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Motivating Example

I Consider the quarterly percentage growth rate

Yt = 100(log(GDPt)− log(GDPt−1))

of the U.S. real GDP series, for t = 1, . . . ,T .
I Quarterly data 1951.II to 1984.IV Time series plot of yt (left) and empirical

marginal distribution of yt (right)
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Fitting AR(p) models to the GDP data

I GDP data, modeled by an AR(p) model with p = 1, . . . , 4

I Unimodal stationary distribution p(Yt |p) (full line) implied by each AR(p) model. .
I Surprisingly little difference in p(Yt |p) for the different model orders p.
I Striking difference to the bi-/multi-modality empirical histogram of Yt .
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Capturing multimodality through finite mixtures

I Introduce a hidden indicator St , where Pr(St = k) = ηk , k = 1, . . . ,K .
I Define the conditional distribution of Yt given St , e.g.

Yt |St = k ∼ N
(
µk , σ

2
k

)
.

I St models to which group (state) observation Yt belongs.
I A finite mixture distribution results as marginal distribution:

p(yt) = η1fN(yt ;µ1, σ
2
1) + · · ·+ ηK fN(yt ;µK , σ

2
K ).

I See [Frühwirth-Schnatter, 2006] and [Kaufmann, 2019] for a review.
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Finite mixture modeling of time series

I In a time series application, S = (S1, . . . , ST ) is a time series of discrete indicators.
I However, for standard finite mixture distributions, successive values are

independent:

ξjk = Pr(St = k|St−1 = j) = Pr(St = k) = ηk .

I The implied marginal distribution of Yt could be multimodal, but marginally Yt is a
white noise process (uncorrelated over time).

I To capture both multimodality and autocorrelation for time series, Markov
switching models have been developed.
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Finite Markov mixture models

I The probability distribution of the stochastic process Yt depends on the states of a
hidden discrete stochastic process St .

I The stochastic process Yt is directly observable.
I St is a latent random process that is observable only indirectly through the effect it

has on the realizations of Yt .
I This leads to a rich class of nonlinear time series models.
I The hidden process {St}T

t=0 is an irreducible, aperiodic Markov chain of order one
starting from its ergodic distribution η = (η1, . . . , ηK ):

Pr(S0 = k|ξ) = ηk .
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The hidden Markov chain

I The properties of St are described by the (K × K ) transition matrix ξ:

ξ =


ξ11 · · · ξ1K
... . . . ...
ξK1 · · · ξKK


I Each element ξjk is equal to the transition probability from state j to state k :

ξjk = Pr(St = k|St−1 = j), ∀j , k ∈ {1, . . . ,K}.

I The jth row of the transition matrix ξ defines the conditional distribution
St |St−1 = j of St given the information that St−1 is in state j (for all t = 1, . . . ,T ).
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The finite mixture model as a special case

I A random variable Yt drawn from a standard finite mixture with weight distribution
η is observationally equivalent with a process Yt generated by a finite Markov
mixture distribution where all rows of the transition matrix of St are identical to η:

ξ =


ξ11 · · · ξ1K
... . . . ...
ξK1 · · · ξKK

 =


ξ1 · · · ξK
... . . . ...
ξ1 · · · ξK
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The invariant distribution of a K -state Markov chain

I Any probability distribution η = (η1, . . . , ηK ) that fulfills the invariance property

ξ
′
η = η, (8)

I is called an invariant distribution of the Markov chain St .
I If the states of St−1 are drawn from an invariant distribution of ξ, then

Pr(St = k|ξ) =
K∑

j=1
Pr(St = k|St−1 = j , ξ)Pr(St−1 = j |ξ) =

K∑
j=1

ξjkηj = ηk ,

and Pr(St = k|ξ) is again equal to η.
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The invariant distribution of a K -state Markov chain

I It is possible to show that such an invariant distribution exists for any finite Markov
chain.

I For K > 2, numerical methods have to be used for solving (8) in η.
I The invariant distribution is not unique for arbitrary transition matrices.
I E.g., for ξ = IK any arbitrary probability distribution η is invariant.
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The long run behaviour of a Markov chain

I Consider the hth power of ξ:

ξh = ξ · · · ξ︸ ︷︷ ︸
h times

.

I Interpretation of the element (k , `) of ξh:

(ξh)k` = Pr(St+h = `|St = k , ξ),

i.e. probability to end up in ` after h periods, given a start in k (what happens in
between does not matter).

I The kth row of ξt is the distribution Pr(St |ξ, S0 = k)
I ξh determines the long-run behavior of the Markov chain.
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Irreducibility of a Markov chain

I Uniqueness of the invariant distribution follows for any transition matrix that leads
to an irreducible Markov chain.

I Irreducibility means that starting St from an arbitrary state k ∈ {1, . . . ,K}
I any state ` ∈ {1, . . . ,K} must be reachable in finite time:

∀(k , `) ∈ {1, . . . ,K} ⇒ ∃h(k , `) : (ξh(k,`))k` > 0.

I Sufficient condition for irreducibility: (ξh)k` > 0 for some h ≥ 1 independent of
k , `.

I E.g. all elements ξk` of ξ are positive.
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Reducible Markov chains

I If any element (ξh)k` ≡ 0 for all h ≥ 1, then the Markov chain is reducible.
I E.g., transition matrix of a change point model:

ξ =


ξ11 ξ12 ξ13 ξ14
0 ξ22 ξ23 ξ24
0 0 ξ33 ξ34
0 0 0 1


I (ξh)k` ≡ 0 for all ` < k for all h ≥ 1.
I e.g. for K = 2

ξ =
(
ξ11 1− ξ11
0 1

)
, ξh =

(
ξh

11 1− ξh
11

0 1

)
.
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Aperiodic Markov chains

I Consider, for each state k , all h for which (ξh)kk > 0.
I The period of state k is the greatest common divisor (GCD) of all h.
I A Markov chain is aperiodic, if the period of each state is equal to one:

GCD{h ≥ 1 : (ξh)kk > 0} = 1, ∀k ∈ {1, . . . ,K}.

I Less formally, aperiodicity is defined as the absence of periodicity.
I Sufficient condition: a Markov chain is aperiodic, if all diagonal elements of ξ are

positive.
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An example of a periodic Markov chain

I Consider following irreducible transition matrix ξ:

ξ =

 0 1 0
0 0 1
1 0 0

 , ξ3 =

 0 1 0
0 0 1
1 0 0

 ,
I The invariant distribution is unique (due to irreducibility) and equal to the uniform

distribution.
I The period of each state is equal to 3, e.g. if S0 = 1:

Pr(St = 1|S0 = 1, ξ) = 1, iff t = 3, 6, 9, . . .
Pr(St = 2|S0 = 1, ξ) = 1, iff t = 1, 4, 7, . . .
Pr(St = 3|S0 = 1, ξ) = 1, iff t = 2, 5, 8, . . .

I The distribution Pr(St |S0, ξ) does not converge to the invariant distribution.
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Irreducible Aperiodic Markov Chains

I Ergodicity:

Ergodicity of a Markov chain
For an ergodic Markov chain,

I the invariant distribution η is unique (called ergodic distribution);

I the distribution Pr(St |ξ,S0 = k) converges to the invariant distribution, regardless of the
state k the initial value S0.

I A Markov chain is ergodic, if the transition matrix ξ is irreducible and aperiodic.
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Two-state Markov chains

I Consider, for illustration, a two-state Markov chain with transition matrix

ξ =
(

ξ11 1− ξ11
1− ξ22 ξ22

)
.

I The invariant probability distribution η = (η1, η2) given by:

η1 = ξ21

ξ12 + ξ21
, η2 = ξ12

ξ12 + ξ21
.

I For a „symmetric” Markov chain with ξ11 = ξ22, the invariant probability
distribution is uniform: η1 = η2 = 0.5;

I For an „asymmetric” Markov chain ξ11 > ξ22 favors state 1: η1 > η2, whereas
ξ11 < ξ22 favors state 2: η1 < η2.

I A two-state Markov chain is ergodic, if 0 < ξ11 + ξ22 < 2.
I In the long-run, an ergodic Markov chain converges from any initial state S0 to η.
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Two-state Markov chain

I State persistence depends on the eigenvalues of ξ, obtained from∣∣∣∣∣ ξ11 − λ 1− ξ11
1− ξ22 ξ22 − λ

∣∣∣∣∣ = (λ− 1)(λ− (ξ11 + ξ22 − 1)) = 0.

I One eigenvalue is equal to 1, the second eigenvalue is equal to:

λ = ξ11 − (1− ξ22) = ξ11 − ξ21.

I Representation of ξh in terms of the invariant probability distribution is possible:

ξh =
(
η1 η2
η1 η2

)
+ λh

(
η2 −η2
−η1 η1

)
,

with λ being the second eigenvalue of ξ.
I Persistence of St is higher, the closer λ is to 1.
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The Basic Markov mixture model

I Conditional on knowing S = (S0, . . . , ST ), the random variables Y1, . . . ,YT are
stochastically independent.

I The distribution of Yt arises from one out of K distributions with density
p(yt |θ1), . . . , p(yt |θK ), depending on the state of St :

Yt |St = k ∼ p(yt |θk).

I The unconditional distribution of Yt is a finite mixture distribution with the ergodic
distribution η = (η1, . . . , ηK ) acting as weight distribution:

p(yt |ϑ) =
K∑

k=1
ηkp(yt |θk),
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Markov mixture of two normal distributions

I Markov mixture models are able to generate time series data with asymmetry and
fat tails in the marginal distribution [Timmermann, 2000].

I Consider a Markov mixture of two normal distributions:

Yt =
{
µ1 + εt , εt ∼ N (0, σ2

1) , St = 1,
µ2 + εt , εt ∼ N (0, σ2

2) , St = 2.

I Multimodality of the marginal distribution is possible for appropriate choices of
(µ1, µ2, σ

2
1, σ

2
2, ξ11, ξ21) [Ray and Lindsay, 2005].
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Capturing Asymmetry

I Coefficient of skewness in the marginal distribution of Yt , with µ = E(Yt |ϑ) and
σ2 = Var(Yt |ϑ):

E((Yt − µ)3|ϑ)
E((Yt − µ)2|ϑ)3/2 = η1η2(µ1 − µ2)

3(σ2
2 − σ2

1)2 + (η2 − η1)(µ2 − µ1)2

σ3 ,

I No skewness is present, if the means are the same (µ1 = µ2).
I Skewness is present whenever both the means and the variances are different.
I If the means are different (µ1 6= µ2), but the variances the same (σ1 = σ2),

asymmetry is introduced only through asymmetry in the persistence probabilities,
because η1 6= η2 iff ξ11 6= ξ22.
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Excess kurtosis

I Excess kurtosis is given by

E((Yt − µ)4|ϑ)
E((Yt − µ)2|ϑ)2 − 3 = η1η2

3(σ2
2 − σ2

1)2 + c(µ1, µ2)
σ4 ,

where c(µ1, µ2) = 6(η1 − η2)(σ2
2 − σ2

1)(µ2 − µ1)2 + (µ2 − µ1)4(1− 6η1η2).

I If µ1 = µ2, then the marginal distribution has fatter tails than a normal distribution
as long as σ2

1 6= σ2
2.
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Capturing autocorrelation

I A finite Markov mixture model might generate an autocorrelated process Yt , even
if the process Yt is uncorrelated conditional on knowing St .

I Autocorrelation in the marginal process Yt , where St is unknown, enters through
persistence in St .

I Note that Yt , in contrast to St , is no longer a Markov process of first order.
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Example: Autocorrelation for a Two-State Model

I Autocorrelation function of a two-state Markov mixture model:

ρYt (h|ϑ) = E(YtYt+h|ϑ)− µ2

σ2 = η1η2(µ1 − µ2)2

σ2 λh, (9)

with λ = ξ11 + ξ22 − 1 being the second largest eigenvalue of ξ.
I No autocorrelation in Yt is present if µ1 = µ2.
I Autocorrelation of Yt is introduced through the hidden Markov chain St , whenever
ξ11 + ξ22 6= 1.

I The process Yt exhibits positive autocorrelation provided that ξ11 + ξ22 > 1.
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Autocorrelation Function of the Squared Process

I Finite Markov mixture models might generates processes with Y 2
t being

autocorrelated.
I E.g., for a Markov mixture of two normal distributions:

ρY 2
t
(h|ϑ) = η1η2(µ2

1 − µ2
2 + σ2

1 − σ2
2)2

E(Y 4
t |ϑ)− E(Y 2

t |ϑ)2 λh. (10)

I Y 2
t exhibits positive autocorrelation provided that ξ11 + ξ22 > 1.

I Interestingly, state dependent variances are neither necessary nor sufficient for
autocorrelation in the squared process.

I Even if σ2
1 = σ2

2, Yt shows conditional heteroscedasticity, as long as St does not
degenerate to an i.i.d. process.
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Relation to ARMA Models

I There exists a close relationship between Markov mixture models and non-normal
ARMA models.

I For a two-state Markov mixture model, for instance, the autocorrelation function of
Yt given in (9) fulfills, for h > 1, the following recursion,

ρYt (h|ϑ) = λρYt (h − 1|ϑ),

I This corresponds to the autocorrelation function of an ARMA(1, 1) process,
whereas the nonnormality of the unconditional distribution of Yt is preserved
through the mixture distribution.

I In general, [Poskitt and Chung, 1996] proved for a univariate K -state hidden
Markov chain Yt = µSt + ut the existence of an ARMA(K − 1,K − 1)
representation with a homogeneous zero-mean white noise process.

Part II: Hidden Markov and Markov Switching Models Markov mixture modelling 162 / 207



Outline

Part II: Hidden Markov and Markov Switching Models
I Motivating Example

I Finite Markov mixture models

I Markov mixture modelling

I Bayesian Inference

I Applications
I U.S. GDP Data – Markov switching autoregressive models
I U.S./U.K. real exchange rate – Switching state space models
I NYSE Data – Switching ARCH Model

Part II: Hidden Markov and Markov Switching Models Bayesian Inference 163 / 207



Difficulties with ML estimation for mixture models

I The sample size T has to be very large, before asymptotic theory of ML applies.
I Regularity conditions are often violated (overfitting mixtures with too many states,

zero transitions between certain states).
I The provision of standard errors is not straightforward in particular when using the

EM algorithm (singularity of the matrix of second partial derivatives of the log
likelihood function)

I Mixtures of normal distributions with switching variances:
I the mixture likelihood is unbounded,
I the ML estimator as a global maximizer of the likelihood function does not exist,
I it usually exists as a local maximizer
I difficult to find this local maximum and to avoid spurious modes in the course of

maximizing the log likelihood function.
I see also [McLachlan and Peel, 2000].
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Prior distributions

I Invariant, possibly hierarchical priors for θk :

p(θ1, . . . ,θK |K ) = p(δ)
K∏

k=1
p(θk |δ).

I For random hyperparameters δ, a hierarchical prior p(δ) is employed
I Yields a joint marginal prior p(θ1, . . . ,θK |K )
I Each row of the transition matrix follows a Dirichlet distribution:

ξk,· ∼ D
(
e0

k1, . . . , e0
kK

)
,

where e0
kk ≡ ep > 0 for all k and e0

kj ≡ et > 0 for all k 6= j to ensure invariance
with respect to relabelling the states of Si .

I Prior distribution of the initial value S0:
I equal to the ergodic distribution ηξ corresponding to the transition matrix ξ.
I or assumed to be uniform.
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MCMC Estimation

Gibbs sampling for Markov mixture models [Frühwirth-Schnatter, 2006]
Choose path S(0) and repeat for m = 1, . . . ,M0, . . . ,M + M0:
(a) Parameter estimation conditional on the classification S(m−1):

(a1) Sample the model parameter θ(m)
1 , . . . ,θ

(m)
K from the complete-data posterior

p(θ1, . . . ,θK |y,S(m−1)).
(a2) Sample the transition matrix ξ(m) from the complete-data posterior distribution

p(ξ|S(m−1)).
(b) State simulation conditional on knowing ϑ(m) by sampling a path S(m) of the

hidden Markov chain from the conditional posterior p(S|ϑ(m), y):
I Forward filtering
I Backwards sampling

After the burn-in period M0, the sampled values of (ϑ(m),S(m)) are draws from the joint
posterior p(ϑ,S|y).
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MCMC Estimation

I Step (a1) is exactly the same sampling step as for a standard finite mixture
distributions, because for state parameter estimation only the number of
observations in state k are relevant but not the number of transitions.

I The number of transitions are relevant only for sampling of the transition matrix ξ
in step (a2) (product of K Dirichlet distribution)

I Sampling S is much more involved for a Markov mixture than is the corresponding
step for a standard finite mixture model:
I for a finite mixture model the indicators are independent conditional on y and ϑ.
I S is a path of a stochastic process with dependence among successive values of St ,

even if the parameters are known.
I Efficient methods for sampling a path of S are based on

forward-filtering-backward-sampling.
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Sampling the hidden Marcov Chain

Forward Filtering:

Filter at t − 1: Pr(St−1 = l |yt−1,ϑ)

⇓

Prediction for t: Pr(St = l |yt−1,ϑ) Data at t:
yt

⇓ ⇓

Filter at t: Pr(St = l |yt ,ϑ)
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Forward Filtering

Forward Filtering
1. One-step ahead prediction of St for t = 1, . . . ,T :

Pr(St = l |yt−1,ϑ) =
K∑

k=1
Pr(St−1 = k|yt−1,ϑ)ξkl ,

for l = 1, . . . ,K , where ξkl are the transition probabilities.
2. Filtering for St , t = 1, . . . ,T :

Pr(St = l |yt ,ϑ) = p(yt |St = l , yt−1,ϑ)Pr(St = l |yt−1,ϑ)
p(yt |yt−1,ϑ) ,

p(yt |yt−1,ϑ) =
K∑

k=1
p(yt |St = k , yt−1,ϑ)Pr(St = k|yt−1,ϑ).
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Sampling the hidden Markov Chain

Backward sampling:
(a) Sample S(m)

T from the filtered state probability distribution Pr(ST = j |yT ,ϑ).
(b) For t = T − 1,T − 2, . . . , 0 sample S(m)

t from the conditional distribution
Pr(St = j |S(m)

t+1 = l , yt ,ϑ) given by

Pr(St = j |S(m)
t+1 = l , yt ,ϑ) = ξj lPr(St = j |yt ,ϑ)

K∑
k=1

ξklPr(St = k|yt ,ϑ)
.
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Markov switching autoregressive models, 1

I Markov switching autoregressive (MSAR) models introduce a hidden Markov chain
S0, S1, . . . , ST into an AR(p)-model.

I Allow for a random shift in the mean level µ of an AR(p)-process through a hidden
Markov chain:

Yt − µSt = φ1(Yt−1 − µSt−1) + · · ·+ φp(Yt−p − µSt−p ) + εt . (11)

I Suggested independently by [Neftçi, 1984] and [Sclove, 1983], became popular in
econometrics for analyzing economic time series such as the GDP data through the
work of [Hamilton, 1989].
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Markov switching autoregressive models, 2

I Alternatively, [McCulloch and Tsay, 1994] introduced the hidden Markov chain into
an AR(p) model by assuming that the intercept is driven by the hidden Markov
chain rather than the mean level:

Yt = φ1Yt−1 + · · ·+ φpYt−p + ζSt + εt . (12)

I Although the two parameterizations are equivalent for the standard AR model, a
model with a Markov switching intercept turns out to be different from a model
with a Markov switching mean level.

I Model (12) is more convenient numerically, because p(yt |St ,ϑ) depends only on
the current value of St . For model (11), p(yt |St , . . . , St−p,ϑ) depends also on past
value of St and recursive filtering is much more involved.
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Markov switching autoregressive models, 2

I In a more general form the MSAR model allows that the autoregressive coefficients
are also affected by St [McCulloch and Tsay, 1994]:

Yt = φSt ,1Yt−1 + · · ·+ φSt ,pYt−p + ζSt + εt . (13)

I The MSAR model can be extended to deal with the presence of exogenous
variables zt [McCulloch and Tsay, 1994, Albert and Chib, 1993].

I In a Markov switching dynamic regression models all parameters, including the
regression coefficient β, are affected by endogenous regime shifts following a
hidden Markov chain:

Yt = φSt ,1Yt−1 + · · ·+ φSt ,pYt−p + ztβSt + ζSt + εt .

I In any of these models the variance may be assumed to be constant, irrespective of
the state of St , or it is possible to assume a shift in the variance, εt ∼ N

(
0, σ2

ε,St

)
.
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Markov switching autoregressive models,3

I Autocorrelation introduced through the hidden Markov chain as well as through the
observation equation, leading to rather flexible autocorrelation structures
[Timmermann, 2000].

I For an MSAR-model with K = 2, p = 1, switching mean, fixed variance, and fixed
AR coefficient φ1, for instance, the autocorrelation function of Yt reads:

ρYt (h|ϑ) = 1
Var(Yt |ϑ)

(
λh(µ1 − µ2)2η1η2 + φ1

h σ2
ε

1− φ2
1

)
, (14)

with λ = ξ11 − ξ21 being the second eigenvalue of the transition matrix ξ.
I The autocorrelation function fulfills, for h > 2, the following recursion,

ρYt (h|ϑ) = (φ1 + λ)ρYt (h − 1|ϑ)− φ1λρYt (h − 2|ϑ),

and corresponds to the autocorrelation function of an ARMA(2, 1) model, but has
a nonnormal unconditional distribution.
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Features of the MSAR model

I The assumption that the autoregressive parameters switch between the two states
implies different dynamic patterns in the various states, and introduces asymmetry
over time.

I Asymmetry over time between the states is introduced also through the hidden
Markov chain as different persistence probabilities imply different state durations:

E(Dj) = 1
1− ξjj

.

I This combined asymmetry leads to a rather flexible model that is able to capture
asymmetric patterns observed in economics time series, such as the fast rise and
the slow decay in the U.S. quarterly unemployment rate.

Part II: Hidden Markov and Markov Switching Models Applications 176 / 207



Dealing with Spurious Unit Roots

I Consider a two-state Markov mixture of normal distributions with µ2 6= µ1, no
autocorrelation within the two regimes (φ1 = 0) and a highly persistent transition
matrix where ξ11 and ξ22 are close to one (i.e. λ = ξ11 − ξ21 close to 1).

I As evident from (14), high autocorrelation in the marginal process Yt is present
although there exists no autocorrelation within the two regimes.

I A unit root test applied to Yt is biased toward nonrejection of the unit root
hypothesis under a sudden change in the mean (spurious unit root) with increasing
rate of non rejection as |µ2 − µ1| increases.

I Markov switching models are to a certain degree able to deal with spurious unit
roots caused by structural breaks.

I [Garcia and Perron, 1996]:
I model interest rates by a three-state MSAR model with state-invariant

autocorrelation and heteroscedastic variances
I show that the autocorrelation within in the various regimes actually nearly

disappears
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Model selection for the U.S. quarterly GDP series

I [Frühwirth-Schnatter, 2004] compared 25 different models
I Standard AR(p)-models for p = 1, . . . , 5 (M1)
I K-state MSAR model with switching intercept, but state-independent AR(p)

parameters and state-independent variances [Chib, 1996] for K = 2, 3 and
p = 1, . . . , 5 (M2);

I K-state MSAR model with switching intercept, switching AR parameters, and
switching error variance (“totally switching”) [McCulloch and Tsay, 1994] for
K = 2, 3 and p = 1, . . . , 5 (M3).

I The priors are selected to be rather vague and state-independent
(intercept ∼ N (0, 1), AR parameters ∼ N (0, 0.25); variances ∼ G−1 (2, 0.5)).
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Model selection for the U.S. quarterly GDP series

I Log marginal likelihoods log p(y|Mj ,K , p) computed using bridge sampling
[Frühwirth-Schnatter, 2004]:

M1 M2 M3
p K = 1 K = 2 K = 3 K = 2 K = 3
0 –199.71 –193.54 –192.25 –194.25 –193.10
1 –194.22 –192.54 –192.75 –193.58 –194.71
2 –196.30 –194.15 –194.38 –191.62 –194.33
3 –197.26 –194.59 –194.74 –193.67 –196.78
4 –199.18 –195.70 –195.72 –195.34 –199.88

I A two-state totally switching MSAR model of order p = 2 has the highest marginal
likelihood – confirms empirical results of [McCulloch and Tsay, 1994].

I See [Frühwirth-Schnatter, 2019] for a recent improvement to compute marginal
likelihoods.
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Model selection for the U.S. quarterly GDP series

I Results indicate the importance of simultaneously testing for Markov switching
heterogeneity and selecting the appropriate model order

I Compare a two-state totally switching model of order four
[McCulloch and Tsay, 1994] with an AR(1) model (optimal among all AR(p)
models) ⇒ evidence in favor of no Markov switching heterogeneity.

I Comparing a two-state totally switching MSAR model with the optimal model
order p = 2 with the AR(1) model ⇒ evidence in favor of Markov switching
heterogeneity.

I Explains why several studies have produced somewhat conflicting evidence
concerning the presence or absence of Markov switching heterogeneity in this time
series.
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Exploring the point process representation

The MCMC draws scatter around the points corresponding to the “true” point process
representation e.g. K = 3, µ1 = −3, µ2 = 0, µ3 = 2, σ2

1 = 1, σ2
2 = 0.5, σ2

3 = 0.8
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Exploring the point process representation

The point process representation of the MCMC draws will cluster around the point
process representation of the true model even if the mixture is overfitting, although the
spread of these simulation clusters increases with K . Asymptotically, the number of
simulation clusters in these figures indicate the true number of components.

0 1 2 3 4 5 6 7
−4

−3

−2

−1

0

1

2

3

4
Point process representation 

0 1 2 3 4 5 6 7
−4

−3

−2

−1

0

1

2

3

4
Point process representation 

0 1 2 3 4 5 6 7
−4

−3

−2

−1

0

1

2

3

4
Point process representation 

Point process representation of the posterior density p(µk |y,MK ) for K = 3 (left-hand
side), K = 4 (middle), and K = 5 (right-hand side)
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Exploratory Bayesian Analysis for an Overfitting
Model

GDP data, totally Markov switching model with K = 3 and p = 4 (overfitting); explore
point process representation of the MCMC output
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Model selection for the U.S. quarterly GDP series

GDP data, totally Markov switching model with K = 2 and p = 2 (selected model);
explore point process representation of the MCMC output
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Parameter Estimation for the selected model

Parameter Contraction (k = 1) Expansion (k = 2)
φk,1 0.249 (0.164) 0.295 (0.116)
φk,2 0.462 (0.164) –0.114 (0.098)
ζk –0.557 (0.322) 1.060 (0.175)
σε,k 0.768 (0.161) 0.692 (0.115)
ξkk′ 0.489 (0.165) 0.337 (0.145)

I Positive growth in expansion is followed by negative growth in contraction.
I The dynamic behavior of the U.S. GDP growth rate is different between

contraction and expansion with reaction to a percentage change of the GDP
growth being faster in expansion than in contraction.

I The expected duration of expansion is longer than that of contraction.
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Switching State Space Model

Log of the U.S./U.K. real exchange rate from January 1885 to November 1995
[Grilli and Kaminsky, 1991]
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State Space Modeling

I [Engel and Kim, 1999] suggested decomposing the log of the real exchange rate Yt
into a permanent component µt and a transitory component ct :

log Yt = µt + ct ,

where ct is assumed to follow an AR(p) process:

ct = φ1ct−1 + · · ·+ φpct−p + wt,1,

and µt follows a random walk process:

µt = µt−1 + wt,2.
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Switching variances

I The conditional variance of ct is assumed to switch between K1 values according to
a hidden Markov chain S1

t with transition matrix ξ1,

wt,1 ∼ N
(
0, σ2

1,S1
t

)
,

I The conditional variance of the permanent component µt is assumed to switch
between K2 values according to a hidden Markov chain S2

t with transition matrix ξ2:

wt,2 ∼ N
(
0, σ2

2,S2
t

)
.
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State Space Modeling

The model can be put into state space form with the following state vector xt and
matrix F,

xt =


µt
ct
...

ct−p+1

 , F =
(

1 01×p
0p×1 F(φ)

)
,

F(φ) =
(
φ1 . . . φp−1 φp

Ip−1 0(p−1)×1

)
. (15)
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Model selection problems

:
I How many states K1 for the variance of the transitory component?
I Testing K1 = 1 versus K1 > 1 is a nonregular testing problem.
I How many states K2 for the variance of the permanent component?
I Testing K2 = 1 versus K2 > 1 nonregular testing problem.
I Order selection p for the AR-model.
I Compare various models differing in K1, K2 and p using a Bayesian approach.
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MCMC Estimation for Fixed Model Structure

I MCMC estimation of switching linear Gaussian state space model – data
augmentation and Gibbs sampling [Frühwirth-Schnatter, 2001a]

I Sample the state processes µt , t = 1, . . . ,T and ct , t = 0, . . . ,T (FFBS, e.g.
[Frühwirth-Schnatter, 1994]);

I Sample the hidden Markov processes S1
t and S2

t for t = 0, . . . ,T (discrete FFBS);
I Sample the switching variances σ2

1,k , k = 1, . . . ,K1 and σ2
2,k , k = 1, . . . ,K2

(inverted Gamma densities) and the transition matrices ξ1 and ξ2 of the hidden
Markov chains (Dirichlet densities);

I Sample the AR parameters φ1, . . . , φp (normal likelihood with nonconjugate prior,
if stationarity is assumed).
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Assume K1 = 4, K2 = 2, and p = 3

left-hand side: log(σ2
1,k) versus log(σ2

2,k) for all possible k ; right-hand side: posterior of
φ3
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Exploratory Bayesian Analysis

I Estimation based on K1 = 4, K2 = 2, and p = 3
I For S1

t we have allowed for four states and there are actually four simulation
clusters;

I for S2
t , we have allowed for two states, however, there is just one simulation cluster.

I this provides empirical evidence in favor of a homogeneous rather than a switching
variance of the permanent component.

I This hypothesis is further supported by the point process representation of (σ2
1,k)(m)

versus (σ2
2,k)(m).

I The mode of the posterior of the AR parameter φ3 is close to 0 providing evidence
for the hypothesis that φ3 is equal to zero.

I Exploratory analysis provides evidence in favor of a model with K1 = 4, K2 = 1,
and p = 2.
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Model Choice Using Marginal Likelihoods

I Formal model selection using marginal likelihoods
Model log p(y|Model)

K1 = 4, K2 = 2, p = 3 –2562.4
K1 = 4, K2 = 1, p = 2 –2515.5
K1 = 4, K2 = 1, p = 1 –2612.5
K1 = 3, K2 = 1, p = 2 –2605.9
K1 = 5, K2 = 1, p = 2 –2880.2
No switching, p = 2 –2914.4

I Marginal likelihoods are computed using bridge sampling (hidden Markov processes
S1

t and S2
t are integrated out)
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Inference for the Selected Model

I Four-state model (K1 = 4, K2 = 1, p = 2)
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I left-hand side: smoothed real exchange rate p̂t|T ;
I right-hand side: estimated time-varying variance σ̂2
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M

M∑
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(
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)(m)
, s = (S1

t )(m).
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Inference for the Selected Model

Impose identifiability constraint σ2
1,1 < σ2

1,2 < σ2
1,3 < σ2

1,4 on MCMC draws

Parameter Mean Std.Dev. 95%-H.P.D. Regions
σ2

1,1 0.634 0.151 0.371 0.93
σ2

1,2 2.05 0.196 1.67 2.42
σ2

1,3 7.63 1.07 5.9 9.88
σ2

1,4 36.4 9.13 20.7 53.9
σ2

2 0.366 0.132 0.121 0.608
φ1 1.06 0.0474 0.967 1.14
φ2 –0.0729 0.046 –0.158 0.0139
ξ11 0.968 0.0132 0.943 0.991
ξ22 0.973 0.00853 0.957 0.988
ξ33 0.956 0.0222 0.916 0.992
ξ44 0.691 0.116 0.438 0.865
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Inference for the Selected Model

Smoothed state probabilities for S1
t for a switching state space model with K1 = 4,

K2 = 1, and p = 2
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Switching ARCH Model

I Markov switching models are often used by researchers to account for specific
features of financial time series such as asymmetries, fat tails, and volatility
clusters.

I New York Stock Exchange Data, weekly observations from July 3, 1962
to December 29, 1987 (1330 observations); left: time series plot; right: smoothed
histogram of the marginal distribution
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NYSE Data

New York Stock Exchange Data, left: log of the smoothed histogram (solid
line) in comparison to the log of a normal distribution with same mean and variance
(dashed line); middle: empirical autocorrelogram of the returns; right: empirical
autocorrelogram of the squared
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ARCH and GARCH Models

I Volatility clustering implies persistence of states of high volatility and leads to the
rejection of standard time series models in favor of models that allow the
conditional variance Var(Yt |yt−1,ϑ) to depend on the history yt−1, yt−2, . . . of the
observed process.

I Well-known models:
I ARCH models [Engle, 1982]:

Var(Yt |yt−1,ϑ) = γt + α1y2
t−1 + · · ·+ αmy2

t−m,

I GARCH models [Bollerslev, 1986]
.
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Markov Mixture Models for Financial Time Series

I Finite mixtures of normal distributions to deal with skewness and excess kurtosis in
the unconditional distribution of daily stock returns
[Fama, 1965, Granger and Orr, 1972, Kon, 1984, Tucker, 1992] (which implies zero
autocorrelation in Yt and Y 2

t )
I Markov mixture model where the variance of a location-scale family is driven by a

hidden Markov capture simultaneously autocorrelation in the processes Yt and Y 2
t

[Engel and Hamilton, 1990, McQueen and Thorely, 1991, Rydén et al., 1998].
I More general (though) limited autocorrelation functions of Y 2

t are possible if Yt is
generated by an MSAR model with or without switching AR coefficients
[Hamilton, 1988, Turner et al., 1989, Cecchetti et al., 1990, Engel, 1994,
Gray, 1996, Ang and Bekaert, 2002].

Part II: Hidden Markov and Markov Switching Models Applications 201 / 207



Markov Mixture Models for Financial Time Series

To obtain even more flexibility in the autocorrelation of Y 2
t , for a given marginal

distribution of Yt ,
I [Hamilton and Susmel, 1994], [Cai, 1994], and [Gray, 1996] proposed to combine

ARCH and Markov switching effects to formulate the switching ARCH model.
I [Francq et al., 2001] considered a switching GARCH model.
I [So et al., 1998] considered a stochastic volatility model with Markov switching.
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Spurious Persistency in Squared Returns

I A common finding when fitting GARCH models to high-frequency financial data is
the somewhat unexpected persistence of shocks to the variance implied by the
estimated coefficients.

I [Lamoureux and Lastrapes, 1990] show that a deterministic structural shift in the
unconditional variance, caused by exogenous shocks such as changes in the
monetary policy, will increase persistency of squared residuals, however, when the
structural break is accounted for, persistency often decreases dramatically.

I Introducing a hidden Markov chain into a variance model helps to explain spurious
persistence in squared returns.
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Spurious Persistency in Squared Returns

I Consider, for illustration, a simple Markov mixture of two normal distributions with
µ1 = µ2 and σ2

1 6= σ2
2 driven by a highly persistent transition matrix ξ with

λ = ξ11 − ξ21 being close to 1.
I Although the process Y 2

t is not autocorrelated within each regime, marginally the
persistence in Y 2

t decays slowly, in particular if σ2
2 − σ2

1 is large:

ρY 2
t
(h|ϑ) = η1η2(σ2

1 − σ2
2)2

E(Y 4
t |ϑ)− E(Y 2

t |ϑ)2λ
h,

I Also for the more general switching ARCH model, [Hamilton and Susmel, 1994]
attribute part of the high marginal persistence in Y 2

t , which is typically much larger
than autocorrelation of Y 2

t in the various regimes, to this effect.
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Example: switching AR(1)-ARCH model

I To account for the autocorrelation found in yt and y 2
t , as well as for the fat tails

and the asymmetry observed in the marginal distribution,
I fit a switching AR(1)-ARCH model which includes a leverage term

[Hamilton and Susmel, 1994, Kaufmann and Frühwirth-Schnatter, 2002]:

yt = ζ + φ1yt−1 + ut ,

ut = σtεt , εt ∼ N (0, 1) ,
σ2

t = γSt + α1u2
t−1 + · · ·+ αmu2

t−m + %dt−1y 2
t−1.

I St is a hidden Markov chain with K states

Part II: Hidden Markov and Markov Switching Models Applications 205 / 207



Application to the NYSE Data

New York Stock Exchange Data, modeled by a switching AR-ARCH model
with leverage with different numbers of states K and different model orders m; log of
the marginal likelihoods computed under different priors on the switching ARCH
intercept using bridge sampling

log p(y|K ,m)
K m (prior 1) (prior 2)
3 2 –2858.5 –2858.0
3 3 –2858.2 –2857.7
3 4 –2857.1 –2856.4
4 2 –2861.0 –2859.7
4 3 –2860.7 –2859.4
4 4 –2859.1 –2855.9
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Summary

I The introduction of a hidden Markov chain generates time series models which
combine autocorrelation in Yt and Y 2

t with non-normal (skewed, fat tails) marginal
distributions.

I Conditional on knowing the hidden Markov chain, standard time series models like
AR, ARCH or non-Gaussian distributions are assumed

I This simplifies the analysis of the theoretical properties of the models
I This enables straightforward Bayesian inference using data augmentation and

MCMC
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