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A classical example
I X1,X2, . . . i.i.d. random variables on R
I Cumulative distribution functions: for x ∈ R,

F(x) = P(Xi 6 x)

Fn(x) =
1
n

n∑
i=1

1 {Xi 6 x}

I Law of large numbers: for every x ∈ R,

Fn(x)→ F(x) a.s., n → ∞

I Multivariate central limit theorem: for every (x1, . . . , x`) ∈ R`,(√
n
{
Fn(xj) − F(xj)

})`
j=1

d
−→ N`(0,Σ), n → ∞

with covariances σjk = F(xj ∧ xk ) − F(xj)F(xk )
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Goodness-of-fit testing

Test of a simple hypothesis on the distribution: for a given F0,

H0 : F = F0 vs H1 : F , F0

Test statistic:
Tn = sup

x∈R

√
n
∣∣∣Fn(x) − F0(x)

∣∣∣
Distribution under H0? Limit distribution as n → ∞?

For a vector (x1, . . . , x`) ∈ R, we could consider

Tn(x1, . . . , x`) := max
j=1...,`

√
n
∣∣∣Fn(xj) − F0(xj)

∣∣∣
d
−→ max

j=1...,`
|B(xj)|

where (B(x1), . . . ,B(x`)) ∼ N(0,Σ) as on the previous slide.

How to go from “maxx1,...,x` ” to “supx∈R?
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Kolmogorov (1933), Doob (1949), Donsker (1952)
If F is continuous, the law of Tn under H0 does not depend on F0, and

Tn
d
−→ sup

t∈[0,1]
|B(t)|, n → ∞

where (B(t))t∈[0,1] is a Brownian bridge

Brownian bridge:
I zero-mean Gaussian process

(= collection of jointly normal random variables)

I (almost surely) continuous trajectories t 7→ B(t)
I covariance function

∀s, t ∈ [0, 1], E[B(s)B(t)] = s ∧ t − st
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Pointwise convergence: not sufficient for suprema

I Kolmogorov’s result does not follow from the multivariate CLT:
pointwise convergence does not imply convergence of suprema

I Sufficient (but not necessary) is uniform convergence

Example: construct functions fn : [0, 1]→ [0, 1] such that, at the same time

lim
n→∞

fn(t) = 0 ∀t ∈ [0, 1]

sup
t∈[0,1]

fn(t) = 1 ∀n

even though, for all (t1, . . . , t`) ∈ [0, 1]`, we must have

max
j=1,...,`

fn(tj)→ 0, n → ∞
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Uniform convergence of stochastic processes?

For simplicity, assume F is uniform on [0, 1]

Kolmogorov’s result would follow from a “uniform” version of(√
n
{
Fn(t) − F(t)

})
t∈[0,1]

d
−→ (B(t))t∈[0,1], n → ∞

Meaning? Certainly not1

sup
t∈[0,1]

∣∣∣√n
{
Fn(t) − F(t)

}
− B(t)

∣∣∣ ??
−→ 0, n → ∞

1Although such statements can be given a formal meaning via Skorohod constructions
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Random elements in a function space

View t 7→
√

n
{
Fn(t) − F(t)

}
as a random function:

map from probability space Ω carrying the Xi into some function space

I Space should contain almost all trajectories of
√

n(Fn − F)

I Function space to be equipped with a metric or norm, so we can
consider the corresponding Borel σ-field

I Metric should be strong enough so that convergence of functions has
useful consequences
I E.g.: zn → z should imply supt |zn(t)| → supt |z(t)|

In that function space, show weak convergence
√

n(Fn − F) d
−→ B
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Which function space?

C([0, 1]) Continuous functions, supremum norm

‖z‖∞ = sup
06t61

|z(t)|

I t 7→ Fn(t) is not continuous, but we could make it so
I Enforcing continuity could get awkward on other domains

D([0, 1]) càdlàg functions with (some) Skorohod topology. Drawbacks:
I Addition of functions is not continuous in Skorohod metric
I Difficult to generalize to other domains than intervals

Billingsley (1968)

Lp([0, 1]) Convergence in p-th mean does not even imply pointwise
convergence, let alone convergence of suprema

11 / 23



Space of bounded functions

`∞([0, 1]) Space of all bounded functions z : [0, 1]→ R equipped with
the supremum norm

‖z‖∞ := sup
06t61

|z(t)|

I Strong notion of convergence, easy to apply
I No worries about regularity of trajectories
I Easy to extend from [0, 1] to general domains

But. . .
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[Error on slide 12: non-measurable mapping]

Non-measurability of the empirical process
The map

Ψ : [0, 1]→ `∞([0, 1]) : x 7→ 1[0,x]

is not Borel measurable.

Proof.
Let A ⊂ [0, 1] be not Borel measurable. The set

G =
⋃
y∈A

{
z ∈ `∞([0, 1])

∣∣∣ ‖z − 1[0,y]‖∞ 6 1/2
}

is a union of open balls in `∞([0, 1]), therefore open, therefore Borel
measurable. But

1[0,x] ∈ G ⇐⇒ x ∈ A

so Ψ−1(G) = A , which is not Borel measurable. �
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Possible fix #1: the ball σ-field

Lack of measurability is not to be taken lightly (ask S. Banach and A. Tarski)

Possible solution: on `∞([0, 1]), consider a smaller σ-field, the one
generated by open balls (Dudley, 1966; Pollard, 1984)
I The set G on slide 13 is not in the ball σ-field

The union there is uncountable

Drawback: Natural link with topology on `∞([0, 1]) is lost
I Continuous mappings on `∞([0, 1]) are not automatically

ball-measurable
I Continuous mapping theorem and functional delta method become

potentially more difficult to apply
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Possible fix #2: allow for non-measurable mappings

Hoffmann-Jørgensen (1984, 1991):
I Use inner/outer expectation and inner/outer probability for

non-measurable mappings and sets
I Insist on measurability only in the limit

Theory works especially well when limit Borel probability measure L on
`∞([0, 1]) is tight:
I For all ε > 0, there exists compact K ⊂ `∞([0, 1]) such that

L(K) > 1 − ε
I Then L concentrates on stochastic processes with sample paths that

are uniformly continuous with respect to some nice semimetric on [0, 1]

Extends to `∞(T), where T is any set:
=⇒ T is a family of functions: empirical processes indexed by functions
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Empirical process indexed by functions

I X1,X2, . . . i.i.d. random variables on some probability space Ω and into
some measurable space (X,A) with common distribution P

I Family F ⊂ L2(P) of P-square integrable functions f : X → R

Definition: Empirical process indexed by F . For f ∈ F ,

Gnf =
√

n

1
n

n∑
i=1

f(Xi) − E[f(X1)]


Examples:
I The empirical process

√
n(Fn − F) above: all f = 1[0,x] for x ∈ R

I Multivariate weighted empirical distribution functions
I Functions fθ indexed by a parameter θ, e.g., parametric models
I . . .
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Convergence of finite-dimensional distributions

Multivariate central limit theorem. For every (f1, . . . , f`) ∈ F `,

(Gnf1, . . . ,Gnf`) d
−→ (Gf1, . . . ,Gf`), n → ∞

The limit vector is centered multivariate normal with covariances

E[Gfj Gfk ] = cov (fj(X1), fk (X1))

I Cannot conclude that

sup
f∈F
|Gnf | d

−→ sup
f∈F
|Gf |, n → ∞

I CLT uniform in f ∈ F ?
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Empirical process as a random bounded function
Suppose F is such that almost every trajectory f 7→ Gnf is bounded:
I supf∈F

∣∣∣f(x)
∣∣∣ < ∞ for P-almost every x ∈ X

I supf∈F

∣∣∣E[f(X1)]
∣∣∣ < ∞

View Gn as a possibly nonmeasurable map into `∞(F ):

Gn : Ω→ `∞(F )

Weak convergence in `∞(F )?

Gn
?
 G, n → ∞

Limit process G should be a P-Brownian bridge
I centered Gaussian process indexed by F
I covariances as on slide 18
I “nice” trajectories f 7→ Gf
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Approach will work for some, but not all, families F

For weak convergence of Gn in `∞(F ), the choice of F is crucial:
I For X = R and any P, weak convergence always holds for

F =
{
1(−∞,x]

∣∣∣ x ∈ R
}

I Counterexample: for X = [0, 1] with P the uniform distribution and

F =
{
all polynomial f : [0, 1]→ [0, 1]

}
we have, by the Stone–Weierstrass theorem,

sup
f∈F
|Gnf | = sup

f∈F

√
n

∣∣∣∣∣∣∣1n
n∑

i=1

f(Xi) −

∫ 1

0
f(x) dx

∣∣∣∣∣∣∣ =
√

n

=⇒ F -based Kolmogorov–Smirnov test breaks down
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Course outline

1. Introduction

2. Stochastic Convergence in Metric Spaces

3. Glivenko–Cantelli and Donsker Theorems

4. Tools to Work with Empirical Processes

Main sources for these lectures:
I van der Vaart and Wellner (1996)
I van der Vaart (1998)
I Kosorok (2008)
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