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Outline for this lecture

Assume we have a prediction p ∈ P and an observation o ∈ O where we wish to measure the
skill of the prediction by applying a function

s : P ×O −→ R

with a lower function value indicating a better skill.

What if we only care about a subset of the observations, e.g. the extremes?
What if we are working in high dimensions?
What if the observation is also given by a distribution?
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Verifying only the extremes erases propriety
Amisano and Giacomini (JBES, 2007) consider the restricted score

R∗(F , y) = −1{y ≥ t} log f (y).

However, if g(y) > f (y) for all y ≥ t, then

ER∗(G , y) < ER∗(F , y)

independent of the true sampling density.

Indeed, if the forecaster’s belief is F , his best prediction under R∗ is

g(y) =
f (y)∫∞

t f (x)dx
1{y ≥ t}

(Gneiting and Ranjan, JBES, 2011).
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Demonstration by simulation
True data distribution: Gt = N(µt , 1) with µt ∼ N(0, 1).
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Figure 3.1.: PIT histograms for (a) the ideal forecaster, (b) the climatological
forecaster, (c) the unfocused forecaster, (d) the sign-biased forecaster
and (e) the biased forecaster for 10 000 repetitions of the prediction
experiment.
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Figure 3.2.: Marginal predictive densities of the forecasters given in Table 3.1.

33

Forecaster Ft

Ideal N(µt , 1)
Sign-biased N(−µ1, 1)
Climatological N(0, 2)
Unfocused 1

2{N(µt , 1)
+N(µt + τt , 1)}

Biased N(µt + 2.5, 1)

Here, τt = ±1 with probability 1/2.

(Lerch et al., SS, 2015)
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Results for y > 4.65 (99th precentile)
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Figure 3.4.: Marginal predictive densities of the forecasters given in Table 3.1 given
that the observation is larger than the 99th percentile of the marginal
distribution, for which the corresponding conditional density is indi-
cated by the dotted black line.

Table 3.3.: Average values of the CRPS, the LogS, the mean absolute error (MAE)
and the empirical coverage (in %) of 80% prediction intervals for the
subset of observations larger than the 99th percentile of the marginal
distribution of the observations.

Forecaster CRPS LogS MAE Coverage

Ideal 1.36 8.47 1.86 18.1
Climatological 2.92 4.75 3.72 0.0
Unfocused 1.34 2.69 1.84 30.0
Sign-biased 5.01 16.87 5.58 0.0
Biased 0.55 1.38 0.79 81.9

36

Forecaster CRPS∗ LogS∗

Ideal 1.36 8.47
Sign-biased 5.01 16.87
Climatological 2.92 4.75
Unfocused 1.34 2.69
Biased 0.55 1.38
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Better: Use threshold-weighted scoring rules

Diks et al. (JE, 2011) propose the conditional likelihood score

R(F , y) = −ω(y) log
( f (y)∫

ω(x)f (x)dx

)
and the cencored likelihood score

R(F , y) = −
[
ω(y) log f (y) + (1− ω(y)) log

(
1−

∫
ω(x)f (x)dx

)]
.
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Better: Use threshold-weighted scoring rules

Gneiting and Ranjan (JBES, 2011) propose the threshold weighted CRPS

R(F , y) =

∫
(F (x)− 1{y ≤ x})2ω(x)dx

=

∫ 1

0

(
F−1(τ)− y

)(
1{y ≤ F−1(τ)} − τ

)
ω(τ)dτ.

Here, we may e.g. set

w1 (x) = 1 {x ≥ u}
w2 (x) = 1 + 1 {x ≥ u}
w3 (x) = 1 + 1 {x ≥ u} u
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An extreme version of the example from last lecture
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Results for 1 000 forecast-observation pairs
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Three scores for multivariate forecasts

1 The Dawid-Sebastiani (DS) score

R(F , y) = log det ΣF + (y − µF )>Σ−1
F (y − µF )

2 The energy score (ES)

R(F , y) = EF‖X − y‖ − 1
2
EF‖X − X ′‖

3 The variogram score

Rp(F , y) =
d∑

i=1

d∑
j=1

ωij

(
|yi − yj |p − EF |Xi − Xj |p

)2
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ES lacks discrimination; DS hard to estimate

Too weak (light blue), adequate (violet) and too strong (dark blue) correlation in 5 (top) and 15
(bottom) dimensions (Scheuerer and Hamill, MWR, 2015)
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(a) Forecast

0 2 4 6 8 10

(b) Observation
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(c) Comparison
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Propriety condition for divergences

Two distributions may be compared using a divergence function,

d : F × F → [0,∞], d(F ,F ) = 0 ∀F ∈ F .

Definition (Thorarinsdottir, Gneiting and Gissibl, 2013)
Let Y1, . . . ,Yk ∼ G and Gk be the corresponding empirical CDF. A divergence function d is
k-proper if

E d(G ,Gk) ≤ E d(F ,Gk).

Similarly, d is asymptotically proper if

lim
k→∞

E d(G ,Gk) ≤ lim
k→∞

E d(F ,Gk),

for all F ,G ∈ F .
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Many well known distances don’t fulfill this condition

The area validation metric is given by

d(F ,G ) =

∫
|F (t)− G (t)|dt

Let G ∼ U([0, 1]) and Fk discrete with probability mass 1/k in x = i/(k + 1) for i = 1, . . . , k .
Then

1
4

= EGd(F1, Ĝ1) < Ed(G , Ĝ1) =
1
3
.

Similar example can be constructed for the Kolmogorov-Smirnov distance

d(F ,G ) = supt∈R|F (t)− G (t)|.
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Every proper scoring rule defines a k-proper divergence function

Theorem (Thorarinsdottir,Gneiting and Gissibl, 2013)
Assume that R(G ,G ) 6= +∞ and let

d(F ,G ) = R(F ,G )− R(G ,G ),

where R is a proper scoring rule. Then d is k-proper for all k = 1, 2, . . ..

Note that
d(Fm,Gk) and 1

k

∑k
i R(Fm, yi ) will result in the same ranking of F1, . . . ,FM .

it holds that d(G ,G ) = 0, while R(G ,G ) might depend on G .
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Examples

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

(x − y)2 (mean(F )− y)2 (mean(F )−mean(G ))2

|x − y |
∫

[F (t)− 1{t ≥ y}]2dt
∫

[F (t)− G (t)]2dt

− log(f (y))
∫
g(u) log g(u)

f (y)dλ(u)
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A practical example: Climate services
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Climate models and climate projections
FINAL DRAFT Chapter 1 Supplementary Material IPCC SR Ocean and Cryosphere 

Subject to Copyedit SM1-8 Total pages: 15 

 
Figure SM1.1: Radiative forcing (W m–2) time series for historical data (1765–2004), and for future scenarios from the 
Representative Concentration Pathways (RCP; 2005–2100) and their continuation as the extended RCPs (2100–2500), 
and the Shared Socio-economic Pathways (SSP; 2005–2100). The RCP scenarios are shown as dashed curves, and SSPs 
are shown as solid curves (‘Marker’ scenarios are used). Note the change in x-axis scale for the 2005–2100 interval to 
give an improved illustration of radiative forcing scenarios during the 21st century.  
 
 
Table SM1.2. List of the CMIP5 GCM model runs used for Table CB1.1. Ensemble members used are “r1i1p1” except 
otherwise indicated.  

CMIP5 model name Global mean surface air 
temperature 

Global mean 
sea surface 
temperature 

Surface pH  Dissolved oxygen 
(100-600 m) 

 RCP2.6 RCP4.5 RCP6.0 RCP8.5 RCP2.6 RCP8.5 RCP2.6 RCP8.5 RCP2.6 RCP8.5 

ACCESS1-0  X  X       

ACCESS1.3  X  X       

bcc-csm1-1 X X X X X X     

bcc-csm1-1-m X X X X  X     

BNU-ESM X X  X       

CanESM2 X X  X X X X X   

CCSM4 X X X X X X     

CESM1-BGC  X  X       

CESM1-CAM5 X X X X X X     

CMCC-CESM    X       

CMCC-CM  X  X       

CMCC-CMS  X  X       

Figure on the right from IPCC.
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How to evalute climate predictions/projections?

Climate models are difficult to compare to data. Often climatologists compute some summary
statistic (...) and compare climate models using observed (or rather estimated) forcings to the
observed (or rather estimated) temperatures.

(...) it seems more appropriate to compare the distribution (over time and space) of climate
model output to the corresponding distribution of observed data.

Guttorp (E, 2011)
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Which is the better truth, model or data?
5 Comparison of ERA5, HadEX2 and HadEX3

ERA5 minus HadEX2
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mean = −2.42, MAE = 2.65
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Figure 7: Difference in average summer TXx (right) and winter TNn (left) from 1979-2005 across grid
locations in North America (top) and Europe (bottom) for ERA5 and HadEX2. Minimum, maximum
and mean differences across the region are given below the plots together with the mean absolute error
(MAE).

10

23 / 32



We use the IQD

d(F ,G ) =

∫
(F (t)− G (t))2dt

Environ. Res. Lett. 15 (2020) 124041 T L Thorarinsdottir et al

Figure 1. ECDFs of samples from two normal distributions with either different means but same spread (left), or same mean but
different spreads (right). The IQD performance metric calculates the squared area (indicated in gray) between the two
distributions, see the main text for more details.

Figure 2. Average IQD over grid points in North America for an evaluation against HadEX2 for TXx distributions in summer
(left) and TNn distributions in winter (right) from 1979-2005: Reanalyses (squares with (x), observation-based data sets (circles
with (x), CMIP6 models (gray triangles) and CMIP5 models (filled circles). The models are ranked with the best performing
model at the top. CMIP5 models are sorted in model families by color according to Knutti et al (2013), CMIP6 models are
indicated with a star and reanalyses/data products in bold. If a model has multiple runs, the spread across the runs is indicated
with a bar. Horizontal lines indicate the 5% significance level of testing equal performance to ERA5 (dashed) and ERA-Interim
(two-dash).

ERA-Interim, whileNCEP-2 andHadGEM2-CChave
much larger areas where the performance is poor.
ERA-Interim mainly diverges from HadEX2 along
the coast, indicating that differences between the two

data sets may be related to differences in model grids
and land-seamasks.NCEP-2 additionally differs from
HadEX2 in western regions with higher elevations
and in the eastern part of Canada. ForHadGEM2-CC,

5

(T et al., ERL, 2020)
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Environ. Res. Lett. 15 (2020) 124041 T L Thorarinsdottir et al

Figure 6. Average IQD over grid points in North America for an evaluation against ERA5 on the HadEX2 grid for TXx
distributions in summer (left) and TNn distributions in winter (right) from 1979–2005: Reanalyses (squares with (x)),
observation-based data sets (circles with (x)), CMIP6 models (gray triangles) and CMIP5 models (filled circles). The models are
ranked with the best performing model at the top. CMIP5 models are sorted in model families by color according to Knutti et al
(2013), CMIP6 models are indicated with a star and reanalyses/data products in bold. If a model has multiple runs, the spread
across the runs is indicated with a bar. Two-dash horizontal lines indicate the 5% significance level of testing equal performance to
ERA-Interim.

TXx, 15 climatemodels have an IQD score lower than
2 when compared against HadEX2, while this holds
for 38 climate models when compared against ERA5.
The European results in figures 4 and 7 are, however,
more alike. Similar patterns are observed for the ETR,
see the supplementary material.

Both ERA5 and the CMIP6 models exist on a
finer grid than HadEX2. Section 4 of the supple-
mentary material shows the model rankings when
the CMIP6 model simulations are compared against
ERA5 on the CMIP6 model grid. Comparing these
results to those in figure 6 and 7, we see that the
two evaluations yield very similar, albeit not identical,
model rankings. Note that IQD scores cannot be
directly compared across two grid resolutions. Dis-
tributions at different resolutions may not present
the same physical processes, making it impossible
to separate the confounding effects of intrinsic pre-
dictability and model performance (Gneiting and
Raftery 2007).

5. Discussion and conclusions

A comprehensive evaluation of climate models
requires performance measures that are simultan-
eously flexible and specific. We propose that climate
model simulations should be evaluated by compar-
ing distributions of model output to correspond-
ing distributions of observational or reanalysis data
products. Specifically, we propose to use the integ-
rated quadratic distance (IQD) score, as it fulfills
essential decision-theoretic properties for ranking
competing models and testing equality in perform-
ance, while also assessing the full distribution. The
IQD is here used to evaluate simulations of surface
air temperature (SAT) extremes. However, its applic-
ability extends to any univariate weather variable.

We evaluate seasonal distributions of SAT
extremes, specifically monthly minimum and max-
imum SAT as well as monthly temperature range,
for the time period 1979–2005 over North America

9
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We use the IQD
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Figure 6. Average IQD over grid points in North America for an evaluation against ERA5 on the HadEX2 grid for TXx
distributions in summer (left) and TNn distributions in winter (right) from 1979–2005: Reanalyses (squares with (x)),
observation-based data sets (circles with (x)), CMIP6 models (gray triangles) and CMIP5 models (filled circles). The models are
ranked with the best performing model at the top. CMIP5 models are sorted in model families by color according to Knutti et al
(2013), CMIP6 models are indicated with a star and reanalyses/data products in bold. If a model has multiple runs, the spread
across the runs is indicated with a bar. Two-dash horizontal lines indicate the 5% significance level of testing equal performance to
ERA-Interim.

TXx, 15 climatemodels have an IQD score lower than
2 when compared against HadEX2, while this holds
for 38 climate models when compared against ERA5.
The European results in figures 4 and 7 are, however,
more alike. Similar patterns are observed for the ETR,
see the supplementary material.

Both ERA5 and the CMIP6 models exist on a
finer grid than HadEX2. Section 4 of the supple-
mentary material shows the model rankings when
the CMIP6 model simulations are compared against
ERA5 on the CMIP6 model grid. Comparing these
results to those in figure 6 and 7, we see that the
two evaluations yield very similar, albeit not identical,
model rankings. Note that IQD scores cannot be
directly compared across two grid resolutions. Dis-
tributions at different resolutions may not present
the same physical processes, making it impossible
to separate the confounding effects of intrinsic pre-
dictability and model performance (Gneiting and
Raftery 2007).

5. Discussion and conclusions

A comprehensive evaluation of climate models
requires performance measures that are simultan-
eously flexible and specific. We propose that climate
model simulations should be evaluated by compar-
ing distributions of model output to correspond-
ing distributions of observational or reanalysis data
products. Specifically, we propose to use the integ-
rated quadratic distance (IQD) score, as it fulfills
essential decision-theoretic properties for ranking
competing models and testing equality in perform-
ance, while also assessing the full distribution. The
IQD is here used to evaluate simulations of surface
air temperature (SAT) extremes. However, its applic-
ability extends to any univariate weather variable.

We evaluate seasonal distributions of SAT
extremes, specifically monthly minimum and max-
imum SAT as well as monthly temperature range,
for the time period 1979–2005 over North America
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Environ. Res. Lett. 15 (2020) 124041 T L Thorarinsdottir et al

Figure 3. Top panel: IQD scores for evaluation against HadEX2 for winter TNn from 1979-2005 across grid locations in North
America for the model/reanalysis simulations listed on top of each plot. Minimum (best), maximum (worst) and mean IQD
values over the area are given below each plot. Panels two to four: Time series and distribution functions over the study period for
six different data sets at three locations indicated on the maps in the top panel, with the median and the interquartile range (IQR)
of each distribution. The name of each data set is given above panel two in the corresponding color used in the plots below.

substantial differences are largely concentrated in the
higher latitudes.

Figure 3 also shows the winter TNn time series
over the study period and the corresponding distribu-
tions at three locations: on the Canadian Baffin Island
(red square) where HadGEM2-CC has a high IQD
value, in the Canadian province of Quebec (green tri-
angle) where NCEP-2 has a high IQD value, and in
the US state of Texas (yellow circle) where all three
simulations get a low IQD value. For comparison, we
have also included the time series of the observation-
based data sets ANUSPLIN+Livneh and HadEX3.
In the grid point located in Texas, all the distribu-
tions are quite similar, with the TNn values min-
imally warmer for HadEX2 and HadEX3 than the

other data sets. Similarly, in the other two locations,
HadEX2 andHadEX3 also yield thewarmest TNnval-
ues. At the Quebec location, even the observation-
based data sets show significant differences, with
the HadEX2 median roughly 13◦C warmer than the
ANUSPLIN+Livneh median. Furthermore, the dis-
tributions from the observation-based products have
relatively small spread (asmeasured by the interquart-
ile range) compared to the distributions from the
other data sets.

Results for Europe, corresponding to those for
North America shown in figure 2, are shown in
figure 4. As for North America, we observe that ERA5
has slightly stronger similarities with HadEX2 than
ERA-Interim for summer TXx, while the opposite

6
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On the climate scale, we generally work with anomalies rather
than absolute values

Figure from ncdc.noaa.gov.
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Standard reference periods are 30 years
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10 year reference periods result in unstable rankings
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Conclusions

From this morning: Performance measure should be selected with care, preferably used in
groups.
Forecaster’s dilemma: Verification on extreme events only is bound to discredit skillful
forecasters. The only remedy is to consider all available cases when evaluating the models.
Careful application of weight functions can help interpreting prediction skill in certain
regions of interest. In particular, the weighted versions of the CRPS share (almost all of)
the desirable properties of the unweighted CRPS.
Overall: The framework presented here provides a unified setting for comparing two
values, a value and a distribution, or two distributions.
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