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A classical example

> Xi,Xo,...li.i.d. random variables on R
» Cumulative distribution functions: for x € R,

> Law of large numbers: for every x € R,

Fn(x) - F(x) as., n— o

> Multivariate central limit theorem: for every (xi, ...

(VA{Falg) - F(x)))_, 2 No(0, %),

with covariances ojx = F(x; A xi) — F(xj)F(x«)

,x¢) € R,
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Goodness-of-fit testing
Test of a simple hypothesis on the distribution: for a given Fy,
Hy: F=F VS Hi:F+Fy
Test statistic:
Tn = sup Vn|Fn(x) — Fo(X)|
xeR
Distribution under Hy? Limit distribution as n — co?

For a vector (x1,...,X.) € R, we could consider

Tn(X1 seeey Xg) = j:m13x€ \/ﬁ“}:n(X/’) - Fo(X/')|

where (B(x1),...,B(x¢)) ~ N(0,X) as on the previous slide.

How to go from “maxy,, . x,” 10 “sup,cr?
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Kolmogorov (1933), Doob (1949), Donsker (1952)
If F is continuous, the law of T, under Hy does not depend on Fy, and

T, 2 sup |B(1)], n— oo
te[0,1]

where (B(t))se[o0,1] is @ Brownian bridge

Brownian bridge:

> zero-mean Gaussian process
(= collection of jointly normal random variables)

> (almost surely) continuous trajectories t — B(t)
» covariance function

Vs, t € [0,1], E[B(s)B(t)] =s At—st
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Pointwise convergence: not sufficient for suprema

» Kolmogorov’s result does not follow from the multivariate CLT:
pointwise convergence does not imply convergence of suprema

» Sufficient (but not necessary) is uniform convergence

Example: construct functions f, : [0, 1] — [0, 1] such that, at the same time

lim f,(t) =0 vVt € [0,1]
n—oo
sup fo(t) =1 vn
te[0,1]
even though, for all (ti, ..., t) € [0,1]¢, we must have

max fy(t) = 0, n— oo
j=1,...,0

,,,,,
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Uniform convergence of stochastic processes?

For simplicity, assume F is uniform on [0, 1]

Kolmogorov’s result would follow from a “uniform” version of

(VA{Fa(D) = F(D}), o) & (B}, N o0

Meaning? Certainly not'

sup [VA{Fa(t) = F(1)} = B() 50,  n— o
te[0,1]

'Although such statements can be given a formal meaning via Skorohod constructions
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Random elements in a function space

View t = v/n{Fn(t) — F(t)} as a random function:
map from probability space €2 carrying the X; into some function space

> Space should contain almost all trajectories of vn(F, — F)

» Function space to be equipped with a metric or norm, so we can
consider the corresponding Borel o-field

> Metric should be strong enough so that convergence of functions has
useful consequences

> E.g.: z, = z should imply sup; |z,(t)] — sup; |z(t)]

In that function space, show weak convergence Vn(F, - F) 4 B
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Which function space?

C([0,1]) Continuous functions, supremum norm

IZlleo = sup |z(1)l

0<t<1

» t — Fp(t) is not continuous, but we could make it so
» Enforcing continuity could get awkward on other domains

D([0,1]) cadlag functions with (some) Skorohod topology. Drawbacks:

» Addition of functions is not continuous in Skorohod metric
» Difficult to generalize to other domains than intervals

Billingsley (1968)

Lp([0,1]) Convergence in p-th mean does not even imply pointwise
convergence, let alone convergence of suprema

11/23



Space of bounded functions

£*([0,1]) Space of all bounded functions z : [0, 1] — R equipped with
the supremum norm

1Zlleo := sup |2(t)]

(N

> Strong notion of convergence, easy to apply
> No worries about regularity of trajectories
» Easy to extend from [0, 1] to general domains

But. ..
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[Error on slide 12: non-measurable mapping]

Non-measurability of the empirical process
The map
V:[0,1] - €2([0,1]) : x Liox

is not Borel measurable.

Proof.
Let A c [0, 1] be not Borel measurable. The set

G = U{Z € {700([0’ 1]) | ||Z - ]]-[O,y]”oo < 1/2}
yeA

is a union of open balls in £*°([0, 1]), therefore open, therefore Borel
measurable. But
Lo €eG & xeA

so W~'(G) = A, which is not Borel measurable. u|
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Possible fix #1: the ball o-field

Lack of measurability is not to be taken lightly (ask S. Banach and A. Tarski)

Possible solution: on ¢([0, 1]), consider a smaller o-field, the one
generated by open balls (Dudley, 1966; Pollard, 1984)

> The set G on slide 13 is not in the ball o-field
The union there is uncountable

Drawback: Natural link with topology on £°([0, 1]) is lost

» Continuous mappings on £*([0, 1]) are not automatically
ball-measurable

> Continuous mapping theorem and functional delta method become
potentially more difficult to apply
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Possible fix #2: allow for non-measurable mappings

Hoffmann-Jgrgensen (1984, 1991):

> Use inner/outer expectation and inner/outer probability for
non-measurable mappings and sets

» Insist on measurability only in the limit

Theory works especially well when limit Borel probability measure L on
([0, 1]) is tight:

> For all € > 0, there exists compact K c ¢*([0, 1]) such that
L(K)>1-¢

» Then L concentrates on stochastic processes with sample paths that
are uniformly continuous with respect to some nice semimetric on [0, 1]

Extends to £*°(T), where T is any set:
= T is a family of functions: empirical processes indexed by functions
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Empirical process indexed by functions

> Xi,Xo,...i.i.d. random variables on some probability space €2 and into
some measurable space (X, A) with common distribution P

» Family ¥ c Ly(P) of P-square integrable functions f : X — R

Definition: Empirical process indexed by ¥. For f € 7,

Gaf = V|~ 3 H(X) ~ EIFOX)]

i=1

Examples:
» The empirical process vn(F, — F) above: all f = Loy forx e R
> Multivariate weighted empirical distribution functions

> Functions fy indexed by a parameter 6, e.g., parametric models
> ...
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Convergence of finite-dimensional distributions

Multivariate central limit theorem. For every (fi,...,f) € F¢,
(an1,...,ang)i(Gﬂ,...,Gfg), n— oo
The limit vector is centered multivariate normal with covariances

E[Gf; Gfx] = cov (£i(X1), fk(X1))

» Cannot conclude that

sup |Gnpf| -9 sup |G|, n— oo
fefF fef

» CLT uniformin f € F7?
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Empirical process as a random bounded function
Suppose ¥ is such that almost every trajectory f — G,f is bounded:
> supses |f(x)| < oo for P-almost every x € X
> supser |E[f(X1)]] < o

View G, as a possibly nonmeasurable map into (¥ ):
Gp: Q> °(F)

Weak convergence in £°(F)?

Limit process G should be a P-Brownian bridge
> centered Gaussian process indexed by
» covariances as on slide 18
> “nice” trajectories f — Gf
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Approach will work for some, but not all, families 7

For weak convergence of G, in £*(¥), the choice of ¥ is crucial:
» For X = R and any P, weak convergence always holds for

F = {]].(_OO’X] | X € [R}
» Counterexample: for X = [0, 1] with P the uniform distribution and
¥ = {all polynomial f : [0, 1] — [0, 1]}

we have, by the Stone—Weierstrass theorem,
n

—Z (x,-)—f f(x) dx

i=1 0

sup |Gnf| = sup Vn = vn

feF feF

= ¥ -based Kolmogorov—Smirnov test breaks down
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Course outline

1. Introduction

2. Stochastic Convergence in Metric Spaces
3. Glivenko—Cantelli and Donsker Theorems
4. Tools to Work with Empirical Processes

Main sources for these lectures:
» van der Vaart and Wellner (1996)
> van der Vaart (1998)
> Kosorok (2008)
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