

# Analyzing dependent data with vine copulas (Lecture 1)

Claudia Czado <cczado@ma.tum.de> TU München

École d'été 2018 Sept 2-5,2018

#### Outline



#### 1 Motivation

- 2 Multivariate distributions
- 3 Bivariate copulas
- 4 Pair-copula constructions (PCC) of vine distributions (d=3)



There are about 1600 items found in google scholar with the search expression vine copula, over 200 of them are in 2018. A word cloud with the 20 most used words in articles in 2018 shows



#### Abalone data set

ПΠ

The abalone dataset is available from the University of California Irvine (UCI) machine learning repository http://archive.ics.uci.edu/ml/datasets/Abalone

- Sex / nominal / / M, F, and I (infant)
- Length / continuous / mm / Longest shell measurement
- Diameter / continuous / mm / perpendicular to length
- Height / continuous / mm / with meat in shell
- Whole weight / continuous / grams / whole abalone
- Shucked weight / continuous / grams / weight of meat
- Viscera weight / continuous / grams / gut weight (after bleeding)
- Shell weight / continuous / grams / after being dried
- Rings / integer / / +1.5 gives the age in years







- 2 Multivariate distributions
- 3 Bivariate copulas
- 4 Pair-copula constructions (PCC) of vine distributions (d=3)





#### 1 Motivation

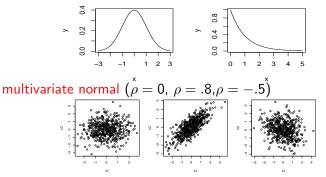
#### 2 Multivariate distributions

3 Bivariate copulas

4 Pair-copula constructions (PCC) of vine distributions (d=3)

## **Multivariate distributions**

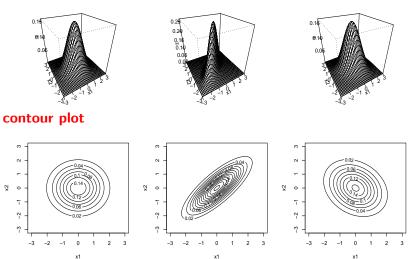
- Multivariate distributions describe stochastic behavior of several variables jointly.
- Marginal distributions describe stochastic behavior of a single variable (examples: univariate normal, exponential)



How to construct multivariate distributions with different margins?

## Bivariate normal density and contour plots

**joint density plot** (right:  $\rho = 0$ , middle:  $\rho = .8$ , left:  $\rho = -.25$ )



8/44

## **Conditional distributions**

- vine distributions are defined using conditional distributions
- conditional distributions describe the stochastic behaviour of variables under the condition that other variables are fixed.
- conditional = unconditional distributions if variables are independent
- conditional cdf of  $X_i$  given  $X_j = x_j$ :

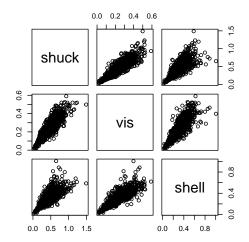
$$F_{i|j}(x_i|x_j) = rac{1}{f_j(x_j)} rac{\partial}{\partial x_j} F_{ij}(x_i, x_j)$$

• conditional pdf of  $(X_i, X_j)$  given that  $X_k = x_k$ :

$$f_{i,j|k}(x_i, x_j|x_k) := \frac{f_{ijk}(x_i, x_j, x_k)}{f_k(x_k)}$$

#### Weight variables in Abalone data





#### **Dependency measures**



- Most well known dependency measure is the correlation ρ between two random variables.
- It only measures linear dependencies.
- Non linear dependencies can be detected by Kendall's τ which measures the difference between the concordance and discordance probability.
- Upper (lower) tail dependence measures the probability of joint large (small) occurrences as one moves to the extremes.
- multivariate normal has no tail dependence, while the multivariate t distribution has tail dependence.
- When upper and lower tail dependence are not the same we speak of asymmetric tail dependence.

## How to separate dependency patterns from the marginal behavior?





1 Motivation

- 2 Multivariate distributions
- 3 Bivariate copulas

4 Pair-copula constructions (PCC) of vine distributions (d=3)

#### **Resources for copulas**



- Copula theory started with Sklar (1959)
- Books on copulas:
  - Multivariate models and multivariate dependence concepts by (Joe 1997)
  - An Introduction to Copulas (Nelsen 2006)
  - Simulating copulas: stochastic models, sampling algorithms, and applications (2nd edition) (Scherer and Mai 2017)
- Software:
  - copula (Kojadinovic and Yan 2010)
  - VineCopula (Schepsmeier et al. 2017)

#### Copula approach



| Consider d random variables $X = (X_1, \dots, X_d)$ with                                                          |                          |                        |
|-------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|
|                                                                                                                   | pdf                      | cdf                    |
| marginal                                                                                                          | $f_i(x_i), i=1,\ldots,d$ | $F_i(x_i), i = 1,, nd$ |
| joint                                                                                                             | $f(x_1,\ldots,x_d)$      | $F(x_1,\ldots,x_d)$    |
| conditional                                                                                                       | $f(\cdot \cdot)$         | $F(\cdot \cdot)$       |
| Copula (distribution)                                                                                             |                          |                        |
| A copula $C(u_1, \ldots, u_d)$ is a multivariate distribution on $[0, 1]^d$ with uniformly distributed marginals. |                          |                        |

#### Sklar's theorem (1959)

A joint distribution function F with margins  $F_j, j = 1, ..., d$  can be expressed as

$$F(x_1,...,x_d) = C(F_1(x_1),...,F_d(x_d))$$
 (1)

for some copula C. It is unique when F is absolutely continous.

## Sklar's theorem for (conditional) densities

#### Densities and conditional densities for d=2

Let  $f_{12}$  denote the density of the bivariate distribution  $F_{12}$ , then

$$f_{12}(x_1, x_2) = c_{12}(F_1(x_1), F_2(x_2)) \cdot f_1(x_1) \cdot f_2(x_2)$$
(2)  

$$f_{2|1}(x_2|x_1) = c_{12}(F_1(x_1), F_2(x_2)) \cdot f_2(x_2)$$

where  $c_{12}(\cdot)$  is the density assiociated with the copula  $C_{12}$ .

Equations (1) and (2) can also be used in a constructive way to build new multivariate distributions.

#### Variable scales

Let  $(X_1,\ldots,X_d) \sim F$ .

• **x-scale**: original scale of variables  $X_j$ , j = 1, ..., d

• **u-scale**: copula scale of variables  
$$U_j := F_j(X_j) \sim U(0,1), j = 1, \dots, d$$

**z-scale**: normalized score scale of variables  $Z_j := \Phi^{-1}(U_j) \sim N(0, 1), j = 1, \dots, d$ 

For d = 2 pair plots and density contour plots on

- x-scale mix dependence and marginal effects
- u-scale show dependence effects, but not so informative
- z scale show dependence effects and can be compared to known behavior of bivariate normal variables. The associated contour plot is called a normalized contour plot



#### **Bivariate copula families**



- Elliptical copulas: Copula constructed using inversion of Sklar's theorem applied to bivariate elliptical distributions such as the bivariate normal or Student t distribution.
- Archemedian copulas: Copulas directly constructed using a strictly monotone convex generator function  $\psi$  with  $\psi(0) = 0$

$$C(u_1, u_2) = \psi^{[-1]}(\psi(u_1) + \psi(u_2)), \qquad (3)$$

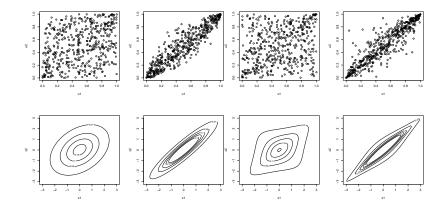
where  $\psi^{[-1]}$  denotes the pseudo inverse of  $\psi$ . Examples are Gumbel, Clayton and Frank copulas.

Extreme value copulas: This class of copulas associated with limiting distributions of bivariate extreme value theory. An interesting nonsymmetric class is the Tawn copula with 3 parameters. Bivariate copulas

#### **Bivariate elliptical copula families**



Gaussian copulat-copula with df = 3(left  $\tau = .25$ , right:  $\tau = .75$ )(left  $\tau = .25$ , right:  $\tau = .75$ )

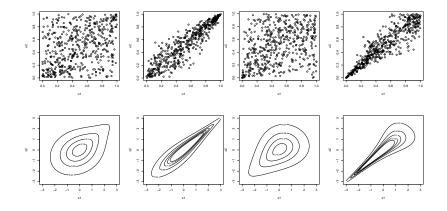


Bivariate copulas

#### **Bivariate Archimedian copula families**

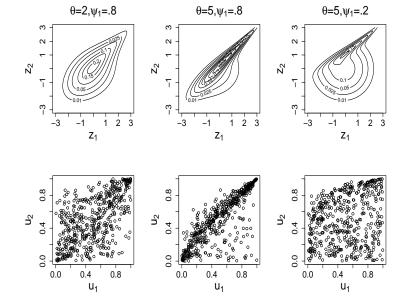


# Gumbel copulaClayton copula(left $\tau = .25$ , right: $\tau = .75$ )(left $\tau = .25$ , right: $\tau = .75$ )



#### Bivariate copulas

#### **Bivariate Tawn copula with 2 parameters**



20 / 44

## Some formulas of bivariate copulas (part 1)

#### Gaussian copula:

$$C(u_1, u_2; \rho) = \Phi_2(\Phi^{-1}(u_1), \Phi^{-1}(u_2); \rho),$$

where  $\Phi(\cdot)$  is N(0,1) cdf and  $\Phi_2(\cdot,\cdot;\rho)$  is bivariate normal cdf with zero means, unit variances and correlation  $\rho$ . The pdf is

$$c(u_1, u_2; \rho) = \frac{1}{\phi(x_1)\phi(x_2)} \frac{1}{\sqrt{1-\rho^2}} \exp\left\{-\frac{\rho^2(x_1^2+x_2^2)-2\rho x_1 x_2}{2(1-\rho^2)}\right\},\$$

where  $x_1 := \Phi^{-1}(u_1)$  and  $x_2 := \Phi^{-1}(u_2)$ . **Student t copula:** 

$$c(u_1, u_2; \nu, \rho) = \frac{t(T_{\nu}^{-1}(v_1), T_{\nu}^{-1}(v_2); \nu, \rho)}{t_{\nu}(T_{\nu}^{-1}(v_1))t_{\nu}(T_{\nu}^{-1}(v_2))},$$

where  $T_{\nu}(t_{\nu})$  are univariate Student t cdf (pdf) with  $df = \nu$ and  $t(\cdot, \cdot; \nu, \rho)$  pdf of bivariate Student t with  $df = \nu$  and scale matrix  $\begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}$ .

## Some formulas of bivariate copulas (part 2)

Clayton copula:

$$C(u_1, u_2) = (u_1^{-\delta} + u_2^{-\delta} - 1)^{-\frac{1}{\delta}},$$

where  $0 < \delta < \infty$ ,  $\delta \rightarrow 0$  corresponds to independence **Gumbel copula:** 

$$C(u_1, u_2) = \exp[-\{(-\ln u_1)^{\delta} + (-\ln u_2)^{\delta}\}^{\frac{1}{\delta}}],$$

where  $\delta \geq 1$ ,  $\delta = 1$  corresponds to independence.

#### Kendall's $\tau$ of some copula families

#### Kendall's tau

The Kendall's  $\tau$  between  $X_1$  and  $X_2$  is defined as

 $\tau := P((X_{11} - X_{21})(X_{12} - X_{22}) > 0) - P((X_{11} - X_{21})(X_{12} - X_{22}) < 0),$ 

where  $(X_{11}, X_{12})$  and  $(X_{21}, X_{22})$  are i.i.d copies of  $(X_1, X_2)$ . Further for the associated copula *C* we can express

$$\tau = 4 \int_0^1 \int_0^1 C(u_1, u_2) dC(u_1, u_2).$$

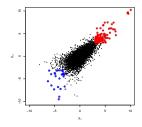
FamilyKendall's  $\tau$ Gaussian $\tau = \frac{2}{\pi} \arcsin(\rho)$ Student t $\tau = \frac{2}{\pi} \arcsin(\rho)$ Clayton $\tau = \frac{\delta}{\delta+2}$ Gumbel $\tau = 1 - \frac{1}{\delta}$ 

#### **Bivariate tail dependence**

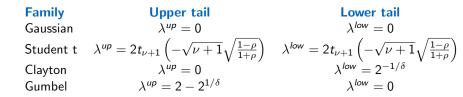


$$\lambda^{upper} = \lim_{t \to 1^{-}} P(X_2 > F_2^{-1}(t) | X_1 > F_1^{-1}(t)) = \lim_{t \to 1^{-}} \frac{1 - 2t + C(t, t)}{1 - t},$$
$$\lambda^{lower} = \lim_{t \to 0^{+}} P(X_2 \le F_2^{-1}(t) | X_1 \le F_1^{-1}(t)) = \lim_{t \to 0^{+}} \frac{C(t, t)}{t}.$$

**Illustration:** upper tail (red), lower tail (blue)



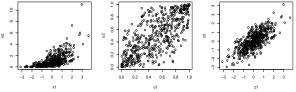
## Tail dependence of bivariate copula families



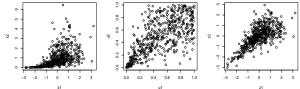
#### Meta distributions



are build using a copula  $[(u_1, u_2)]$  and different margins (normal/exponential  $[(x_1, x_2)]$  or normal/normal  $[(z_1, z_2)]$ ) Gaussian copula



#### **Clayton copula**



#### **Bivariate rotations**



- Extension: To extend range of dependence we use counterclockwise rotations
  - ▶ 90 degree:  $c_{90}(u_1, u_2) := c(1 u_2, u_2)$
  - ▶ 180 degree:  $c_{180}(u_1, u_2) := c(1 u_1, 1 u_2)$
  - ▶ 270 degree:  $c_{270}(u_1, u_2) := c(u_2, 1 u_1)$
- Extended Clayton:

$$C_{clayton}^{extended}(u_1, u_2; \delta) := \begin{cases} c_{clayton}(u_1, u_2) & \text{if } \delta > 0 \\ c_{clayton}(1 - u_2, u_1) & \text{otherwise} \end{cases}$$

Exchangeability or reflection symmetry:

 $c(u_1, u_2) = c(u_2, u_1)$  for all  $u_1, u_2$ 

- Gumbel and Clayton are exchangeable
- ▶ 90 or 270 degree rotation is no longer exchangeable

#### **Illustration of rotations**



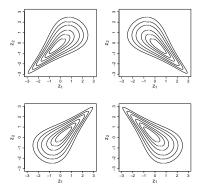


Figure: Normalized contour plots of Clayton rotations: top left: 0 degree rotation ( $\tau = .5$ ), top right: 90 degree rotation ( $\tau = -.5$ ), bottom left: 180 degree rotation ( $\tau = .5$ ), bottom right: 270 degree rotation ( $\tau = -.5$ ).

#### Parametric bivariate copula models



- **Data:** i.i.d observations  $(x_{i1}, x_{i2}), i = 1, \dots, n$  from the joint density  $f_{12}(x_1, x_2) = c_{12}(F_1(x_1), F_2(x_2))f_1(x_1)f_2(x_2)$ .
- Margins:  $F_j(x_j; \theta_{mj}), j = 1, 2$  with marginal parameters  $\theta_m = (\theta_{m1}, \theta_{m2}).$
- **Copula**:  $c_{12}(u_1, u_2; \theta_c)$  with copula parameter  $\theta_c$ .
- Estimation:
  - Joint: Marginal and copula parameter are jointly estimated using maximum likelihood (ML).
  - Two step:
    - ▶ Inference for margins: Estimate margin separately to get  $\hat{F}_{j}^{par}$  and then use ML based on  $\hat{u}_{ij}^{par} = \hat{F}_{j}^{par}(x_{ij})$ . Joe and Xu (1996)
    - Semiparametric approach: Estimate margins using empirical cdf's  $\hat{F}_j$  and then use ML based on  $\hat{u}_{ij} = \hat{F}_j(x_{ij})$ . Genest et al. (1995)

### Nonparametric bivariate copula models

- **Data:** i.i.d observations  $(x_{i1}, x_{i2}), i = 1, \dots, n$  from the joint density  $f_{12}(x_1, x_2) = c_{12}(F_1(x_1), F_2(x_2))f_1(x_1)f_2(x_2)$ .
- Models: Both marginal and copula models are not specified
- Two step estimation:
  - ► Margins are estimated using empirical cdf's *F̂<sub>j</sub>*. The empirical copula is estimated based *û<sub>ij</sub>* = *F̂<sub>j</sub>*(*x<sub>ij</sub>*).
  - ► Margins are estimated using kernel density cdf estimates F<sub>j</sub><sup>kd</sup> and copula density is estimated by bivariate kernel estimates based on û<sub>ij</sub><sup>ks</sup> = F<sub>j</sub><sup>ks</sup>(x<sub>ij</sub>).

#### General model selection criteria



Let  $\ell_n(\hat{\theta}, \mathbf{x})$  be the log likelihood based on model with p dimensional parameter  $\theta$  and observed data  $\mathbf{x}$  of size n evaluated at the estimate  $\hat{\theta}$ .

AIC: (Akaike 1973)

 $AIC_n := 2\ell_n(\hat{\theta}, \mathbf{x}) + 2p$ 

#### **BIC: (Schwarz 1978)**

 $BIC_n := 2\ell_n(\hat{\theta}, \mathbf{x}) + \log(n)p$ 

## Bivariate copula estimation in VineCopula

The R package VineCopula allows also for bivariate copula estimation

Function BiCop BiCopCDF

BiCopCondSim BiCopEst BiCopEstList

BiCopGofTest BiCopHfunc BiCopKDE

BiCopMetaContour BiCopPar2TailDep Tail BiCopPar2Tau BiCopPDF BiCopSelect

BiCopSim BiCopTau2Par

#### Purpose

Constructing BiCop-objects Distribution Function of a Bivariate Copula Conditional simulation from a Bivariate Copula Parameter Estimation for Bivariate Copula Data List of Maximum Likelihood Estimates for Several **Bivariate Copula Families** Goodness-of-Fit Test for Bivariate Copulas Conditional Distribution Function of a Bivariate Copula Kernel estimate of a Bivariate Copula Density Contour Plot of Bivariate Meta Distribution Dependence Coefficients of a Bivariate Copula Kendall's Tau Value of a Bivariate Copula Density of a Bivariate Copula Selection and Maximum Likelihood Estimation of Bivariate Copula Families Simulation from a Bivariate Copula Parameter of a Bivariate Copula for a given Kendall's Tau Value

#### Outline



#### 1 Motivation

- 2 Multivariate distributions
- 3 Bivariate copulas

4 Pair-copula constructions (PCC) of vine distributions (d=3)

#### Motivation for vine based models

- Many data structures exhibit
  - different marginal distributions
  - non-symmetric dependencies between some pairs of variables
  - heavy tail dependencies between some pairs of variables
- These cannot be modeled with a Gaussian or multivariate t distribution
- The copula approach allows to model dependencies and marginal distributions separately.
- Marginal time dependencies can be captured by appropriate univariate time series models.
- Elliptical and Archimedean copulas do not allow for different dependency patterns between pairs of variables.

Vine based models can overcome all these shortcomings.

## Some (notational) remarks



- We distinguish between the copula associated with a bivariate conditional distribution and a bivariate conditional distribution derived from the copula variables. In particular
  - ► The conditional distribution of (X<sub>i</sub>, X<sub>j</sub>) given X<sub>D</sub> = x<sub>d</sub> has copula C<sub>ij;D</sub>(·, ·). We call C<sub>ij;D</sub>(·, ·) a conditional copula.
  - ► Assuming that (U<sub>1</sub>,..., U<sub>d</sub>) have the copula C as distribution function, the bivariate distribution of (U<sub>i</sub>, U<sub>j</sub>) given U<sub>d</sub> = u<sub>d</sub> is denoted by C<sub>ij|D</sub>(·, ·). This is in general not a copula.
- Specification of three bivariate copulas does not lead in general to a valid construction of three variate copula.

#### Pair-copula constructions in 3 dimensions

$$f(x_1, x_2, x_3) = f_{3|12}(x_3|x_1, x_2)f_{2|1}(x_2|x_1)f_1(x_1)$$

Using Sklar for  $f(x_1, x_2), f(x_2, x_3)$  and  $f_{13|2}(x_1, x_3|x_2)$  implies

 $\begin{aligned} f_{2|1}(x_2|x_1) &= c_{12}(F_1(x_1), F_2(x_2))f_2(x_2) \\ f_{3|12}(x_3|x_1, x_2) &= c_{13;2}(F_{1|2}(x_1|x_2), F_{3|2}(x_3|x_2))f_{3|2}(x_3|x_2) \\ &= c_{13;2}(F_{1|2}(x_1|x_2), F_{3|2}(x_3|x_2))c_{23}(F_2(x_2), F_3(x_3))f_3(x_3) \end{aligned}$ 

$$\begin{array}{lll} f(x_1, x_2, x_3) &= & c_{13;2}(F_{1|2}(x_1|x_2), F_{3|2}(x_3|x_2))c_{23}(F_2(x_2), F_3(x_3)) \\ & \times & c_{12}(F_1(x_1), F_2(x_2)) \\ & \times & f_3(x_3)f_2(x_2)f_1(x_1) \end{array}$$

Only bivariate copulas and univariate conditional cdf's are used. We will later generalize this to d dimensions.

## Parametric copula; simplifying assumption

- The bivariate copulas in occuring in a PCC are called pair copulas.
- Pair copulas can be parametrically modelled with parameter  $\theta$ , i.e. we write  $C_{ij}(\cdot, \cdot; \theta)$ .
- The conditional copulas C<sub>ij;D</sub> dependgenerally on the conditioning value x<sub>D</sub>, we therefore use C<sub>ij;D</sub>(·, ·; x<sub>D</sub>).

#### Simplifying assumption

If there is no dependency, i.e.

 $C_{ij;D}(\cdot,\cdot;\mathbf{x}_D) = C_{ij;D}(\cdot,\cdot) \text{ for all } \mathbf{x}_D,$ 

we say that the simplifying assumption holds.

## Simplified PCC's in 3 dimensions

In the PCC we can reorder the variables, therefore we get three PCC's .

Three simplified PCC's in 3 dimensions

 $c_{12}-c_{23}-c_{13;2}$  :

 $\begin{array}{lll} f(x_1, x_2, x_3) & = & \mathbf{c_{13;2}}(F_{1|2}(x_1|x_2), F_{3|2}(x_3|x_2))\mathbf{c_{12}}(F_1(x_1), F_2(x_2)) \\ & \times & \mathbf{c_{23}}(F_2(x_2), F_3(x_3))f_1(x_1)f_2(x_2)f_3(x_3) \end{array}$ 

 $c_{13} - c_{23} - c_{12;3}$  :

 $\begin{array}{lll} f(x_1, x_2, x_3) & = & {\bf c_{12;3}}(F_{1|3}(x_1|x_3), F_{2|3}(x_2|x_3)) {\bf c_{13}}(F_1(x_1), F_3(x_3)) \\ & \times & {\bf c_{23}}(F_2(x_2), F_3(x_3)) f_1(x_1) f_2(x_2) f_3(x_3) \end{array}$ 

 $\begin{array}{rcl} \mathbf{c_{12}} - \mathbf{c_{13}} - \mathbf{c_{23;1}} : \\ f(x_1, x_2, x_3) &= & \mathbf{c_{23;1}}(F_{2|1}(x_2|x_1), F_{3|1}(x_3|x_1))\mathbf{c_{12}}(F_1(x_1), F_2(x_2)) \\ & \times & \mathbf{c_{13}}(F_1(x_1), F_3(x_3))f_1(x_1)f_2(x_2)f_3(x_3) \end{array}$ 

•  $c_{12} - c_{23} - c_{13;2}$ :

#### Storing the PCC with matrices

$$Mat:=\begin{bmatrix} 1 & 0 & 0 \\ 3 & 2 & 0 \\ 2 & 3 & 3 \end{bmatrix} \text{ and } Fam:=\begin{bmatrix} 0 & 0 & 0 \\ f_{13;2} & 0 & 0 \\ f_{13} & f_{23} & 0 \end{bmatrix}.$$

$$\begin{array}{c} \text{ Column 1 of Mat identifies copulas } c_{13;2} \text{ and } c_{12} \\ \text{ Column 2 of Mat identifies copulas } c_{23} \\ \text{ } f_{13;2} \text{ gives copula family of } c_{13;2}, \text{ etc.} \\ \text{ Parameter values are stored similarly as Fam matrix} \\ \textbf{C}_{13} - \textbf{C}_{23} - \textbf{C}_{12;3} \\ \text{Mat}:=\begin{bmatrix} 1 & 0 & 0 \\ 2 & 2 & 0 \\ 3 & 3 & 3 \end{bmatrix} \text{ and } Fam:=\begin{bmatrix} 0 & 0 & 0 \\ f_{12;3} & 0 & 0 \\ f_{13} & f_{23} & 0 \end{bmatrix}. \\ \textbf{C}_{12} - \textbf{C}_{13} - \textbf{C}_{23;1} \\ \text{Mat}:=\begin{bmatrix} 2 & 0 & 0 \\ 3 & 1 & 0 \\ 1 & 3 & 3 \end{bmatrix} \text{ and } Fam:=\begin{bmatrix} 0 & 0 & 0 \\ f_{23;1} & 0 & 0 \\ f_{12} & f_{13} & 0 \\ f_{12} & f_{13} & 0 \end{bmatrix}. \\ \end{array}$$

-

\_

ТΠ

### **Estimation in** $c_{12} - c_{23} - c_{13;2}$ (Part 1)

- Data: {(x<sub>i1</sub>, x<sub>i2</sub>, x<sub>i3</sub>), i = 1, · · · , n} i.i.d.
   Model:
  - $X_j \sim F_j(\cdot, \eta_j)$ ; j = 1, 2, 3 with  $\eta_j$  marginal parameter

• 
$$U_j := F_j(X_j, \eta_j), j = 1, 2, 3$$

•  $(U_1, U_2, U_3)$  has copula density with parameter vector  $\boldsymbol{\theta} = (\theta_{12}, \theta_{23}, \theta_{13;2})$ 

$$\begin{array}{lll} c(u_1, u_2, u_3; \boldsymbol{\theta}) &=& c_{12}(u_1, u_2, \theta_{12}) \times c_{23}(u_2, u_3; \theta_{23}) \\ &\times& c_{13;2}(C_{1|2}(u_1|u_2; \theta_{12}), C_{2|3}(u_2|u_3; \theta_{23}; \theta_{13;2}) \end{array}$$

- Marginal estimation: For each margin *j* estimate η<sub>j</sub> by ML estimation to get η̂<sub>j</sub>.
- Create pseudo copula data: Define  $\hat{u}_{ij} := F_j(x_{ij}, \hat{\eta}_j)$ , then  $(\hat{u}_{i1}, \hat{u}_{i2}, \hat{u}_{i3})$  is an approximate i.i.d. sample from  $c(u_1, u_2, u_3; \theta)$

### **Estimation in** $c_{12} - c_{23} - c_{13;2}$ (Part 2)

**Copula parameters:**  $\boldsymbol{\theta} = (\theta_{12}, \theta_{23}, \theta_{13;2})$ **Pseudo copula observations:**  $\hat{\mathbf{u}} := \{(\hat{u}_{i1}, \hat{u}_{i2}, \hat{u}_{i3}), i = 1, \cdots, n\}$ 

#### Sequential estimates:

- Estimate  $\theta_{12}$  from  $\{(\hat{u}_{i1}, \hat{u}_{i2}), i = 1, \cdots, n\}$
- Estimate  $\theta_{23}$  from  $\{(\hat{u}_{i2}, \hat{u}_{i3}), i = 1, \cdots, n\}$ .
- Define pseudo observations for conditional copula  $\hat{v}_{1|2i} := C(\hat{u}_{i1}|\hat{u}_{i2};\hat{\theta}_{12}) \text{ and } \hat{v}_{3|2i} := C(\hat{u}_{i3}|\hat{u}_{i2};\hat{\theta}_{23})$

Finally estimate  $\theta_{13;2}$  from  $\{(\hat{v}_{1|2i}, \hat{v}_{3|2i}), i = 1, \cdots, n\}$ .

# Joint copula maximum likelihood $L(\theta|\hat{\mathbf{u}}) = \sum_{i=1}^{n} [\log c_{12}(\hat{u}_{i1}, \hat{u}_{i2}; \theta_{12}) + \log c_{23}(\hat{u}_{ii}, \hat{u}_{i3}; \theta_{23}) + \log c_{13;2}(C(\hat{u}_{i1}|\hat{u}_{i2}; \theta_{12}), C(\hat{u}_{i3}|\hat{u}_{i2}; \theta_{23}); \theta_{13;2})]$

#### Summary

ТШ

- we studied multivariate distributions
  - we identified their conditional distributions
  - we studied bivariate dependence measures
- we introduced the concept of a copula,
  - studied bivariate copula classes
  - developed graphical tools to identify copula class
  - studied estimation and model selection
- we constructed three dimensional distributions
  - with arbitrary margins and three pair copulas
  - derived a sequential estimation method for copula parameters
  - showed how the models can be stored
  - illustrated all concepts with three weight variables from the Abalone data set using VineCopula

#### References

ТЛП

 Akaike, H. (1973).
 Information theory and an extension of the maximum likelihood principle.
 In B. N. Petrov and F. Csaki (Eds.), Proceedings of the Second International Symposium on Information Theory Budapest, Akademiai Kiado, pp. 267–281.

Genest, C., K. Ghoudi, and L. Rivest (1995).

A semi-parametric estimation procedure of dependence parameters in multivariate families of distributions. *Biometrika* 82, 543–552.

Joe, H. (1997). Multivariate models and multivariate dependence concepts. CRC Press.

Joe, H. and J. Xu (1996). The estimation method of inference functions for margins for multivariate models. Technical Report 166, Department of Statistics, University of British Columbia.

Kojadinovic, I. and J. Yan (2010). Modeling multivariate distributions with continuous margins using the copula R package. Journal of Statistical Software 34(9), 1-20.

Nelsen, R. (2006). An Introduction to Copulas. New York: Springer.

Schepsmeier, U., J. Stöber, E. C. Brechmann, B. Gräler, T. Nagler, and T. Erhardt (2017). VineCopula: Statistical Inference of Vine Copulas. Version 2.1.2.

#### References



Scherer, M. and J.-F. Mai (2017).

Simulating copulas: stochastic models, sampling algorithms, and applications (2 ed.), Volume 6 of Series in Quantitative Finance.

Imperial College Press.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics 6(2), 461-464.

Sklar, A. (1959). Fonctions de répartition à n dimensions et leurs marges. Publications de l'Institut de Statistique de L'Université de Paris 8, 229-231.