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Finite mixture distributions

Density of a finite mixture distribution
The density of a finite mixture distribution is defined by

p(y) =
K∑

k=1
ηk fT (y|θk),

I K is the number of components;
I η = (η1, . . . , ηK ) is the weight distribution with ηk ≥ 0, ∑K

k=1 ηk = 1;
I the component densities fT (y|θk) arise from the same distribution family T (θ);
I θ1, . . . ,θK vary over the components;
I y can be univariate or multivariate, continuous, discrete-valued, mixed-type, time

series data, outcomes of a regression model, . . .

Part I: Finite Mixture Models and Model-based Clustering Finite mixture distributions 4 / 207



Illustration

I Define a mixture of K = 2 distributions with Gaussian components densities
I f1(y) = fN (y ;−2, 1) and f2(y) = fN (y ; 0, 2),
I and weights η1 = 0.3 and η2 = 0.7.
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Mixture of two bivariate normal distributions
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For more details see . . .

2006 2019
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Practical relevance of finite mixture models

Finite mixture distributions are useful for
I Density estimation: capture many specific properties of real data such as

multimodality, skewness, and kurtosis
I Flexible modelling: deal in a natural way with special issues such as

non-normality and unobserved heterogeneity
I Model-based clustering: arise as marginal distribution of models for

unsupervised clustering
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Density approximation based on finite mixtures

Finite mixture of normal distributions are very useful for flexible modelling of
non-Gaussian densities

0.5N (−1, 1) + 0.5N (1, 1) 0.4N (1, 1.2) + 0.6N (2.5, 4)
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Approximation Property

I Let g(y) be an arbitrary probability density function.
I Let qK (y) be a mixture of normals:

qK (y) =
K∑

r=1
wr fN(y ; mr , s2

r ).

I For increasing K , the distance between g(y) and qK (y), e.g. the Kullback-Leibler
distance ∫

<
g(y) log g(y)

qK (y)dy

can be made arbitrarily small.
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Approximation Property

I To approximate g(y) for a fixed K , select
I the weights w1, . . . ,wK ,
I the means m1, . . . ,mK ,
I and the variances s2

1 , . . . , s2
K ,

such that the distance between g(y) and qK (y) is minimized.
I This is not a parameter estimation problem.
I This is a problem of numerical optimization.
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Example

I Consider the density the type I extreme value distribution:

g(y) = exp(−y − e−y ).

−5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

 

 

I This is also the density of the random variable − log Y , where Y ∼ E (1) follows
the standard exponential distribution.
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Approximation for K = 2

Optimal 2 component mixture approximation
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Approximation for K = 3

Optimal 3 component mixture approximation
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Approximation for K = 4

Optimal 4 component mixture approximation
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Approximation for K = 5

Optimal 5 component mixture approximation
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Approximation for K = 6

Optimal 6 component mixture approximation
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Approximation for K = 7

Optimal 7 component mixture approximation
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Approximation for K = 8

Optimal 8 component mixture approximation
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Approximation for K = 9

Optimal 9 component mixture approximation
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Approximation for K = 10

Optimal 10 component mixture approximation
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Density Approximation for K = 10

Approximate the non-normal density g(y) by a normal mixture of 10 components with
parameters mr and sr and weight wr for the r th component:

g(y) = exp{−y − e−y} ≈ q10(y) =
10∑

r=1
wr fN(y ; mr , s2

r ).

The mixture was estimated in [Frühwirth-Schnatter and Frühwirth, 2007] by minimizing
the Kullback-Leibler distance of the estimated mixture from the exact density:

wr 0.00397 0.0396 0.168 0.147 0.125 0.101 0.104 0.116 0.107 0.088
mr 5.09 3.29 1.82 1.24 0.764 0.391 0.0431 -0.306 -0.673 -1.06
s2
r 4.5 2.02 1.1 0.422 0.198 0.107 0.0778 0.0766 0.0947 0.146
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Density Approximation for K = 10

The mixture approximation to the density of the type I extreme value distribution
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Bayesian Computation Based on Finite Mixture Ap-
proximations

I Gaussian mixtures are useful for developing simple estimation procedures for
non-normal models [Sorenson and Alspach, 1971, Alspach and Sorenson, 1972]

I Stochastic volatility modelling: [Shephard, 1994], [Kim et al., 1998] and
[Chib et al., 2002] use a 7 component normal mixture approximation of the density
of the log of a χ2

1-distributed random variable, improved by [Omori et al., 2007]
I Spectral analysis: [Carter and Kohn, 1997] use a 5 component normal mixture

approximation of the density of the log of an E (1)-distributed random variable
I Non-Gaussian models: [Frühwirth-Schnatter and Wagner, 2006] and

[Frühwirth-Schnatter and Frühwirth, 2007] use a 10 component normal mixture
approximation of the density of minus log of an E (1)-distributed random variable
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Unsupervised Clustering

I Group previously unstructured data into groups which contain observations
that are similar in some sense

I The investigator expects that there exist meaningful subcategories of the data
under investigation, however, there are no external criterion by which to define
these groups

I The investigator relies on an internal criterion and is willing to let the data
speak (suggest sensible clusters)

I Many clustering criteria have been developed over the past decades for cross
sectional data, much less so for time series data
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Why is unsupervised clustering difficult?

I Assume that N subjects should be grouped into K clusters.
I Find an optimal partition among all possible partitions S = (S1, . . . , SN), where

Si ∈ {1, . . . ,K}.
I Search in the rather large space I = ⊗N

i=1{1, . . . ,K}, increasing rapidly with the
number of subjects N and the number of clusters K :
I N = 10, K = 3: 59049 different allocations
I N = 100, K = 3: roughly 5 · 1047 different allocations

I Exploring this large space is challenging; there are simply too many
possibilities.
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Challenges in cluster analysis

[Everitt, 1979]:

I Selecting a suitable clustering criterion

I Computational issues (identifying a sensible search strategy for the latent
allocations, choosing sensible starting values)

I Selecting the number of clusters

I Review: [Grün, 2019]
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Common statistical cluster technique

I Heuristic clustering techniques:
I based on distance measures, e.g. such as k-means [MacQueen, 1967]
I difficult to extend to discrete data, time series and other complex data structures

I Model based clustering:
I based on finite mixture models [Banfield and Raftery, 1993, Bensmail et al., 1997,

Dasgupta and Raftery, 1998, Fraley and Raftery, 2002]
I much easier to extend to discrete data, time series and complex data structures
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Clustering based on Finite mixtures

I Consider a population involving two latent clusters:
I Cluster 1 (Si = 1), Pr(Si = 1) = η1 (cluster size):

p(yi |Si = 1) = fN(yi ;µ1,Σ1)

I Cluster 2 (Si = 2), Pr(Si = 2) = η2 = 1− η1 (cluster size):

p(yi |Si = 2) = fN(yi ;µ2,Σ2)

Marginal distribution
The marginal distribution of yi is a mixture distribution:

p(yi) = η1fN(yi ;µ1,Σ1) + η2fN(yi ;µ2,Σ2)
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Cluster Analysis Based on Mixtures of Normals

Multivariate mixtures of normals distributions
For a vector yi with metric features yij , j = 1, . . . , r , a particular useful models are
multivariate mixture of normals distributions:

p(yi |ϑ) = η1fN(yi ;µ1,Σ1) + . . . + ηK fN(yi ;µK ,ΣK ),

I Clustering kernel fN(y;µk ,Σk) is the density of a multivariate normal distribution
with cluster-specific mean µk and variance-covariance matrix Σk .

I Seminal papers: [Wolfe, 1970], [Scott and Symons, 1971], [Symons, 1981],
[Binder, 1978], [Banfield and Raftery, 1993]
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Heterogeneous Mixtures of Normals

Different variance-covariance matrices in the different groups
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Bayes’ classification

I In general, a finite mixture distribution is defined by

p(y) = η1p(y|θ1) + · · ·+ ηK p(y|θK ),

where p(y|θk) is the pdf of the distribution in the kth component.
I The finite mixture distribution allows classification of each observation yi

conditional on knowing ϑ = (θ1, . . . ,θK , η1, . . . , ηK ):

Classification of yi for fixed ϑ = (θ1, . . . ,θK , η1, . . . , ηK )
Pr(Si = k|ϑ, yi) ∝ p(yi |ϑ, Si = k)Pr(Si = k|ϑ) ∝ p(yi |θk)ηk , ∀k = 1, . . . ,K

I The component density p(yi |θk) is essential for classification.
I It is called clustering kernel in the context of model-based clustering.
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Relation to Other Clustering Approaches

I [Scott and Symons, 1971] realized that Bayesian maximum aposteriori classification
using certain types of multivariate mixtures of normal distributions is related to
common clustering criteria:
I isotropic mixtures with Σk ≡ σ2Ir are equivalent to minimizing tr (W (S)),
I homogeneous mixture with Σk = Σ are equivalent to minimizing |W (S)|,

I where

W (S) =
K∑

k=1
Wk(S),

Wk(S) =
∑

i :Si =k
(yi − yk)(yi − yk)′ , yk = 1

Nk

∑
i :Si =k

yi .
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Why is this relation important?

I Sensible clustering criteria are obtained by deriving the optimal classification for a
mixture model from a certain distribution.

I This relation is helpful because:
I it reduces the problem of choosing a certain clustering criteria to a model choice

problem within a well-defined probabilistic framework.
I it shows how to carry out clustering for more general data (discrete-valued data,

times series, . . . )
I It has been noted in several empirical studies, that

I the tr (W (S)) criterion imposes an spherical structure on the grouping even if the
true groups are of different shape,

I the |W (S)| allows for elliptical clusters.
I The clustering kernel has to capture salient feature of the observed data.
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More general mixtures

I The idea of model-based clustering is very generic - can be easily extended to
more general clustering kernels

I Finite mixture for discrete-valued data:
I Poisson and negative binomial mixture for count data;
I latent class models for multivariate binary data

I Finite mixtures of skew-N and skew-t distributions: recent research
demonstrates the usefulness of parametric non-Gaussian component distributions

I finite mixtures of GLM regression models
I clustering (discrete-valued) time series
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The Bayesian Approach toward Estimation

I Many authors used a Bayesian approach to estimate finite mixtures
I Joint parameter estimation and classification is easily implemented using Markov

chain Monte Carlo (MCMC) methods [Diebolt and Robert, 1994]
I Inference is possible for interesting, possibly non-linear functionals of the parameters
I The prior distribution regularizes the likelihood function
I see, e.g., [Celeux et al., 2000]
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Problems with the likelihood function

I Consider a univariate normal mixture with two components:

p(yi |µ2, σ
2
2) = η1fN(yi ;µ1, σ

2
1) + (1− η1)fN(yi ;µ2, σ

2
2),

I µ1, σ
2
1 and η1 are known;

I µ2 and σ2
2 are unknown.

I Whenever µ2 = yi (where yi is any of the observed values):

p(yi |µ2 = yi , σ
2
2) = ci1 + 1− η1√

2πσ2
2

, ci1 = η1fN(yi ;µ1, σ
2
1),

lim
σ2

2→0
p(y1, . . . , yN |µ2 = yi , σ

2
2) =∞.

I Hence, the likelihood function has many spurious modes close to 0
[Kiefer and Wolfowitz, 1956].
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The observed-data likelihood function is unbounded

Surface plot of the observed-data likelihood function log p(y1, . . . , yN |µ2, σ2) (µtrue
2 = 0,

σtrue
2 = 2)
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Zooming in . . .

Zooming into very small variances
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Regularization of the observed-data likelihood

I Don’t let the component specific variances σ2
2 become too small.

I Add the “regularization” prior 1/σ2
2 ∼ G (c0,C0) with C0 > 0:

p(yi |µ2 = yi , σ
2
2)p(σ2

2) ∝
ci1 + 1− η1√

2πσ2
2

( 1
σ2

2

)c0+1

exp(−C0

σ2
2

).

I Penalizes the likelihood as σ2
2 → 0:

lim
σ2

2→0
p(y1, . . . , yN |µ2 = yi , σ

2
2) = 0.
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Regularized likelihood function

Posterior density (regularized likelihood function) p(µ2, σ2|y1, . . . , yN) under the prior
1/σ2

2 ∼ G (1, 4)

−3
−2

−1
0

1
2

3

0

2

4

6

0

0.2

0.4

0.6

0.8

1

x 10
−14

σ
2

µ

 π
(µ

,σ
2|y

)

Part I: Finite Mixture Models and Model-based Clustering Bayesian Approach toward Estimation 43 / 207



MCMC Estimation

Following [Diebolt and Robert, 1994], the most popular method for Bayesian estimation
of finite mixtures is to apply Markov chain Monte Carlo methods:
I Data augmentation – introduce the sequence of hidden indicators

S = (S1, . . . , SN) as latent variables
I Gibbs sampling – repeat the following sampling steps:

(a) “Estimation for a known grouping”: sample the component specific parameters
θ1, . . . ,θK and the weight distribution η = (η1, . . . , ηK ) conditional on knowing S
and the data.

(b) “Classification for known parameters”: sample the hidden indicators
S = (S1, . . . ,SN) conditional on knowing θ1, . . . ,θK and η.

See [Frühwirth-Schnatter, 2006], Section 3.5 for an extensive review.
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Choosing priors

I Dirichlet distribution on the weight distribution η ∼ D (e1, . . . , eK );
I Conditionally conjugate priors on θk |ψ: step [(a)] in one sweep
I Conditionally non-conjugate priors on θk |ψ: step [(a)] in two sweeps
I Hierarchical prior ψ ∼ p(ψ)
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The Label Switching problem

I A mixture distribution is invariant to reordering the components, e.g. for K = 3:

p(y) = η1fT (y|θ1) + η2fT (y|θ2) + η3fT (y|θ3) (1)
= η3fT (y|θ3) + η1fT (y|θ1) + η2fT (y|θ2).

I But so is an estimated mixture with component -specific parameters (η̂k , θ̂k), e.g.
for K = 3:

p(y) = η̂1fT (y|θ̂1) + η̂2fT (y|θ̂2) + η̂3fT (y|θ̂3) (2)
= η̂3fT (y|θ̂3) + η̂1fT (y|θ̂1) + η̂2fT (y|θ̂2).

I There is no reason why the numbering in (1) and (2) should be the same.
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The label switching problem

I Relabeling the states of the hidden indicator S leaves the observed-data likelihood
function unchanged.

I This causes multi-modality; the observed-data likelihood function is multimodal
with at most K ! modes.

I For a symmetric prior distribution, the posterior distribution is symmetric and
multimodal.

I When sampling from the (unconstrained) posterior via MCMC methods you do not
know which component of the sampled parameter correspond to which group and
label switching might occur.
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Invariance of the observed-data likelihood function

Observed-data likelihood function p(y|µ1, µ2) (simulated data with µ1 = 0 and µ2 = 3)
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Invariance of the posterior

Contour plots of unconstrained posterior p(µ1, µ2|y) for the simulated data
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Label switching in the MCMC output

MCMC draws from p(µ1, µ2|y) for the simulated data
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Dealing with the label switching problem

I Let the component specific parameter θk take values in Θ.
I Relabel the draws (θ1, . . . ,θK ) of a mixture with K components
I Most papers work in the full parameter space ΘK to identify suitable permutations

of the labels
[Celeux, 1998, Celeux et al., 2000, Stephens, 2000b, Marin et al., 2005,
Jasra et al., 2005, Nobile and Fearnside, 2007, Sperrin et al., 2010, Spezia, 2009]

I “Simple” relabeling [Frühwirth-Schnatter, 2001b]
I operates in Θ or even a subspace Θ̃ ⊂ Θ
I Clustering in the point process representation
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Point Process Representation of a Finite Mixture
Model

I Any finite mixture distribution has a representation as marked point process and
may be seen as a distribution of the points {θ1, . . . ,θK} over the parameter space
Θ [Stephens, 2000a]

I Point process representation of univariate normal mixtures with 3 components
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Labelling Based on the Point Process Representation

I [Frühwirth-Schnatter, 2001b] suggested to use the point process representation of
the MCMC draws to identify a mixture model.

I The MCMC draws scatter around the points corresponding to the “true” point
process representation

I A visual inspection of these plots allows to study the difference in the component
specific parameters and to formulate an identifiability constraint. This works well in
lower dimensions.

I In higher dimensional problems, heuristic cluster methods such as k-means are used.
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Exploring the point process representation

I Example: mixture of three univariate normal distributions with η1 = 0.3, η2 = 0.5,
K = 3, µ1 = −3, µ2 = 0, µ3 = 2, σ2

1 = 1, σ2
2 = 0.5, σ2

3 = 0.8
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I The MCMC draws scatter around the points corresponding to the “true” point
process representation

I The spread of the clouds representing the uncertainty of estimating the parameters
of the mixture
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Point process representations in higher dimensions

Consider following mixture of 4 multivariate normals of dimension r = 6 with

(
µ1 µ2 µ3 µ4

)
=



−2 −2 −2 0
3 0 −3 3
4 4 4 4
0 0 0 0
0 2 0 0
1 0 1 0

,

Σ1 = 0.5Ir , Σ2 = 4Ir + 0.2er , Σ3 = 4Ir − 0.2er , Σ4 = Ir .

θk = (µk , vec(Σ)) contains r + r(r + 1)/2 = 27 coefficients.
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Two-dimensional projections of the point process
representation
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Point process representation of 5000 draws (1000
observations)
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Clustering in the Point Process Representation
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Clustering in the Point Process Representation

Labeling through k-means clustering in the point process representation
of the MCMC draws
I Apply k-means clustering to all KM posterior draws of the parameter vector θ(m)

k ,
k = 1, . . . ,K , m = 1, . . . ,M.

I This delivers a classification index I (m)
k ∈ {1, . . . ,K}, k = 1, . . . ,K , m = 1, . . . ,M.

I Check, if ρm = (I (m)
1 , . . . , I (m)

K ) is a permutation of {1, . . . ,K}.
I In this case, a unique labelling is achieved by reordering the draws through ρm:

(c1) η(m)
1 , . . . , η

(m)
K is substituted by η(m)

ρ−1
m (1), . . . , η

(m)
ρ−1

m (K);

(c2) θ(m)
1 , . . . ,θ

(m)
K is substituted by θ(m)

ρ−1
m (1), . . . ,θ

(m)
ρ−1

m (K);

(c3) S(m)
1 , . . . ,S(m)

N is substituted by ρm(S(m)
1 ), . . . , ρm(S(m)

N ).
I Remove draws, where ρm is not a permutation.

Part I: Finite Mixture Models and Model-based Clustering Bayesian Approach toward Estimation 59 / 207



Application to the Example

I Component specific parameter θk contains r + r(r + 1)/2 = 27 coefficients.
I Use only the component mean, i.e. θk = (µk,1 · · ·µk,r )′ ; θk contains 6 elements.
I k-means clustering identifies 4 clusters in MK = 20 000 realizations of the

6-dimensional variable θ(m)
k .

I For each θ(m)
k a classification index I (m)

k results.
I All classification sequences ρm = (I (m)

1 , . . . , I (m)
4 ), m = 1, . . . ,M turned out to be

permutations of {1, . . . , 4}.
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Point process representation of 5000 identified
MCMC draws

−3 −2 −1 0 1
−4
−2

0
2
4

µ
.,1

µ .,2

−3 −2 −1 0 1
3

4

5

µ
.,1

µ .,3

−3 −2 −1 0 1
−1

0

1

µ
.,1

µ .,4

−3 −2 −1 0 1
−1

0
1
2
3

µ
.,1

µ .,5

−3 −2 −1 0 1
−1

0

1

2

µ
.,1

µ .,6

−4 −2 0 2 4
3

4

5

µ
.,2

µ .,3

−4 −2 0 2 4
−1

0

1

µ
.,2

µ .,4

−4 −2 0 2 4
−1

0
1
2
3

µ
.,2

µ .,5

−4 −2 0 2 4
−1

0

1

2

µ
.,2

µ .,6

3 4 5
−1

0

1

µ
.,3

µ .,4

3 4 5
−1

0
1
2
3

µ
.,3

µ .,5

3 4 5
−1

0

1

2

µ
.,3

µ .,6

−1 0 1
−1

0
1
2
3

µ
.,4

µ .,5

−1 0 1
−1

0

1

2

µ
.,4

µ .,6

−1 0 1 2 3
−1

0

1

2

µ
.,5

µ .,6

Part I: Finite Mixture Models and Model-based Clustering Bayesian Approach toward Estimation 61 / 207



Application to the Example

I It is usually sufficient to consider a subset of the components-specific parameters to
obtain those classification indices.

I One could add measures describing Σk , e.g. Diag (Σk), |Σk |, or eigenvalues of Σk .
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