄m1
N − S̄m2

N

σ̂N
,

where

σ̂2 =
1
N

N∑
n=1

(
S(xm1n, yn)− S(xm2n, yn)

)2
.

For correlated forecast errors, the variance estimate needs to be adjusted (Diebold and
Mariano, JBES, 1995).
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Testing equal predictive performance: Permutation test

Alternatively, m1 and m2 can be compared using the statistic

sN =
1
N

N∑
n=1

(
S(xm1n, yn)− S(xm2n, yn)

)
.

The permuation test is based on resampling copies of sN with random number of labels
swapped. Under the null hypothesis, m1 and m2 perform equally well and the permutations
have the same limiting distributions as sN for N →∞. An asymptotic test is obtained by
considering the rank of sN within the permutations (Good, 2013).
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Bayes predictors should be used for probilistic forecasts

For a probabilistic forecast F , decision theory tells us that if the scoring function S is given,
we should issue the Bayes predictor,

x̂ = arg minx EF [S(x ,Y )]

as the point forecast, where the expectation is with respect to F .

Squared Error (SE) S(x , y) = (x − y)2 x̂ = mean(F )

Absolute Error (AE) S(x , y) = |x − y | x̂ = median(F )
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Consistency and elicitability

Conversly, assume we only have one functional T of F which we know to be, say, the mean
value.

Here, we may apply any scoring function that is consistent for the functional T, in the sense
that

EF [S(T(F ),Y )] ≤ EF [S(x ,Y )]

for all x .

A functional is elicitable if there exists a scoring function that is strictly consistent for it, in
the sense that equality holds if, and only if, x = T(F ).

The variance and the mode are not elicitable (Gneiting, JASA, 2011; Heinrich, B, 2014).
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Probabilistic forecasts should generally be evaluated using
proper scoring rules

A consistent scoring function is a special case of a proper scoring rule for probabilistic forecasts

Definition
If F denotes a class of probabilistic forecasts on R, a proper scoring rule is any function

R : F × R→ R

such that
R(G ,G ) := EG R(G ,Y ) ≤ EG R(F ,Y ) =: R(F ,G )

for all F ,G ∈ F .
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Proper scoring rules prevent hedging

Is it possible to hedge the following scoring rule?

R∗(F , y) =
(mean(F )− y)2

var(F )
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Proper scoring rules prevent hedging

The proper Dawid-Sebastiani score is given by

R(F , y) = log(var(F )) +
(mean(F )− y)2

var(F )
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Consistent scoring functions are proper scoring rules
Any consistent scoring function induces a proper scoring rule: if the scoring function

S : R× R→ [0,∞)

is consistent for the functional T, the relationship

R : F × R −→ [0,∞), (F , y) 7−→ R(F , y) = S(T(F ), y)

defines a proper scoring rule.

Squared Error (SE) R(F , y) = (mean(F )− y)2

Absolute Error (AE) R(F , y) = |median(F )− y |
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The class of proper scoring rules is large
A commonly used score is the logarithmic or ignorance score,

R(F , y) = − log(f (y)),

The continuous ranked probability score (CRPS) is given by

R(F , y) = EF |X − y | − 1
2
EFEF |X − X ′|

=

∫
[F (x)− 1{x ≥ y}]2dx

=

∫ 1

0

(
F−1(τ)− y

)(
1{y ≤ F−1(τ)} − τ

)
dτ,

where the integrands are the Brier score and the quantile score, respectively (Gneiting and
Raftery, JASA, 2007).
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The different scores behave somewhat differently

y

S
co

re

−4 −2 0 2 4

0
1

2
3

4

SE AE CRPS IGN
20 / 30



Back to our example from yesterday

Distribution F (Y ) E (Y ) Var (Y )

Normal N
(
µ, σ2) µ ∼ N (25, 1) σ2 = 9

Gumbel G (µ, σ) µ+ σ · γ ∼ N (25, 1)
π2

6
σ2 =

3π2

2

Competing forecasts: Normal, non-central t, log-normal, Gumbel
Each forecast is estimated based on 300 i.i.d. observations using methods of moments
Case 1: 1 000 forecast-observation pairs
Case 2: 1 000 000 forecast-observation pairs

(Thorarinsdottir and Schuhen, 2018)
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Score behavior for normal truth

0.0

2.5

5.0

7.5

10.0

15 20 25 30 35 40

Observation value

S
co

re

(a) Normal distribution

0.0

2.5

5.0

7.5

10.0

15 20 25 30 35 40

Observation value

S
co

re

(b) t−distribution

0.0

2.5

5.0

7.5

10.0

15 20 25 30 35 40

Observation value

S
co

re

(c) Log−normal distribution
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(d) Gumbel distribution
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Scores for normal truth
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Uncertainty in scores vs. distribution of scores
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Figure 4: Mean scores under true distribution F1. The boxes indicate variability in the mean
scores and are based on 500 subsamples of size N from 200 precomputed scores.scorePoisson
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Figure 5: Scatter plot of mean scores for the two models F1 and F5, evaluated on 10 random
observations distributed according to F1. For each dot, the two mean scores are evaluated on
the same (synthetic) observations.fig:correlation

has a higher correlation than the intensity scores, in particular when � > 0.1. In particular,384

even though in Figure 5 the di↵erences between di↵erent models are less clear for the log score,385

it could still be that the log score has the highest chance of identifying the correct model due386

to its high correlation.387

One way of appropriately accounting for this correlation is by employing permutation tests388

that assess the significance of the di↵erence of the mean scores. For N = 1, ..., 15, we sampled389

100 mean scores based on N observations for each predictive distribution, such that for the390

same sample index all mean scores were based on the same observations. We then compared the391

mean score for the correct prediction to the mean score of a competing model by a permutation392

test. This means that we ran in total we ran a total of 7500 permutation tests (5 competing393

models, between 1 and 15 available observations, 100 repetitions for each configuration), each394

of which was based on 100 permutation resamples of the mean score di↵erence. Computing 100395

repetitions for each configuration allows us to estimate the p-value of the permutation test for396

each score and each predictive distribution as a function of the available observations N . The397

results of this analysis are presented in Figure ??.398

The figure shows that, in the context of this study, the reliability of the intensity score was399

generally higher for smaller selected bandwidth, regardless which predictive distribution was400

considered. In this analysis the intensity score with bandwidth 0.1 performs uniformly best, and401

its performance was only matched by the log-score when the predictive models with misspecified402

kernel variance were considered. In view of the rather small discrepancies between predictive403

and correct distribution it is rather remarkable that the intensity score with small bandwidth404

detects significant di↵erences (at the classical 5% level) in the mean score already for 6 to 7405

available observations. In particular, the large overlap between the randomly sampled mean406

scores shown in Figure 5 for N = 10 is indeed misleading.407

12

●

● ●

●
●

●

●

●
●

●

● ●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●
●

●

●
●
●

●●●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●
● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

log σ = 0.1 σ = 0.5 σ = 1.5

m
ea

n 
sc

or
e

N = 10

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

log σ = 0.1 σ = 0.5 σ = 1.5

m
ea

n 
sc

or
e pred. model

N(0,1), N = 100
µ = 0.1
σ = 0.9
σ = 1.1
ρ = 0.1

N = 105

N = 100

Figure 4: Mean scores under true distribution F1. The boxes indicate variability in the mean
scores and are based on 500 subsamples of size N from 200 precomputed scores.scorePoisson
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Figure 5: Scatter plot of mean scores for the two models F1 and F5, evaluated on 10 random
observations distributed according to F1. For each dot, the two mean scores are evaluated on
the same (synthetic) observations.fig:correlation

has a higher correlation than the intensity scores, in particular when � > 0.1. In particular,384

even though in Figure 5 the di↵erences between di↵erent models are less clear for the log score,385

it could still be that the log score has the highest chance of identifying the correct model due386

to its high correlation.387

One way of appropriately accounting for this correlation is by employing permutation tests388

that assess the significance of the di↵erence of the mean scores. For N = 1, ..., 15, we sampled389

100 mean scores based on N observations for each predictive distribution, such that for the390

same sample index all mean scores were based on the same observations. We then compared the391

mean score for the correct prediction to the mean score of a competing model by a permutation392

test. This means that we ran in total we ran a total of 7500 permutation tests (5 competing393

models, between 1 and 15 available observations, 100 repetitions for each configuration), each394

of which was based on 100 permutation resamples of the mean score di↵erence. Computing 100395

repetitions for each configuration allows us to estimate the p-value of the permutation test for396

each score and each predictive distribution as a function of the available observations N . The397

results of this analysis are presented in Figure ??.398

The figure shows that, in the context of this study, the reliability of the intensity score was399

generally higher for smaller selected bandwidth, regardless which predictive distribution was400

considered. In this analysis the intensity score with bandwidth 0.1 performs uniformly best, and401

its performance was only matched by the log-score when the predictive models with misspecified402

kernel variance were considered. In view of the rather small discrepancies between predictive403

and correct distribution it is rather remarkable that the intensity score with small bandwidth404

detects significant di↵erences (at the classical 5% level) in the mean score already for 6 to 7405

available observations. In particular, the large overlap between the randomly sampled mean406

scores shown in Figure 5 for N = 10 is indeed misleading.407
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Uncertainty in scores vs. distribution of scores
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Figure 4: Mean scores under true distribution F1. The boxes indicate variability in the mean
scores and are based on 500 subsamples of size N from 200 precomputed scores.scorePoisson
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Figure 5: Scatter plot of mean scores for the two models F1 and F5, evaluated on 10 random
observations distributed according to F1. For each dot, the two mean scores are evaluated on
the same (synthetic) observations.fig:correlation

has a higher correlation than the intensity scores, in particular when � > 0.1. In particular,384

even though in Figure 5 the di↵erences between di↵erent models are less clear for the log score,385

it could still be that the log score has the highest chance of identifying the correct model due386

to its high correlation.387

One way of appropriately accounting for this correlation is by employing permutation tests388

that assess the significance of the di↵erence of the mean scores. For N = 1, ..., 15, we sampled389

100 mean scores based on N observations for each predictive distribution, such that for the390

same sample index all mean scores were based on the same observations. We then compared the391

mean score for the correct prediction to the mean score of a competing model by a permutation392

test. This means that we ran in total we ran a total of 7500 permutation tests (5 competing393

models, between 1 and 15 available observations, 100 repetitions for each configuration), each394

of which was based on 100 permutation resamples of the mean score di↵erence. Computing 100395

repetitions for each configuration allows us to estimate the p-value of the permutation test for396

each score and each predictive distribution as a function of the available observations N . The397

results of this analysis are presented in Figure ??.398

The figure shows that, in the context of this study, the reliability of the intensity score was399

generally higher for smaller selected bandwidth, regardless which predictive distribution was400

considered. In this analysis the intensity score with bandwidth 0.1 performs uniformly best, and401

its performance was only matched by the log-score when the predictive models with misspecified402

kernel variance were considered. In view of the rather small discrepancies between predictive403

and correct distribution it is rather remarkable that the intensity score with small bandwidth404

detects significant di↵erences (at the classical 5% level) in the mean score already for 6 to 7405

available observations. In particular, the large overlap between the randomly sampled mean406

scores shown in Figure 5 for N = 10 is indeed misleading.407
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The CRPS is appealing but not convenient to calculate:
scoringRules to the rescue!

Dist. on Dist. on >0 Dist. on intervals Discrete dist.

Gaussian Exponential Generalized extreme value Poisson
t Gamma Generalized Pareto Neg. binomial
Logistic Log-Gaussian Trunc. Gaussian
Laplace Log-logistic Trunc. t
Two-piece Gaussian Log-Laplace Trunc. logistic
Two-piece exponential Trunc. exponential
Mixture of Gaussians Uniform

Beta

Truncated families can be defined with or without a point mass at the support boundaries.
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What to do if the predictive distribution is not available in
closed form?

Assume our predictive distribution is the posterior predictive distribution of a Bayesian
forecasting model,

F (y) =

∫
Fc(y |θ)dPpost(θ).

We then have various options to estimate F :
Mixture-of-parameters: F̂ (y) = 1

n

∑n
i=1 Fc(y |θi ) for posterior sample {θi}ni=1

Empirical CDF: F̂ (y) = 1
n

∑n
i=1 1{y ≥ Yi} for Yi ∼ Fc(·|θi )

Kernel density estimator: F̂ (y) = 1
n

∑n
i=1 Φ

(
y−Yi
hn

)
with bandwidth hn

Gaussian approximation: F̂ (y) = Φ
(
y−µ̂
σ̂

)
for posterior mean µ̂ and sd σ̂

(Krüger et al., ISR, 2020)
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How do these approximations compare?

Simulation study with

Fc(y |θ) = Φ
(y
θ

)
and

F (y) = T(y |0, α1, α2).

That is, F is the CDF of a variable
Z where Z/

√
α1 follows a t distri-

bution with α2 degrees of freedom.

Predictive Inference Based on Markov Chain Monte Carlo Output 13

Table 3. Hyper-parameters for the data generating process in the
simulation setting of Equations (14) to (17).

Parameter Main role Value(s) considered

˛ Persistence of ! 2
i {0.1, 0.5, 0.9}

s Unconditional mean of ! 2
i 2

n Unconditional variance of ! 2
i {12, 20}

Figure 1. Score divergences in the simulation study with (˛,s,n)D (0.5,2,12). For a given method and Markov chain Monte
Carlo (MCMC) sample size, the bars range from the 10th to the 90th percentile of the score divergences across 1 000 repli-
cates. The squares mark the respective medians. CDF, cumulative distribution function; CRPS, continuous ranked probability
score. [Colour figure can be viewed at wileyonlinelibrary.com]

!2
i D  i C "2

i !
2
i!1; (16)

Xi j !2
i ! N.0; !2

i /; (17)

where IG is the inverse Gamma distribution, parametrised such that Z! IG(a,b) when
1/Z!G(a,b), with G being the Gamma distribution with shape a" 0 and rate b> 0.

Table 3 summarises our choices for the parameter configurations of the data generating
process. The parameter ˛ determines the persistence of the chain, in that the unconditional
mean of "2

i , which can be viewed as an average autoregressive coefficient (Fox & West 2011,
Section 2.3), is given by (n˛2 + 1)/(n + 1). We consider three values, aiming to mimic MCMC
chains with different persistence properties. The parameter s represents a scale effect, and n
governs the tail thickness of the unconditional Student's t distribution in (13). We consider val-
ues of 12 and 20 that seem realistic for macroeconomic variables, such as the growth rate of the
gross domestic product, that feature prominently in the empirical literature.

4.2 Approximation Methods

We consider the following approximation methods, which have been discussed in detail in
Section 3. The first approximation uses a sequence .!i /miD1 of parameter draws, and the other
three employ an MCMC sample .Xi /miD1.

International Statistical Review (2020)
© 2020 The Authors. International Statistical Review published by John Wiley & Sons Ltd on behalf of International Statistical Institute.
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Conclusions

The performance measure used in forecast evaluation may influence the results of a
comparative study and should be selected with care.

Different verification measures focus on different aspects of the model output; it is thus
useful to apply multiple complementary measures.
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