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Alternative models for prior allocation

I A second look at the standard finite mixture model:

Pr(yi = j) = η1Pr(yi = j |Si = 1,θ1) + η2Pr(yi = j |Si = 2,θ2),
Pr(Si = 1) = η1,

Pr(Si = 2) = η2.

I The prior probability of belonging to class k is the same for all persons.
I Could this be true?
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Costumers are not alike!

I Costumer are heterogeneous with respect to brand and price of beverages (see e.g.
[Frühwirth-Schnatter et al., 2004])

I Some of them are price sensitive, some of them are brand sensitive

I Do they have the same prior probability to belong to a group?
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Mixtures-of-experts models

I The prior probability of belonging to a certain group is not the same for all persons
i , but depends on characteristics xi of the person, e.g. age and income.

Mixtures-of-experts for 2 classes:

Pr(yi = j) = ηi1Pr(yi = j |Si = 1,θ1) + ηi2Pr(yi = j |Si = 2,θ2),
Pr(Si = 1|xi) = ηi1 = F (xiβ),
Pr(Si = 2|xi) = ηi2 = 1− ηi1,

where F (z) is the cdf of the logistic distribution.
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Mixtures-of-experts models

Extension to more than two classes K > 2:

Pr(Si = k|xi) = ηik = F (xiβk), k = 2, . . . ,K ,

where F (λik) is the link function of a multinomial logistic model, i.e.
F (λik) = exp(λik)/(1 +∑K

l=2 exp(λil)).

I Many applications, e.g.
I Speech recognition [Peng et al., 1996]
I Modeling the voting behavior [Gormley and Murphy, 2008]
I Analyzing labour market data [Frühwirth-Schnatter et al., 2012]

I MCMC: auxiliary mixture sampling [Frühwirth-Schnatter and Frühwirth, 2010],
Polya Gamma sampler [Polson et al., 2013].

I Review: [Gormley and Frühwirth-Schnatter, 2019]
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Example: Effect of plant closure

[Frühwirth-Schnatter et al., 2018]:
I Analysing plant closure effects for a Cohort study: male workers (aged between

35 and 55) employed in 1982–1988
I Individual quarterly data for 10 year after plant closure
I Panel of N = 5, 841 male workers with Ti = 40 quarterly data on labour market

states (employed/sick/out of labour force/retired)
I Research question:

I What is the effect of plant closure on the employment career?
I Is there a difference between workers facing plant closure and those who did not?

I Time-varying mixture-of-experts Markov chain clustering
I Economic interpretability led us to choose 5 clusters
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Time-varying Markov chain clustering

I Time-inhomogeneity present the plant closure data.
I Generalized transition matrices: inhomogeneous transition matrix depending on

a history Hit [Frühwirth-Schnatter, 2011b]:

Pr(yit = j |Hit , Si = k),

where Hit = {yi ,t−1, xit}.
I Typically xit is some discrete covariate, e.g. the year after plant closure:

ϑk = (πk , ξk,1, ξk,2, . . . , ξk,10)

I We could include addition information (age group, . . . ) in xit
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Model-based clustering of plant closure data

Employment profiles of cluster members ranked 10th, 25th, 50th, 70th, 100th, 200th, 350th
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Analysing dynamic effects

State distribution πk,t , where

πk,t = πkξk,1→t , ξk,1→t = ξk,1→(t−1)ξky ; ξk,1→2 := ξk1.

over distance t = 4(y − 1) + q from plant closure (quarters), for cluster k :

Cluster 1: low attached Cluster 2: highly attached
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Mixtures-of-experts approach

I Mixture-of-experts model: multinomial logit model

Pr(Si = k|xi) = F (xiβk)

I Covariates xi based on individual characteristics:
I age at the time of plant closure (five age groups: 35-39, 40-44, 45-49, 50-55)
I levels of experience (low, medium, high)
I broad occupational status (blue versus white collar)
I income before plant closure (low, medium, high) based on the tertiles of the general

income distribution at time of plant closure
I . . . and on firm characteristics:

I three categories of firm size (1-10, 11-100, and more than 100 employees)
I four broad economic sectors (service, industry, seasonal business outside of hotel

and construction, unknown)
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Prior probabilities to belong to a cluster

Impact of age Impact of white versus blue collar
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Overfitting mixtures

I Overfitting finite mixture distributions,

p(y) =
K∑

k=1
ηk fT (y|θk),

where K is larger than the true number of components Ktr in the data.
I Likelihood function is highly irregular
I Specify a Dirichlet prior on the weights:

η = (η1, . . . , ηK ) ∼ DK (e0) .

I The hyperparameter e0 has, again, a regularizing effect on the likelihood function.

Part I: Finite Mixture Models and Model-based Clustering Overfitting mixtures 75 / 207



The likelihood for overfitting mixtures

I The likelihood is highly irregular for overfitting mixtures because it reflects two
possible ways of dealing with overfitting mixtures with K > Ktr :
I Empty components: ηk is shrunken toward 0; θk is identified only through the prior

p(θk)
I Duplicated components: θk − θj is shrunken toward 0; only the sum of the

components weights ηk + ηj is identified.
I The likelihood is multimodal, because it mixes these two unidentifiability modes.
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Example

Simulated data with µ1 = 1, µ2 = 1.5, σ21 = σ22 = 1, N = 100; surface and contours of
the integrated mixture likelihood p(y|µ1, µ2)
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Prior choices for finite mixtures

I Formulate a prior on the components parameters θk ∼ G0 (typically conditionally
conjugate)

I The prior distribution on the weights η = (η1, . . . , ηK ) is a Dirichlet distribution
D (e1, . . . , eK ).

I The seemingly non-informative uniform prior on the unit simplex, i.e. the
D (1, . . . , 1)-distribution is very informative in unexpected places.

I The hyperparameter e1, . . . , eK are informative in particular for overfitting mixtures
with K > Ktr .
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The role of the Dirichlet prior

I Consider η ∼ D (e1, . . . , eK ) where ek ≡ e0, denoted by η ∼ DK (e0).
I Let d = dimθk .
I An important paper by [Rousseau and Mengersen, 2011] shows the following

asymptotic result:
I If e0 < d/2, then asymptotically the posterior density concentrates over regions

where the total sum of the weights corresponding to K − Ktr superfluous groups is
0.

I If e0 > d/2, then asymptotically the posterior density concentrates over regions
with duplicated components.
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The role of the Dirichlet prior, ctd.

Consequence for empirical applications [Frühwirth-Schnatter, 2011a]:
I decide through the Dirichlet prior whether you prefer empty groups or duplicated

components for overfitting mixtures;
I making this decision helps to interpret the draws from the posterior distribution of

an overfitting mixture;
I making this decision facilitates estimating the number of non-empty,

non-identical components.
I to obtain sparsity, e0 very often has to be much smaller than d/2 in finite samples.
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Partitions implied by finite mixtures

I Clustering arises naturally trough the indicator Si of the component generating
yi |Si ∼ T (θSi ). S = (S1, . . . , SN) defines a partition of the data.

I With Nk is the number of observations allocated to component k , we obtain:

N1, . . . ,NK |η ∼ MulNom (N ; η1, . . . , ηK ) . (3)

I Depending on the weight distribution η = (η1, . . . , ηK ), multinomial sampling
according to (3) may lead to
I partitions with empty groups (Nk = 0).
I fewer than K mixture components were used to generate the N data points.
I the data contain K+ < K non-empty clusters:

K+ = K −
K∑

k=1
I{Nk = 0}.
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Prior on number of data clusters K+ (N = 100)

The choice of e0 of prior η = (η1, . . . , ηK ) ∼ DK (e0) determines whether the number
K+ of clusters in N data points is fixed (K+ = K ) or random apriori.

e0 = 4 e0 = 0.05 e0 = 0.005

K = 10 8 9 10
K+

1 2 3 4 5 6 7 8
K+

1 2 3 4
K+

K = 20 15 16 17 18 19 20
K+

1 2 3 4 5 6 7 8 9 10
K+

1 2 3 4 5
K+
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Sparse finite mixtures

I Overfitting finite mixture distributions,

p(y) =
K∑

k=1
ηk fT (y|θk),

where K is larger than the true number of components Ktr in the data.
I Specify a Dirichlet prior on the weights, η = (η1, . . . , ηK ) ∼ DK (e0) , with

I e0 very small, e.g. e0 = 0.01;
I e0 ∼ G (ae , be) with E(e0) = ae/be very small.

I y can be univariate or multivariate, continuous, discrete-valued, mixed-type, time
series data, outcomes of a regression model, . . .
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Mixture components versus data clusters

I Sparse finite mixtures make a distinction between K (the order of the mixture
distribution) and K+, the number of clusters in the partition of the data!

I For a sparse finite mixture, the number K+ of clusters in N data points is random a
priori. The prior depends both on e0 and K , where K is a fixed hyperparameter.

I Allows to estimate the number K+ of non-empty groups aposteriori, given
the data, using posterior (MCMC) draws of the indicators S and the corresponding
partitions.

I Is related to Bayesian non-parametric approaches (BNP), where K =∞.
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Sparse finite mixtures in action

I [Malsiner Walli et al., 2016]: Model-based clustering based on sparse finite
Gaussian mixtures

I [Malsiner Walli et al., 2017]: Sparse mixtures of mixtures using Bayesian estimation
I [Frühwirth-Schnatter and Malsiner-Walli, 2019]: “From here to infinity”- sparse

finite versus Dirichlet process mixtures in model-based clustering:
I Sparse finite mixture for discrete-valued data: Poisson and negative binomial

mixture for count data; sparse latent class models; sparse finite mixtures of GLM
regression models;

I Sparse finite mixtures of skew-N and skew-t distributions
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Sparse Gaussian Mixtures: some benchmark data
sets
Data set N r Ktr Frequentistic (mclust) Sparse Gaussian Mixtures (K = 10)

Iris 150 4 3 2 3
adj = 0.57, er = 0.33 adj = 0.92, er = 0.03

Crabs 200 5 4 9 4
adj = 0.48, er = 0.46 adj = 0.80, er = 0.08

Flea 74 6 3 5 3
beetles adj = 0.77, er = 0.18 adj = 1, er = 0.00
AIS 202 3 2 3 3

adj = 0.73, er = 0.13 adj = 0.76, er = 0.11
Wisconsin 569 3 2 4 4

adj = 0.55, er = 0.30 adj = 0.62, er = 0.21
Yeast 626 3 2 8 6

adj = 0.50, er = 0.20 adj = 0.48, er = 0.23
adj : adjusted Rand index (1 perfect classification), er : proportion of misclassified observations

Part I: Finite Mixture Models and Model-based Clustering Sparse finite mixtures in action 87 / 207



Problems with clustering via Gaussian mixtures

I Clustering kernel in the mixture model essential for classification.
I fT (y|θk) should describe the variation of the observations yi in cluster k by a

realistic probabilistic model.
I If multivariate normal distributions are used as clustering kernel, i.e.

fT (y|θk) ∼ Nr (µk ,Σk), a problem might arise, if the component density has
been misspecified.

I In this case, it is problematical to identify the order K of the mixture distribution
with the number of clusters in the data, since several Gaussian components have to
be merged to address this misspecification.
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Example: Alzheimer’s Disease Data

I Alzheimer’s disease (AD) is a complex disease that has multiple genetic as well as
environmental risk factors. It is commonly characterized by loss of a wide range of
cognitive abilities with aging.

I For the present analysis, the data set consists of 451 subjects from the cohorts of
the Religious Orders Study (ROS), see [Wilson et al., 2004] and the Memory and
Aging Project (MAP), see [Bennett et al., 2005].

I The level of cognition of the subjects was clinically evaluated proximate to their
death based on tests of cognitive functions and summarized by a mean global
cognition score, with higher scores suggesting better cognition capabilities.

I The genetic risk factor Apolipoprotein E (ApoE) polymorphism was determined by
genotyping the DNA from the subjects’ blood.
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Example: Alzheimer’s Disease Data

I [Frühwirth-Schnatter and Pyne, 2010], N = 415 patient

I Apply sparse finite mixtures of skew-N and skew-t distributions
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Finite mixtures of skew-N and skew-t distributions

I Clustering kernel: parametric non-Gaussian distributions
I Uni-/multivariate mixtures of skew normal and the skew-t distribution

[Frühwirth-Schnatter and Pyne, 2010, Lee and McLachlan, 2013]

Standard skew-N distribution
A univariate random variable Y follows a standard skew-N distribution with skewness
parameter α, if the pdf takes the form

p(y) = 2φ(y)Φ(αy),

where φ(·) and Φ(·) are the pdf and the cdf of the standard normal distribution.

I Left-skewed (α < 0) or right-skewed (α > 0); α = 0: standard normal
I Standard skew-t with ν degrees of freedom: φ(y) and Φ(αy) are,

respectively, the cdf and the pdf of a standard tν-distribution.
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Sparse skew-N mixtures for Alzheimer data

K = 10, e0 = 0.01 ⇒ K̂+ = 2 was selected for various priors
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Sparse skew-t mixtures

K = 10, e0 = 0.01 ⇒ K̂+ = 2 was selected for all priors
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Skew-N and skew-t with Jeffrey’s prior on the
weights

I Because of d = 3 (Skew-N) and d = 4 (Skew-t), [Rousseau and Mengersen, 2011]
would allow e0 = 0.5 (Jeffrey’s prior, K = 10)

I However, strong overfitting ⇒ K̂+ = 9 both for Skew-N (left) and Skew-t (right)
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Posterior distribution Pr(K+|y) for Alzheimer data

Skew normal K+ = 1 K+ = 2 K+ = 3 K+ = 4 K+ = 5 K+ = 6 K+ ≥ 7
SFM (K = 10)
e0 ∼ G (1, 200) 0.0127 0.76 0.193 0.0285 0.00512 0.00032 0

DPM
α ∼ G (2, 4) 0 0.181 0.302 0.214 0.139 0.0827 0.0819

Skew-t
SFM (K = 10)
e0 ∼ G (1, 200) 0.263 0.597 0.124 0.0152 0.00124 2e-05 0.

DPM
α ∼ G (2, 4) 0.0028 0.29 0.275 0.206 0.124 0.0583 0.0445

log p̂(y|K ) K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 7
Skew normal -689.62 -682.37 -684.45 -690.41 -696.12 - -
Skew-t -692.29 -688.98 -690.31 -694.11 -699.85 - -
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Parameter Estimation

I Two component skew normal mixture modeling of Alzheimer’s disease data set.
I Parameter estimation using posterior means (posterior standard deviations in

parenthesis)

k ξk ω2
k αk µk = E(Y |Si = k) ηk

1 0.36 (0.11) 1.26 (0.37) -2.61 (0.78) -0.46 (0.10) 0.767 (0.061)
2 -3.55 (0.43) 2.20 (1.3) 2.06 (1.48) -2.65 (0.34) 0.233 (0.061)
I The first component has a much higher expected cognitive score µk than the

second one;
I The first component exhibit considerable negative skewness, while the skewness

parameter is positive for the second component.
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Clustering
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Clustering of the data based on a mixture of three normal distributions (left hand side)
and on a mixture of two skew normal distributions (right hand side)
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Smiley’s Data [Leisch, 2004]

Sparse Gaussian finite mixture approach [Malsiner Walli et al., 2016] yields 9
“clusters”
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Semi-parameteric non-Gaussian cluster kernels

I It may be difficult to decide which parametric distribution is appropriate to
characterize a data cluster, especially in higher dimensions.

I [Malsiner Walli et al., 2017] pursue a sparse mixture of Gaussian mixtures
approach:
I exploits the ability of normal mixtures to accurately approximate a wide class of

probability distributions: models the non-Gaussian cluster distributions
themselves by Gaussian mixtures

I use the concept of sparse finite mixtures to select the number of clusters.
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Sparse Gaussian mixtures-of-mixtures

I Consider an overfitting finite mixture with a sparse Dirichlet prior on η ∼ DK (e0),
i.e.

p(y) =
K∑

k=1
ηk fT (y|θk),

I where each cluster distribution fT (y|θk) is assumed to be a mixture of L
multivariate normal distributions (subcomponents):

fT (y|θk) =
L∑

l=1
wkl fN(y|µkl ,Σkl). (4)

I The Gaussian mixture (4) provides a semi-parametric density fit to possibly
asymmetric, heavy-tailed cluster distributions.

I The sparse Dirichlet prior DK (e0) allows to estimate the number of these
(non-Gaussian) clusters.
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Variance decomposition of a mixture of normals

Fraction of variance explained by differences in the means:
K∑

k=1
ηk(µk − µ)(µk − µ)′ = φCov(y)

φ = 0.1 (left), φ = 0.5 (middle), φ = 0.9 (right)
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Bayesian inference

I Within each cluster k , the Gaussian mixture provides a semi-parametric density
fit to a possibly asymmetric, heavy tailed cluster distribution with strong prior
overlap of the component densities:
I wk = (wk1, . . . ,wkL) ∼ DL (f0) with f0 = d/2 + 2;
I p(θk |ψ) = p(µk1, . . . ,µkL|ψ1)p(Σk1, . . . ,ΣkL|ψ2)
I µkl |bk

iid∼ N (bk ,B0) , l = 1, . . . , L with small prior variation (φW )
I bk ∼ N (b0,M0) with large prior variation (φB)
I Σ−1kl |c0,C0k

iid∼ Wr (c0,C0k) , l = 1, . . . , L and C0k |g0,G0
iid∼ Wr (g0,G0).

I Related to the infinite mixture of infinite Gaussian mixtures
[Yerebakan et al., 2014].
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Revisiting Smiley

Right-hand side: sparse Gaussian mixture-of-mixture model
(K = 10, L = 10, e0 = 0.01) ⇒ K̂+ = 4
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Invariance of the likelihood

I The likelihood is completely ignorant concerning the issue which of the KL
components belong together:

p(y|θ1, . . . ,θK ,η) =
K∑

k=1
ηk fT (y|θk) =

K∑
k=1

L∑
l=1

w̃kl fN(y|µkl ,Σkl),

because only w̃kl = ηkwkl is identified.
I Components are often merged in a post-processing fashion

[Li, 2005, Baudry et al., 2010, Hennig, 2010, Melnykov, 2016].
I Identification achieved through the carefully designed hierarchical prior.
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Pitfalls of post-processing merging

I AIS data set, variables “X.Bfat” and “LBM”; scatter plots of the observations with
different estimated classifications
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I left-hand side: Mclust with K = 3 [Fraley et al., 2012]
I middle: combiClust [Baudry et al., 2010]
I right-hand side: sparse mixture of mixtures approach (K = 10, L = 4) ⇒ K̂+ = 2
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Simulated data

I Data simulated from a mixture of 8 bivariate normal distributions (left)
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I Clustering using a sparse Gaussian mixture (K = 10, e0 = 0.001; middle)
I Clustering using a sparse Gaussian mixture-of-mixture model

(K = 10, L = 4, e0 = 0.001; right)
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Revisiting the benchmark data sets

Data set K+ for SparseMix K̂+ for SparseMixMix (K = 10, e0 = 0.001)
L = 1 L = 4 L = 5

AIS 3 2 2
adj = 0.76, er = 0.11 adj = 0.81, er = 0.05 adj = 0.76, er = 0.06

Wisconsin 4 2 2
adj = 0.62, er = 0.21 adj = 0.82, er = 0.05 adj = 0.82, er = 0.05

Yeast 6 2 2
adj = 0.48, er = 0.23 adj = 0.81, er = 0.05 adj = 0.76, er = 0.06

adj : adjusted Rand index (1 perfect classification), er : proportion of misclassified observations
K true = 2 recovered for all data sets
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Example: flow cytometric data

I N = 7932 data points (d = 4)
I sparse mixture of mixtures (K = 30, e0 = 0.001; L = 15) yields K̂+ = 4 (Ktr = 4)

I Error rate (0.03) outperforms the error rate of 0.056 reported by
[Lee and McLachlan, 2013]
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Example: Fabric fault data

I Regression analysis of data on fabric faults
[Aitkin, 1996, McLachlan and Peel, 2000].

I The response variable yi is the number of faults in a bolt of length li
I Log marginal likelihoods of various mixtures of regression models based on the

regressor xi = (1 log li) [Frühwirth-Schnatter et al., 2009]
Model K = 1 K = 2 K = 3 K = 4
Poisson −101.79 −99.21 −100.74 −103.21
Poisson (fixed slope) −101.79 −97.46 −97.65 −98.60
Negative Binomial −96.04 −99.05 −102.21 −104.95
Negative Binomial (fixed slope) −96.04 −97.25 −98.76 −99.97

I Marginal likelihood (based on e0 = 4) points to a homogeneous model based on
the negative binomial distribution
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Sparse mixture of binomial regression models

I K = 10 ⇒ K̂+ = 1 is selected for e0 = 0.01 (left hand side) and e0 = 0.1 (right
hand side)
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I Sparse finite mixtures are also useful for “testing” homogeneity
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Outline

Part I: Finite Mixture Models and Model-based Clustering
I Finite mixture distributions
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I Bayesian Approach toward Estimation

I Mixture-of-experts models

I Overfitting mixtures

I Sparse finite mixtures in action

I Model selection for finite mixtures
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Model selection criteria

I Marginal likelihoods - model selection including K , the clustering kernel, etc.
I One-sweep Bayesian methods:

I RJMCMC [Richardson and Green, 1997] - selection of K (K+ as a by-product)
I Sparse finite mixtures (SFS and Malsiner-Walli, 2019, ADAC) - selection of K+

I Statistical (information) criteria:
I BIC - model selection including K , the clustering kernel, etc.
I DIC [Spiegelhalter et al., 2002] - application to finite mixture models is not without

problems [Celeux et al., 2006]
I Entropy-based criteria: penalize the failure of the model to provide a classification

into well-separated clusters
I See [Celeux et al., 2019] for a review.
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Marginal likelihoods

I Definition of the marginal likelihood p(y|K ):

p(y|K ) =
∫

p(y|ϑ,K )p(ϑ|K )dϑ. (5)

I Computational challenge:
I Marginal likelihoods difficult to compute [Celeux et al., 2019]
I Keeping the balance across multiple modes important (SFS, 2019, BJPS)

I Interpretation of marginal likelihoods:
I What are we actually estimating? K or K+?
I Again, the choice of the prior distribution η ∼ DK (γ) on the weight distribution is

important.
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Sampling based approximation of the marginal like-
lihood

I Importance sampling is based on rewriting (5) as

p(y|K ) =
∫ p(y|ϑ,K )p(ϑ|K )

qK (ϑ) qK (ϑ) ϑ,

I Determine a sample ϑ(l), l = 1, . . . , L from the importance density qK (ϑ).

I The importance sampling estimator of the marginal likelihood is given by:

p̂IS(y|K ) = 1
L

L∑
l=1

p(y|ϑ(l),K )p(ϑ(l)|K )
qK (ϑ(l)) . (6)
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Computational challenges

I Tail behaviour
I p̂IS(y|K ) has high standard errors, if qK (ϑ) has thin tails compared to the mixture

posterior p(ϑ|y,K ).
I Bridge sampling estimators are robust to the tail behaviour

[Meng and Wong, 1996, Frühwirth-Schnatter, 2004]

I Keeping the balance
I Importance density qK (ϑ) has to mimic the multimodality of the posterior

p(ϑ|y,K ) which results from invariance to label switching.
I Various strategies to ensure balanced importance densities (SFS, 2019, BJPS).
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The bridge sampling estimator

I Choose two functions:
I an importance function qK (ϑ) (approximation to the posterior p(ϑ|y,K ))
I a positive function α(ϑ) such that

∫
α(ϑ)qK (ϑ)p(ϑ|y,K ) dϑ > 0

I General bridge sampling estimator of the marginal likelihood:
I The identity:∫

α(ϑ)qK (ϑ)p(ϑ|y,K ) dϑ =
∫
α(ϑ)p(y|ϑ,K )p(ϑ|K )

p(y|K ) qK (ϑ) dϑ

I yields following estimator of the marginal likelihood:

p(y|K ) =
EqK (ϑ) (α(ϑ)p(y|ϑ,K )p(ϑ|K ))

Ep(ϑ|y,K) (α(ϑ)qK (ϑ)) .
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The bridge sampling estimator

I [Meng and Wong, 1996] derive an optimal choice for α(ϑ) which yields a bridge
sampling estimator that requires i.i.d. draws ϑ(l), l = 1, . . . , L from the importance
density qK (ϑ) and i.i.d. draws from the posterior p(ϑ|y,K ).

I Markov chain Monte Carlo (MCMC) draws ϑ(m),m = 1, . . . ,M from the posterior
p(ϑ|y,K ) are typically autocorrelated.

I [Meng and Schilling, 1996] define an alternative optimal bridge sampling estimator
pBS(y|K ) based on following function α(ϑ):

α(ϑ) = 1/ (L · qK (ϑ) + M? · p(ϑ|y,K )) .

I M? is the effective sample size, estimated as M̂? = min(M,M/ρ̂), where ρ̂ is an
estimator of the inefficiency factor of the posterior draws
f (m) = p(y|ϑ(m),K )p(ϑ(m)|K ).

I This definition of α(ϑ) requires knowledge of the (unknown) normalizing constant
p(y|K ) to evaluate p(ϑ|y,K ).
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Computing the (optimal) bridge sampling estimator

I Derive two sets of independent draws:
I MCMC draws ϑ(m),m = 1, . . . ,M from the posterior distribution p(ϑ|y,K );
I independent draws ϑ(l), l = 1, . . . , L from the importance density qK (ϑ).

I The following recursion is applied until convergence:

p̂BS(y|K ) = lim
t→∞

p̂BS,t(y|K ).

I Use the IS estimator p̂IS(y|K ) (6) as a starting value p̂BS,0(y|K ).
I Define p̂BS,t(y|K ) recursively:

p̂BS,t(y|K ) =

1
L

L∑
l=1

p(y|ϑ(l),K )p(ϑ(l)|K )
LqK (ϑ(l)) + M̂?

p(y|ϑ(l),K)p(ϑ(l)|K)
p̂BS,t−1(y|K)

1
M

M∑
m=1

qK (ϑ(m))
LqK (ϑ(m)) + M̂?

p(y|ϑ(m),K)p(ϑ(m)|K)
p̂BS,t−1(y|K)

.
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Constructing the importance density

I S(m),m = 1, . . . ,M are M posterior draws of the latent allocations S.
I Rao–Blackwellised approximation of the posterior distribution of ϑ based on

introducing the latent allocations S as missing data yields:

p(ϑ|y,K ) =
∑
S

p(ϑ|S, y,K )p(S|y,K ) ≈ qK (ϑ) = 1
M

M∑
m=1

p(ϑ|S(m), y,K ) (7)

I Conditional density p(ϑ|S, y,K ) often from a well-known family
e.g. Poisson mixtures: µk |S, y ∼ G (a0 + yk , b0 + Nk)

I Gibbs sampling might lead to imbalanced label switching
I Enforce label switching to ensure that importance density is (nearly) balanced.
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Achieving balance

Double random permutation bridge sampling estimators:
I (Nearly) balanced label switching of the MCMC draws (ϑ(m),S(m)),m = 1, . . . ,M

through random permutation of the labels [Frühwirth-Schnatter, 2001b]
I Independent random permutation when constructing qK (ϑ) in (7)
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Achieving balance

Full permutation bridge sampling estimators:
I Construct a fully symmetric importance density:

I choose q = 1, . . . ,Q MCMC draws,
I for each q, define K ! expanded component densities by applying all possible

permutations ρ ∈ SK :

qK (ϑ) = 1
Q

Q∑
q=1

1
K !

∑
ρ∈SK

p(ϑ|ρ(S(q)), y,K ).

I Robust to unbalanced label switching in the MCMC draws
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Example: Eye Tracking Data

I For illustration, consider the count data on eye tracking anomalies in 101
schizophrenic patients studied by [Escobar and West, 1998]

I empirical distribution of the observations:
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I fit a mixture of Poisson distributions with unknown number of components
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Eye Tracking Data: log marginal likelihoods
with e0 = 4

For each K , nine estimators log p̂•(y|K )± 3 SE are given (from left to right):
log p̂BS,F (y|K ), log p̂BS,D(y|K ), log p̂BS,R(y|K ) (green); log p̂IS,F (y|K ), log p̂IS,D(y|K ),
log p̂IS,R(y|K ) (red); log p̂RI,F (y|K ), log p̂RI,D(y|K ), log p̂RI,R(y|K ) (blue).
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Finite mixture models with a prior on K

I [Richardson and Green, 1997] consider finite mixture models with a discrete prior
on K (K is random apriori)
I p(K ) is a truncated uniform
I ηK |K ∼ DK (1) is uniform
I RJMCMC for a one-sweep sampler

I [Nobile, 2004] shows that a proper prior on K is needed to obtain a proper
posterior p(K |y)

I [Miller and Harrison, 2018] show that sampler from BNP mixtures can be used
I SFS, Malsiner-Walli, Grün (coming soon): learn K and K+ under sensible priors on

p(K ) and ηK |K ∼ DK (γK )
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Reversible Jump MCMC

I Start with a certain mixture model with K components and select classifications
S = (S1, . . . , SN) where Si assign a certain observation to a certain component
(Si = k ⇒ assign yi to component k).

I Repeat the following steps for m = 1, . . . ,M:
(a) Perform the following dimension-preserving move:

(a-1) Update the model-specific parameter ϑK = (θ1, . . . ,θK , η1, . . . , ηK )
(a-2) Update the current allocation S.

(b) Perform the following dimension-changing moves:
(b-1) split one mixture component into two components or merge two components into one.
(b-2) delete or add empty components
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Moving to a Mixture with K + 1 Components

Assume that the current modelMK is a mixture with K components, the model
parameter being equal to ϑK . To jump to a mixture modelMK+1 with K + 1
components, proceed in the following way.
(a) Match the dimensions between the models: propose u, where

dim(ϑK+1) = dim(ϑK ) + dim(u), from a proposal density qK ,K+1(u), and
determine ϑK+1 from ϑK+1 = gK ,K+1(ϑK ,u).

(b) Reallocate the observations according to a proposal q(Snew|S,ϑK+1).
(c) Move to the finite mixture modelMK+1 with component parameter ϑK+1 and

allocations Snew with probability min(1,A).
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Acceptance probability

The acceptance probability A depends on ϑK , ϑK+1, S and Snew:

A = (likelihood ratio) × (prior ratio) × (proposal ratio) × |Jacobian|,

likelihood ratio =
∏

i :Snew
i 6=Si

p(yi |θSnew
i

)
p(yi |θSi )

prior ratio = p(Snew|ϑK+1,MK+1)p(ϑK+1|MK+1)Pr(MK+1)
p(S|ϑK ,MK )p(ϑK |MK )Pr(MK )

proposal ratio = mh(ϑK+1,MK+1)
q(Snew|S,ϑK+1)qK ,K+1(u)mh(ϑK ,MK )

|Jacobian| =
∣∣∣∣∣∂gK ,K+1(ϑK ,u)

∂(ϑK ,u)

∣∣∣∣∣ .
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Eye Tracking Data, RJMCMC under “no
prior”
Uniform prior on K , η ∼ DK (1)
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Eye Tracking Data, RJMCMC with informa-
tive priors
K − 1 ∼ P (4), η ∼ DK (4)
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Eye Tracking Data, RJMCMC - density esti-
mation
K − 1 ∼ P (4), η ∼ DK (4)
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Information criteria

I Minimize BICK defined as

BICK = −2 log p(y|ϑ̂K ,MK ) + log(N)dK ,

where dK is the number of unknown parameters in the mixture distribution and ϑ̂K
is the ML estimator.
I BICK is an asymptotic approximation to −2 log p(y|MK ) which ignores the prior

p(ϑK |MK );
I BICK consistent for K , if component density correctly specified [Keribin, 2000]

I AICK criterion - penalty equals 2dK .
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Components versus clusters

I For (large) data sets, BIC and the marginal likelihood tends to overfit the number
of clusters, because the clustering kernel is likely to be misspecified.

I Several normal distributions may be necessary to capture skewness and kurtosis in
a single skew cluster, e.g. a mixture of two Gaussians with µ1 = −1, µ2 = 0.5,
σ21 = 1, σ22 = 2, η1 = 0.6
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Entropy-based criteria

I [Biernacki et al., 2000] introduce the integrated classification likelihood criterion
which is approximately equal to [McLachlan and Peel, 2000]:

ICL-BICK = BICK + 2EN(ϑ̂K ).

I The entropy EN(ϑK ) measures how well the finite mixture model defined by ϑK
classifies the data into K distinct clusters:

EN(ϑK ) = −
N∑

i=1

K∑
k=1

Pr(Si = k|yi ,ϑK )log Pr(Si = k|yi ,ϑK ),

I The ICL-BICK criterion penalizes not only model complexity, but also the failure of
the model to provide a classification into well-separated clusters.
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