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History of regular vine models

Regular vines started with Joe (1996) who constructed them
using mixtures of conditional distribution functions.

There are many choices of conditioning variables, in d = 3 we
have 3 possibilities.

Bedford and Cooke (2002) introduced a graphical structure to
organize the sequence of conditioning variables.

In contrast to Joe (1996) the construction of Bedford and
Cooke (2002) is based on densities.

Gaussian vines were analyzed in Kurowicka and Cooke (2006),
while estimation for non Gaussian vines started with Aas et al.
(2009).

Joe (2014) is the up to date reference. An introductory book
on vines will appear in 2019.

Web resources are vine-copula.org and
en.wikipedia.org/wiki/Vine_copula
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Eight European banks

Consider daily values of eight European banks between 2013
and 2017 from Yahoo

The following banks were included:
I ACA.PA: Crédit Agricole S.A. (France)
I BBVA.MC: Banco Bilbao Vizcaya Argentaria, S.A. (Spain)
I BNP.PA: BNP Paribas SA (France)
I CBK.DE: Commerzbank AG (Germany)
I DBK.DE: Deutsche Bank AG (Germany)
I GLE.PA: Société Générale Société anonyme (France)
I ISP.MI: Intesa Sanpaolo S.p.A. (Italy)
I SAN.MC: Banco Santander, S.A (Spain)
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Daily asset values for eight banks
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Daily return values for eight banks
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Regular vine distributions

How do vines work in higher dimensions?

Which pairs of variables are needed?

What are the conditioning variables?
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Regular vine distributions

Some graph theoretic background

A graph is a pair G = (N,E ) with node set N and edge set E .
A path is a graph P = (Np,Ep) with node set
Np = {ν0, ν1, . . . , νk} and edge set
Ep = {{ν0, ν1}, {ν1, ν2}, . . . , {νk−1, νk}.
A graph T is a tree if any two nodes of T are connected by a
unique path in T.
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Regular vine distributions

Regular vine distributions

A parametric regular vine distribution R(V, C,θ) for the random
vector X = (X1, . . . ,Xd) with marginal distributions
Fj , j = 1, . . . , d has three components:

Components of a regular vine distribution

1. Tree structure: set of linked trees V
2. Parametric bivariate copulas: Set C = C(V) for each edge

in tree structure. Members of C are called pair copulas.

3. Corresponding parameters: θ = θ(C(V))

Abbreviation: R-vine R(V, C,θ)

10 / 40



Regular vine distributions

Regular vine tree structure

An n-dimensional vine tree structure V = {T1, . . . ,Td−1} is a
sequence of linked d − 1 trees with

Vine tree structure (Bedford and Cooke (2002))

Tree T1 is a tree on nodes 1 to d .

Tree Tj has d + 1− j nodes and d − j edges.

Edges in tree Tj become nodes in tree Tj+1.

Proximity condition: Two nodes in tree Tj+1 can be joined
by an edge only if the corresponding edges in tree Tj share a
node.

Special vine tree sequences:

D-vines use only path like trees

canonical C-vines use only star like tree
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Regular vine distributions

Edges in the vine tree sequence

Consider the tree sequence V = {T1, . . . ,Td−1}, where tree Tk

has edge set Ek and node set Nk .

Example:
Let a, b, c , d nodes in T1 with edges e1 = ab, e2 = bc,
e3 = cd three connected edges in E1 of Tree T1.
Then e1, e2 and e3 are nodes in T2.

I The edge between e1 and e2 in Tree T2 we denote by ea,c;b.
I The edge between e2 and e3 in Tree T2 we denote by eb,d ;c .

The edges ea,c;b and eb,d ;c are nodes in tree T3 and the edge
between these two nodes is denoted by ea,d ;b,c .

ab

bc cd

a

b

c

d

ac;b

bd;c

ab

bc

cd

ad;bc

ac;b

bd;c

General: Any edge in tree Tk can be characterized by

ei ,j ;D , where D is a set of k − 1 indices.
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Regular vine distributions

Pair copulas and edges

Let (i , j ,D) be chosen such that eij ;D is edge in tree Tk .

Let Cij ;D be the pair copula associated with edge eij ;D .

Then Cij ;D (cij ;D) is the copula (density) associated with the
bivariate conditional distribution (Xi ,Xj) given XD = xD .

Since we assume the simplifying assumption this copula is
independent of the specific value xD .

Regular vine density (Bedford and Cooke 2002)

f1:d(x) =
d∏

k=1

fk(xk)
d−1∏
k=1

∏
e=eij ;D∈Ek

cij ;D(Fi|D(xi |xD),Fj|D(xj |xD))
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Regular vine distributions

Canonical C-vine distributions

are regular vine distributions where each tree has a unique node
that is connected to n − j edges.

four dimensional C-vine distribution

f1234 = f1 · f2 · f3 · f4 · c12 · c13 · c14 · c23|1 · c24|1 · c34|12
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Regular vine distributions

D-vine distributions

are regular vine distributions where no node in any tree is
connected to more than two edges

Four dimensional D-vine distribution

f1234 = f1 · f2 · f3 · f4 · c12 · c23 · c34 · c13|2 · c24|3 · c14|23

1 2 3 4
12 23 34

tree 1

12 23 34
13|2 24|3

tree 2

13|2 24|3
14|23

tree 3
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Regular vine distributions

Can we see an example of an R-vine?

2

5 1 4

3
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2,4

3,4 T1

2,4

1,5 1,4

3,4

4,5|1

1,2|4

1,3|4 T2

4,5|1 1,3|4 1,2|4
3,5|14 2,3|14

T3

3,5|14 2,3|14
2,5|134

T4

Density

f = f1 · f2 · f3 · f4 · f5
· c14 · c15 · c24 · c34

· c12;4 · c13;4 · c45;1

· c23;14 · c35;14

· c25;134
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Regular vine distributions

Conditional distribution functions

For v = (v1, . . . , vd) and v−j = (v1, . . . , vj−1, vj+1, . . . , vd)

f (x |v) = cxvj |v−j
(F (x |v−j),F (vj |v−j)) · f (x |v−j)

Univariate conditioning (v univariate)

Since f (x |v) = cxv (Fx(x),Fv (v))fx(x) we have

F (x |v) =

∫ x

−∞

∂2Cxv (Fx (u),Fv (v))

∂Fx (u) ∂Fv (v)
fx (u)du

=
∂ Cxv (Fx (x),Fv (v))

∂Fv (v)

Multivariate conditioning (Joe 1996)

F (x |v) =
∂ Cx ,vj |v−j

(F (x |v−j),F (vj |v−j))

∂F (vj |v−j)
All conditional cdf’s in an R-vine can be recursively determined.
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Regular vine distributions

R-vine matrices (I)

Vine tree structure is stored in triangular matrix M = {mij}
Consider the R-vine with edges

I Tree 1: 51,14,42,43
I Tree 2: 45;1, 12;4, 13;4
I Tree 3: 35;14 ,23;14
I Tree 4: 25;134

Start with edge 25;134 in Tree 4, set m11 = 2 and m21 = 5.

Find partner of 2 in Tree 3:
I Find edge which has 2 in the conditioned set (23;14)
I Partner is then 3 and set m31 = 3

Partner of 2 in Tree 2 is 1 and therefore set m31 = 1.

Partner of 2 in Tree 1 is 4 and therefore set m41 = 4.

Column 1 identifies the edges 25;314, 23;14 ;21;4, 24

Remove all edges containing 2 , giving edges 51,14,43,45;1,
13;4 , 35;14 and do the same with these edges.
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Regular vine distributions

R-vine matrices (II)

Resulting R-vine matrix M =


2 0 0 0 0
5 3 0 0 0
3 5 5 0 0
1 1 4 1 0
4 4 1 4 4


Column 1 identifies 25;314, 23;14, 21;4 , 24.

Column 2 identifies 35;14, 31;4; 34.

Column 3 identifies 54;1, 51.

Column 4 identifies 14.
Pair copula family matrix C has following structuce

C =


0 0 0 0 0

c25;314 0 0 0 0
c23;14 c35;14 0 0 0
c21;4 c31;4 c54;1 0 0
c24 c34 c51 c14 0


The associated copula parameters are stored similarly as C.
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Regular vine distributions

Scope of the vine copula models

A regular vine cdf with uniform margins is a vine copula.

Known vine copula classes:
I multivariate Gaussian copula
I multivariate t copula
I multivariate Clayton copula (Takahashi (1965)). Stöber et al.

(2013) showed this is the only Archimedean copula.

Number of d − 1 vine trees: (Morales-Nápoles et al. 2010)

m(d) = d!× 2

(
d − 2

2

)
/2

Ex: m(25) ≈ 1.1.× 10101

Number of pair copulas:

p(d) =
d × (d + 1)

2
Ex: p(500) ≈ 124, 000

Efficient estimation and model selection are vital
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Data preparation and exploration or vine based modeling
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Data preparation and exploration or vine based modeling

Marginal analysis of bank asset values

Fit a GARCH(1,1) model with Student t errors to each asset
Xtj , t = 1, . . . ,T given by

Xtj = σtjεtj

σ2
tj = ωj + αjX

2
(t−1)j + βjσ

2
(t−1)j ,

where εtj are i.i.d standardized Student t with dfj degrees of
freedom.

Form fitted standardized residuals ε̂tj =
Xtj

σ̂tj
.

Transform ε̂tj to pseudo copula values using the standard

Student t distribution with d̂f j .
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Data preparation and exploration or vine based modeling

Standardized residuals after GARCH fit
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Data preparation and exploration or vine based modeling

Pseudo copula data for bank data
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Data preparation and exploration or vine based modeling

Pairwise normalized contour plots for banks
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Model selection and estimation in regular vine based models
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Model selection and estimation in regular vine based models

Model selection and estimation senarios

Need to study three senarios (Czado et al. 2013a):

for given R-vine tree structure and pair copula families.
Parameters are to be estimated.

for given R-vine tree structure. Copula families and
parameters are to be estimated

all three components are unknown, i.e the tree structure, the
pair copula families and their parameters are to be estimated.

Assumption: at least approximate i.i.d. copula sample from an
R-vine copula
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Model selection and estimation in regular vine based models

Known tree structure and copula families

Sequential estimation:
I Parameters are sequentially estimated starting from the top

tree until the last (Aas et al. (2009), Czado et al. (2012)).
I Asymptotic theory is available (Haff et al. (2013)), however

corresponding standard error estimates are difficult to compute.
I Can be used as starting values for maximum likelihood.

Maximum likelihood estimation:
I Asymptotically efficient under regularity conditions, again

estimated standard errors are numerically challenging.
I Uncertainty in value-at-risk (high quantiles) is difficult to

assess.

Bayesian estimation:
I Posterior is tractable using Markov Chain Monte Carlo (Min

and Czado (2011) for D-vines and Gruber (2011) for R-vines)
I Prior beliefs can be incorporated and credible intervals allow to

assess uncertainty for all quantities.
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Model selection and estimation in regular vine based models

Known vine structure (Brechmann 2010)

Select a set of candidate familes for the pair copulas.

For the pair copulas in the first tree use the copula data
directly to fit all candidate families for each pair copula Cij .

Choose as family the one with the lowest AIC. (AIC or BIC
not so crucial since only families with 1 or 2 parameters)

For pair copula Cab;D in tree Tj , j ≥ 2 with some
a, b ∈ {1 : d} and D a subset of {1 : d} with a, b /∈ D define

Pseudo data in tree Tj

ui ,a|D := C (uia|xi ,D) and ui ,b|D := C (uib|xi ,D), i = 1, . . . , n

Note these conditional cdf’s require the pair copulas and
parameters in the trees T1, . . . ,Tj−1.

Fit all candidate families to {ui ,a|D , ui ,b|D}, i = 1 . . . , n and
select the one with the lowest AIC.
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Model selection and estimation in regular vine based models

Sequential selection (Dißmann et al. 2013)

Idea: Model strong pairwise dependencies first

For T1 use a maximal spanning tree (MST) algorithm to find
tree which maximizes the sum of absolute empirical pair
Kendall’s τ .

Use AIC to choose the pair copula families in T1.

Apply MST to the graph of all nodes of T2 (edges in T1) with
all edges allowed by proximity. Kendall’s τ estimates use
corresponding pseudo observations

Continue with the remaining trees.

Other weight measures such as tail dependence measures can
be used (Czado et al. 2013b).
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Model selection and estimation in regular vine based models

Illustration of the Dissmann algorithm (I)

acv

acc

acf

den

clor

st

ph

Figure: Complete graph of all pairs from a seven dimensional data set of
the first tree.
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Model selection and estimation in regular vine based models

Illustration of the Dissmann algorithm (II)

acv

acc

acf

den

clor

st

ph

Figure: First tree graph with selected edges highlighted in bold.
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Model selection and estimation in regular vine based models

Illustration of the Dissmann algorithm (III)

acf,den ph,acf

acf,acc

acc,acvclor,st

den,clor

Figure: All pairs of variables of tree T2 and edges allowed by the
proximity condition.

acf,den ph,acf

acf,acc

acc,acvclor,st

den,clor

Figure: Tree T2 with selected edges highlighted in bold.
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Model selection and estimation in regular vine based models

Bayesian model selection approaches

Reversible jump (RJ) MCMC (Min and Czado (2011)) and an
MCMC with model indicators (Smith et al. (2010)) were used
for D-vines choosing between an independence copula and a
fixed copula family (nonsequential but tree structure known).

Gruber and Czado (2015) developed a sequential RJMCMC
Bayesian model selection approach, while Gruber and Czado
(2018) extends this to a non sequential selection strategy.

All these approaches are restricted to d ≤ 20.
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Model selection and estimation in regular vine based models

R-package VineCopula

Schepsmeier et al. (2017)
RVineAIC AIC of an R-Vine Copula Model
RVineBIC BIC of an R-Vine Copula Model
RVineCopSelect Sequential Pair-Copula Selection

and Parameter Estimation for R-Vine
Copula Models for given Tree Structure

RVineSeqEst Sequential Parameter Estimation of an R-Vine
Copula Model for given Copula families
and given Tree Structure

RVineSim Simulation from an R-Vine Copula Model
RVineStructureSelect Sequential Specification of R- and

C-Vine Copula Models (Dissmann Algorithm)
RVineMLE Joint Maximum Likelihood Estimation of an

R-Vine Copula Model
plot Tree plots for R-vine matrix object
contour Contour plots of fitted pair copulas
summary Summary output for R-vine matrix object
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Summary

Outline

1 Regular vine distributions

2 Data preparation and exploration or vine based modeling

3 Model selection and estimation in regular vine based models

4 Summary

36 / 40



Summary

Summary

Defined R-vine distributions with
I arbitrary marginal distributions
I R-vine tree structure,
I Set of associated arbitrary pair copulafamilies,
I Set of associated pair copula parameters.

There is huge number of R-vine tree structures and a large
number of parametric bivariate pair copulas.

Dependence in multivariate time series is modelled over
dependence among standardized residuals of an approriate
univariate time series model.

A sequential estimation approach can be used to estimate
parameters.

The Dissmann algorithm can be used to select an appropriate
vine distribution to data.
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