Empirical Processes with Applications in Statistics 1.Introduction

Johan Segers

UCLouvain (Belgium)

Conférence Universitaire de Suisse Occidentale Programme Doctoral en Statistique et Probabilités Appliquées Les Diablerets, February 4–5, 2020

A classical example

- ► X_1, X_2, \dots i.i.d. random variables on \mathbb{R}
- Cumulative distribution functions: for $x \in \mathbb{R}$,

$$F(x) = P(X_i \le x)$$
$$\mathbb{F}_n(x) = \frac{1}{n} \sum_{i=1}^n \mathbb{1} \{X_i \le x\}$$

• Law of large numbers: for every $x \in \mathbb{R}$,

$$\mathbb{F}_n(x) \to F(x)$$
 a.s., $n \to \infty$

▶ Multivariate central limit theorem: for every $(x_1, \ldots, x_\ell) \in \mathbb{R}^\ell$,

$$\left(\sqrt{n}\left\{\mathbb{F}_n(x_j)-F(x_j)\right\}\right)_{j=1}^\ell \stackrel{d}{\longrightarrow} \mathcal{N}_\ell(0,\Sigma), \qquad n \to \infty$$

with covariances $\sigma_{jk} = F(x_j \wedge x_k) - F(x_j)F(x_k)$

Goodness-of-fit testing

Test of a simple hypothesis on the distribution: for a given F_0 ,

$$H_0: F = F_0$$
 vs $H_1: F \neq F_0$

Test statistic:

$$T_n = \sup_{x \in \mathbb{R}} \sqrt{n} \left| \mathbb{F}_n(x) - F_0(x) \right|$$

Distribution under H_0 ? Limit distribution as $n \to \infty$?

For a vector $(x_1, \ldots, x_\ell) \in \mathbb{R}$, we could consider

$$T_n(x_1,\ldots,x_\ell) := \max_{\substack{j=1,\ldots,\ell}} \sqrt{n} \left| \mathbb{F}_n(x_j) - \mathcal{F}_0(x_j) \right|$$
$$\stackrel{d}{\longrightarrow} \max_{\substack{j=1,\ldots,\ell}} |B(x_j)|$$

where $(B(x_1), \ldots, B(x_\ell)) \sim \mathcal{N}(0, \Sigma)$ as on the previous slide. How to go from "max_{x1,...,x\ell}" to "sup_{x \in R}?

Kolmogorov (1933), Doob (1949), Donsker (1952) If *F* is continuous, the law of T_n under H_0 does not depend on F_0 , and

$$T_n \stackrel{d}{\longrightarrow} \sup_{t \in [0,1]} |B(t)|, \qquad n \to \infty$$

where $(B(t))_{t \in [0,1]}$ is a Brownian bridge

Brownian bridge:

- zero-mean Gaussian process
 (= collection of jointly normal random variables)
- (almost surely) continuous trajectories $t \mapsto B(t)$
- covariance function

 $\forall s, t \in [0, 1], \qquad \mathsf{E}[B(s)B(t)] = s \wedge t - st$

Pointwise convergence: not sufficient for suprema

- Kolmogorov's result does not follow from the multivariate CLT: pointwise convergence does not imply convergence of suprema
- Sufficient (but not necessary) is uniform convergence

Example: construct functions $f_n : [0, 1] \rightarrow [0, 1]$ such that, at the same time

$$\lim_{n \to \infty} f_n(t) = 0 \qquad \forall t \in [0, 1]$$

$$\sup_{t \in [0, 1]} f_n(t) = 1 \qquad \forall n$$

even though, for all $(t_1, \ldots, t_\ell) \in [0, 1]^\ell$, we must have

$$\max_{j=1,\dots,\ell} f_n(t_j) \to 0, \qquad n \to \infty$$

Uniform convergence of stochastic processes?

For simplicity, assume *F* is uniform on [0, 1]

Kolmogorov's result would follow from a "uniform" version of

$$\left(\sqrt{n}\left\{\mathbb{F}_n(t) - F(t)\right\}\right)_{t \in [0,1]} \stackrel{d}{\to} (B(t))_{t \in [0,1]}, \qquad n \to \infty$$

Meaning? Certainly not¹

$$\sup_{t\in[0,1]} \left| \sqrt{n} \left\{ \mathbb{F}_n(t) - F(t) \right\} - B(t) \right| \xrightarrow{??} 0, \qquad n \to \infty$$

¹Although such statements can be given a formal meaning via Skorohod constructions

Random elements in a function space

View $t \mapsto \sqrt{n} \{\mathbb{F}_n(t) - F(t)\}$ as a random function: map from probability space Ω carrying the X_i into some function space

- Space should contain almost all trajectories of $\sqrt{n}(\mathbb{F}_n F)$
- Function space to be equipped with a *metric* or norm, so we can consider the corresponding Borel *σ*-field
- Metric should be strong enough so that convergence of functions has useful consequences

• E.g.: $z_n \rightarrow z$ should imply $\sup_t |z_n(t)| \rightarrow \sup_t |z(t)|$

In that function space, show weak convergence $\sqrt{n}(\mathbb{F}_n - F) \stackrel{d}{\rightarrow} B$

Which function space?

C([0, 1]) Continuous functions, supremum norm

$$\|z\|_{\infty} = \sup_{0 \le t \le 1} |z(t)|$$

- ▶ $t \mapsto \mathbb{F}_n(t)$ is not continuous, but we could make it so
- Enforcing continuity could get awkward on other domains

 $\mathcal{D}([0, 1])$ càdlàg functions with (some) Skorohod topology. Drawbacks:

- Addition of functions is not continuous in Skorohod metric
- Difficult to generalize to other domains than intervals
 Billingsley (1968)
- $L_p([0, 1])$ Convergence in *p*-th mean does not even imply pointwise convergence, let alone convergence of suprema

Space of bounded functions

 $\ell^{\infty}([0, 1])$ Space of all bounded functions $z : [0, 1] \to \mathbb{R}$ equipped with the supremum norm

$$||z||_{\infty} := \sup_{0 \leq t \leq 1} |z(t)|$$

- Strong notion of convergence, easy to apply
- No worries about regularity of trajectories
- Easy to extend from [0, 1] to general domains But...

[Error on slide 12: non-measurable mapping]

Non-measurability of the empirical process The map

$$\Psi: [0,1] \to \ell^{\infty}([0,1]): x \mapsto \mathbb{1}_{[0,x]}$$

is not Borel measurable.

Proof. Let $A \subset [0, 1]$ be *not* Borel measurable. The set

$$G = \bigcup_{y \in A} \left\{ z \in \ell^{\infty}([0,1]) \mid ||z - \mathbb{1}_{[0,y]}||_{\infty} \leq 1/2 \right\}$$

is a union of open balls in $\ell^\infty([0,1]),$ therefore open, therefore Borel measurable. But

$$\mathbb{1}_{[0,x]} \in G \iff x \in A$$

so $\Psi^{-1}(G) = A$, which is not Borel measurable.

Possible fix #1: the ball σ -field

Lack of measurability is not to be taken lightly (ask S. Banach and A. Tarski)

Possible solution: on $\ell^{\infty}([0, 1])$, consider a smaller σ -field, the one generated by open balls (Dudley, 1966; Pollard, 1984)

The set G on slide 13 is not in the ball σ-field The union there is uncountable

Drawback: Natural link with topology on $\ell^{\infty}([0, 1])$ is lost

- ► Continuous mappings on ℓ[∞]([0, 1]) are not automatically ball-measurable
- Continuous mapping theorem and functional delta method become potentially more difficult to apply

Possible fix #2: allow for non-measurable mappings

Hoffmann-Jørgensen (1984, 1991):

- Use inner/outer expectation and inner/outer probability for non-measurable mappings and sets
- Insist on measurability only in the limit

Theory works especially well when limit Borel probability measure *L* on $\ell^{\infty}([0, 1])$ is *tight*:

- For all ε > 0, there exists compact K ⊂ ℓ[∞]([0, 1]) such that L(K) ≥ 1 − ε
- Then L concentrates on stochastic processes with sample paths that are uniformly continuous with respect to some nice semimetric on [0, 1]

Extends to $\ell^{\infty}(T)$, where T is any set:

 \implies T is a family of functions: empirical processes indexed by *functions*

Empirical process indexed by functions

- X₁, X₂,... i.i.d. random variables on some probability space Ω and into some measurable space (X, A) with common distribution P
- ► Family $\mathcal{F} \subset L_2(P)$ of *P*-square integrable functions $f : X \to \mathbb{R}$

Definition: Empirical process indexed by \mathcal{F} **.** For $f \in \mathcal{F}$,

$$\mathbb{G}_n f = \sqrt{n} \left(\frac{1}{n} \sum_{i=1}^n f(X_i) - \mathbb{E}[f(X_1)] \right)$$

Examples:

▶ ...

- ▶ The empirical process $\sqrt{n}(\mathbb{F}_n F)$ above: all $f = \mathbb{1}_{[0,x]}$ for $x \in \mathbb{R}$
- Multivariate weighted empirical distribution functions
- Functions f_{θ} indexed by a parameter θ , e.g., parametric models

Convergence of finite-dimensional distributions

Multivariate central limit theorem. For every $(f_1, \ldots, f_\ell) \in \mathcal{F}^\ell$,

$$(\mathbb{G}_n f_1, \ldots, \mathbb{G}_n f_\ell) \xrightarrow{d} (\mathbb{G} f_1, \ldots, \mathbb{G} f_\ell), \qquad n \to \infty$$

The limit vector is centered multivariate normal with covariances

$$\mathsf{E}[\mathbb{G}f_j \,\mathbb{G}f_k] = \mathsf{cov}\left(f_j(X_1), f_k(X_1)\right)$$

Cannot conclude that

$$\sup_{f \in \mathcal{F}} |\mathbb{G}_n f| \stackrel{d}{\longrightarrow} \sup_{f \in \mathcal{F}} |\mathbb{G}f|, \qquad n \to \infty$$

• CLT *uniform* in $f \in \mathcal{F}$?

Empirical process as a random bounded function

Suppose \mathcal{F} is such that almost every trajectory $f \mapsto \mathbb{G}_n f$ is bounded:

- ▶ $\sup_{f \in \mathcal{F}} |f(x)| < \infty$ for *P*-almost every $x \in X$
- $\sup_{f\in\mathcal{F}} |\mathsf{E}[f(X_1)]| < \infty$

View \mathbb{G}_n as a possibly nonmeasurable map into $\ell^{\infty}(\mathcal{F})$:

$$\mathbb{G}_n: \Omega \to \ell^\infty(\mathcal{F})$$

Weak convergence in $\ell^{\infty}(\mathcal{F})$?

$$\mathbb{G}_n \xrightarrow{?} \mathbb{G}, \qquad n \to \infty$$

Limit process G should be a P-Brownian bridge

- centered Gaussian process indexed by F
- covariances as on slide 18
- "nice" trajectories $f \mapsto \mathbb{G}f$

Approach will work for some, but not all, families ${\mathcal F}$

For weak convergence of \mathbb{G}_n in $\ell^{\infty}(\mathcal{F})$, the choice of \mathcal{F} is crucial:

For $X = \mathbb{R}$ and any *P*, weak convergence always holds for

$$\mathcal{F} = \left\{ \mathbb{1}_{(-\infty,x]} \mid x \in \mathbb{R} \right\}$$

• Counterexample: for X = [0, 1] with P the uniform distribution and

$$\mathcal{F} = \{ all \text{ polynomial } f : [0, 1] \rightarrow [0, 1] \}$$

we have, by the Stone-Weierstrass theorem,

$$\sup_{f\in\mathcal{F}}|\mathbb{G}_n f|=\sup_{f\in\mathcal{F}}\sqrt{n}\left|\frac{1}{n}\sum_{i=1}^n f(X_i)-\int_0^1 f(x)\,dx\right|=\sqrt{n}$$

 $\implies \mathcal{F}$ -based Kolmogorov–Smirnov test breaks down

Course outline

- 1. Introduction
- 2. Stochastic Convergence in Metric Spaces
- 3. Glivenko-Cantelli and Donsker Theorems
- 4. Tools to Work with Empirical Processes

Main sources for these lectures:

- van der Vaart and Wellner (1996)
- van der Vaart (1998)
- Kosorok (2008)

References

Billingsley, P. (1968). Convergence of Probability Measures. New York: John Wiley.

- Donsker, M. D. (1952). Justification and extension of Doob's heuristic approach to the Kolmogorov–Smirnov theorems. *The Annals of Mathematical Statistics* 23, 277–381.
- Doob, J. L. (1949). Heuristic approach to the Kolmogorov–Smirnov theorems. The Annals of Mathematical Statistics 20, 292–403.
- Dudley, R. (1966). Weak convergence of measures on nonseparable metric spaces and empirical measures on Euclidean spaces. *Illinois Journal of Mathematics* 10, 109–126.

Hoffmann-Jørgensen, J. (1984). Stochastic Processes on Polish Spaces. Unpublished.

- Hoffmann-Jørgensen, J. (1991). *Stochastic Processes on Polish Spaces*, Volume 39 of *Various Publication Series*. Aarhus, Denmark: Aarhus Universitet.
- Kolmogorov, A. (1933). Sulla determinazione empirica di une legge di distributzione. *Giornale dell'Instituto Italiano degli Attuari 4*, 83–91.
- Kosorok, M. R. (2008). Introduction to Empirical Processes and Semiparametric Inference. New York: Springer Sciences+Business Media.
- Pollard, D. (1984). Convergence of Stochastic Processes. New York: Springer-Verlag.
- van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge: Cambridge University Press.
- van der Vaart, A. W. and J. A. Wellner (1996). *Weak Convergence and Empirical Processes. With Applications to Statistics*. New York: Springer Sciences+Business Media.